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ABSTRACT

VMAF is a popular objective quality metric used for
video quality evaluation. The power of VMAF has been
demonstrated for a wide variety of video scales and encod-
ing processes. However, its ability to evaluate the quality
of small video patches has not yet been tested, despite its
importance for encoding algorithms. We applied Maximum
Likelihood Difference Scaling (MLDS) methodology to es-
timate supra-threshold perceptual differences in localized
sections in videos, also known as tubes, encoded using AV1.
We further used the results to assess the performance of
VMAF in this scenario and proposed a recalibration of the
algorithm to improve its agreement with the subjective data.

Index Terms—
Difference Scaling, Video Quality, VMAF, tubes, Open

Video Codecs

1. INTRODUCTION

Video encoding and research on human perception of dis-
tortion attempt to improve the quality of transmitted videos,
while keeping file sizes as small as possible. Multiple objec-
tive quality metrics exist and work well on a global scale, but
their behavior, when applied locally on small video patches,
remains largely an open question.

In video coding algorithms like AV11, the optimizer se-
lects at the level of a coding unit (CU) between the different
coded proposals of a reference block, taking into account the
cost (i.e. bit rate) and the distortion introduced. At equal
cost, the most faithful proposal will be retained. This fidelity
paradigm guides the encoding and we need a powerful metric
to assess the perception of these distortions.

Previous research work such as [1, 2, 3] have used supra
threshold perceptual scaling to assess image similarity and ap-
ply perceptual weights to the three SSIM [4] terms. Another
series of works from [5, 6, 7, 8, 9] applied MLDS for video
similarity. In [10, 11], they applied MLDS to assess the per-
ception of encoded textures. In recent work [12], MLDS has
been compared to other two-alternated force choice (2AFC)

1AV1 encoder v3.1.2, from AOM Alliance Open Media:
https://aomedia.googlesource.com/aom/

subjective methods in a comparative study to boost data col-
lection. Difference scaling showed good performance in the
task of estimating perceived distortions of compressed me-
dias, so we chose to use it in this work.

In this study, we present how we collected data for
supra-threshold perceptual distortion introduced with AV1
in videos. In section 2, we detail the creation of tube-contents
and our strategy to select interesting ones for a subjective
experiment using MLDS methodology. In section 3, we ex-
plore VMAF’s response to these distortions and propose a
correction to improve VMAF’s localized quality sensitivity
and prediction behavior.

2. ESTIMATING THE PERCEIVED DISTORTIONS

The effect of distortion on the human perception can be esti-
mated with MLDS[13, 14]. This methodology is effective in
the process of selecting stimuli to compare in subjective study.
Moreover, in subjective quality assessment of image/video, it
has been shown that Two-Alternative Forced Choice (2AFC)
methods are more precise and sensitive in comparison with
direct rating methods. We applied MLDS methodology to
estimate supra-threshold differences in small videos, tubes,
encoded using AV1.

We want to estimate the perceptual distance in a tube-
content Ci, a set of video-tubes composed of a reference tube
and 5 levels of distortions: Ci = {Si

1, S
i
2, ..., S

i
6}. The stimuli

are pre-ordered in increasing value of quantization parameters
(QP), with the assumption that higher QPs introduce higher
perceptual distortions: Si

1 < Si
2 < ... < Si

6.
In the original work of MLDS, a perceptual curve per con-

tent is estimated from the judgments collected. The limitation
is that the perceptual curves of 2 contents cannot be directly
related. To compare them and estimate a scale factor for each
of the perceptual curves, we added inter-content comparisons.
Where a quadruplet is composed of a pair of stimuli from con-
tent Ci and a pair from content Cj : (Si

a, S
i
b, S

j
c , S

j
d).

More details about the solving procedure and the selection
of quadruplets for inter-content comparisons are in [15]. In
the next sections, we will present how we constructed and
selected our tube-contents to be presented in the subjective
experiment.



Fig. 1: Tubes extraction process on ”videoSRC057” from
VideoSet dataset [16], a frame is divided in 30× 16 tubes.

2.1. Dataset creation
We used the reference videos from VideoSet database [16].
Particularly, the subset of 115 reference videos with a size
of 1080p and at 30fps was selected. We encoded them us-
ing AV1 encoder. During the encoding, we varied the QP
values, ranging from 3 to 63 with a step of 2, generating 31
Processed Video Sequences (PVS) for each original video se-
quence (SRC).

From the original video we extracted tubes fig. 1. Tubes
design is based on human perception, with the length of the
tube modeling an average gaze duration (400ms): the fixation
performed by the eyes on an object. The spatial size of the
tube is derived from the size of the human fovea: covering 1°
at the center of the field of view, around 64 pixels in standard
visualization conditions. Different Group of Pictures (GOPs)
sizes can potentially influence the perceptual distortions, nev-
ertheless, the selected parameters in the encoding algorithm
did lead to a relatively homogenous distortion for the whole
tube.

A tube-content in our case is a set of tubes: a first tube
extracted in the reference video of the SRC, and 31 distorted
versions of that tube from the 31 PVS.

2.2. Tube-contents clustering
To select interesting and diverse tube-contents to evalu-
ate through subjective experiments, we choose to qualify
them using Full-Reference quality metrics, e.g. VMAF[17],
SSIM[4], VIF[18], DLM[19], PSNR and also the percep-
tual deep learning based metric LPIPS[20]. For each tube-
content, we gather a list of 31 scores per metric, each score
corresponding to each distortion level (PVS).

In the figure 2, the relation between 2 metrics is extracted
using linear regression. The slope, intercept and RMSE of the
fitting are then used to represent how objective metrics qualify
a tube-content. Moreover, by coupling metrics together and
extracting fitting parameters, we can get information about
the difference in sensitivity and agreement of the objective
quality metrics on the same tube-content.

The 6 quality metrics mentioned above, give 15 metric
couples with 3 features each: slope, intercept, and RMSE of

Fig. 2: Fitting a tube-content with VMAF/SSIM scores. 31
blue dots, one for each distortion level (e.g QP value), scat-
tered based on SSIM and VMAF scores. In red the best linear
fit line, with slope 166.45, intercept 65.008, and RMSE 5.906.

best fit line. The 45 resulting features are extracted for all
the tube-contents constructed in the previous section and used
to cluster them. We applied K-means clustering algorithms
on the 45 features collected. Empirically, we found that 96
clusters were modelling the data correctly. In the figure 3
examples of tubes from 4 clusters are displayed. We can see
that similar tube-contents are clustered together.

Fig. 3: Examples of tube-contents from 4 clusters, each tube-
content reference tube is represented, noise pattern is used
as right-padding to square visualizations. Top clusters tend
to capture high spatial and temporal frequency texture, while
bottom clusters model more flat or darker textures.

2.3. Tube-contents selection for subjective experiments
The tube-contents to annotate via subjective experiment are
selected from clusters with specific properties: clusters hav-
ing a large number of samples, and where VMAF and SSIM
disagree (i.e, large RMSE, and small or negative slope).
These specific contents can help us to better correct VMAF



Fig. 4: The 20 tube-contents selected for the subjective experiment. Each column represents a tube-content and its distortion
levels in increasing order from the top with the original tubes (not distorted) to bottom with the most distorted level.

on the local quality level.
For our first study, we selected 20 tube-contents, each

tube-content contains 32 tubes (1 reference + 31 distorted
versions of it), and we need to reduce this number to have
manageable number of quadruplets to annotate. We selected
6 distortion levels to conduct the subjective experiment via
MLDS methodology. The final selection is depicted in fig. 4.

2.4. Tube-contents distortion level selection.
To select interesting distortion levels to evaluate during the
subjective experiment, we use VMAF scores as an estimate of
the distortion. For each tube-content, we first computed the
range from VMAF scores between the QP0 and QP55 of AV1
encoded tubes and divided it by N = 6 in our case, yielding
a step score uses to select, N − 1 equally spaced QPs on the
VMAF scale, starting from the reference tube also included.

2.5. Quadruplet selection: intra and inter annotations
The quadruplets for intra-contents estimation via subjective
experiment are generated following the recommendation of
MLDS papers [13, 14], where there are

(
N
4

)
quadruplets for

a N levels difference scaling experiment. In our case we se-
lected N = 6 levels to estimate (a reference tube + 5 levels of
distortion) yielding 15 quadruplets to evaluate for each tube-
content.

In the case of inter-contents comparisons, we can create
N×(N+1)

2 pairs for the content A to potentially be compared
with the N×(N+1)

2 pairs of a content B, which is not tractable
with a growing number of content. Instead, we use the ap-
proach described in [15] to reduce the amount of comparisons
and increase our efficiency in the collection of subjective data.

2.6. In lab subjective test results
25 expert observers were recruited to annotated first the intra-
quadruplets of the 20 tube-contents selected using the method
described in previous sections. The annotation procedure was
divided into 10 sessions of 30 trials each, lasting on average 6
minutes. Each observer performed the annotation procedure
over a 2-week period, resulting in 300 annotations per ob-
server and 375 annotations per tube-content. In fig. 5, some

Fig. 5: Estimation of 12 individual perceptual curves from
the intra-quadruplet dataset. Estimation performed with Max-
imum Likelihood-based solving and standard deviation ob-
tained via bootstrapping over the data [21], on the x-axis the
distortion levels indices of each tube-content, 0: reference
tube, 5: the most distorted level, and the y-axis the estimated
scores.

examples of estimated intra-content perceptual curves from
the subjective data.

In addition, we collected inter-content difference scaling
judgments, in total 7500, by sampling boosting strategy de-
scribed in [15]. Estimation of the perceptual curves and their
scaling inter-content can be seen in fig. 6. The contents of the
tube “wall-spot” and “rain”, in orange and gray, are judged
to introduce a lot of distortion, from level 3 where they are
above all other contents on the perceptual scale.



Fig. 6: Scaling estimation between the 20 perceptual curves
with inter-content quadruplet annotations. Estimation per-
formed with Maximum Likelihood-based solving and stan-
dard deviation obtained via bootstrapping over the data [21],
on the x-axis the distortion levels indices like fig. 5, and the
y-axis the estimated scores.

Fig. 7: Comparison of the 20 perceptual curves with VMAF.
On the x-axis are the VMAF scores (i.e, 100 - VMAF), where
near 0 scores indicate no perceived distortion, and the y-axis
represents the estimated perception scores.

3. VMAF CORRECTION FOR LOCAL QUALITY

In this section, we present how we propose to correct VMAF
for a better estimation of the local quality in video, using the
subjective data collected in the previous section. We observe
that VMAF tends to overestimate the visibility of low level
distortions: an oversensitivity for small distortions, see fig. 7,
where x-axis values, VMAF, increase faster than y-axis val-
ues, subjective scores. We made the same observation for
other metrics: PSNR, SSIM, DLM, VIF and LPIPS.

Based on the subjective data retrieved, we can first evalu-
ate the different objective metrics, table 1. We reported Pear-
son correlation coefficient (PLCC), Kendall tau correlation
(KRCC), and Spearman correlation (SRCC). We can see that
VMAF has the highest correlation with the estimate scores.
Despite the good performance of VMAF, there is still room

for improvement.
Moreover, we analyze the performance in different ranges

of distortion, table 2. The low distortion are equivalent to low
QP values and high fidelity encoded tubes. It is interesting
to see again that VMAF is the most precise in low distortion
levels but in high distortion levels LPIPS becomes better.

PLCC KRCC SRCC
VMAF [17] 0.8236 0.7292 0.8958
DLM [19] 0.7953 0.6843 0.8614
VIF [18] 0.6705 0.6685 0.8458
SSIM [4] 0.7425 0.6691 0.8401

PSNR 0.5496 0.6406 0.8025
LPIPS (AlexNet) [20] 0.8074 0.7096 0.8817
LPIPS (SqueezeNet) 0.4920 0.6875 0.8555

Table 1: Performances of Full-Reference metrics on the
dataset.

Using the subjective data, we proposed to retrain VMAF,
the SVM pooling of metrics, training on the data from 12
tube-contents (i.e: 72 data points), and testing on the remain-
ing 8 (i.e: 48 data points). To report performances of the
retraining, we averaged the result over a set of 1000 permu-
tations of train/test set splitting over the 20 tube-contents, in
table 3.

range PLCC KRCC SRCC

0 to 0.6

VMAF [17] 0.6303 0.4645 0.6414
SSIM [4] 0.4523 0.3388 0.5063

PSNR 0.4078 0.3159 0.4547
LPIPS (AlexNet) [20] 0.5995 0.4204 0.5802

0.6 to +inf

VMAF [17] 0.6490 0.3985 0.5629
SSIM [4] 0.5428 0.2882 0.4010

PSNR 0.3724 0.2996 0.4104
LPIPS (AlexNet) [20] 0.7215 0.4351 0.6165

Table 2: Performance of Full-Reference metrics on the dif-
ferent distortion ranges. The dataset is split into 2 equal sized
subsets.

PLCC KRCC SRCC
VMAF [17] 0.8685 0.7433 0.9015

Table 3: Performances after retraining of VMAF: average
score over 1000 permutations of 8 tube-contents in the test
set.

4. CONCLUSION AND FUTURE WORK
In this work, we studied the behavior of different quality met-
ric at a localized scale in videos. We showed that VMAF is a
good candidate to estimate these distortions. Using the sub-
jective data collected with MLDS methodology, we proposed
a correction of VMAF to estimate the local quality in video
content encoded using AV1. We plan to extend this dataset to
more tubes in a large-scale crowdsourcing study to increase
robustness to different contents. With a larger amount of data
available it will be interesting to see if we can correct even
more and maybe improve the pooling strategy of VMAF on
the local spatial and temporal horizon. Another important as-
pect will be to also use this metric in CODEC to see if it can
improve the encoding of videos.



5. REFERENCES

[1] Christophe Charrier, Laurence T Maloney, Hocine Cherifi, and
Kenneth Knoblauch, “Maximum likelihood difference scaling
of image quality in compression-degraded images,” JOSA A,
vol. 24, no. 11, pp. 3418–3426, 2007.

[2] Christophe Charrier, Kenneth Knoblauch, Laurence T Mal-
oney, and Alan C Bovik, “Calibrating ms-ssim for compres-
sion distortions using mlds,” in 2011 18th IEEE International
Conference on Image Processing. IEEE, 2011, pp. 3317–3320.

[3] Christophe Charrier, Kenneth Knoblauch, Laurence T Mal-
oney, Alan C Bovik, and Anush K Moorthy, “Optimizing mul-
tiscale ssim for compression via mlds,” IEEE Transactions on
Image Processing, vol. 21, no. 12, pp. 4682–4694, 2012.

[4] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli, “Image quality assessment: from error visibility to
structural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600–612, 2004.

[5] Vlado Menkovski, Georgios Exarchakos, and Antonio Liotta,
“Adaptive testing for video quality assessment,” Quality of
Experience of multimedia content sharing, Lisbon, Portugal,
2011.

[6] Vlado Menkovski, Georgios Exarchakos, and Antonio Liotta,
“Tackling the sheer scale of subjective qoe,” in International
Conference on Mobile Multimedia Communications. Springer,
2011, pp. 1–15.

[7] Vlado Menkovski, Georgios Exarchakos, and Antonio Liotta,
“The value of relative quality in video delivery,” Journal of
Mobile Multimedia, pp. 151–162, 2011.

[8] Vlado Menkovski and Antonio Liotta, “Adaptive psychomet-
ric scaling for video quality assessment,” Signal Processing:
Image Communication, vol. 27, no. 8, pp. 788–799, 2012.

[9] Antonio Liotta, Decebal Constantin Mocanu, Vlado
Menkovski, Luciana Cagnetta, and Georgios Exarchakos,
“Instantaneous video quality assessment for lightweight
devices,” in Proceedings of International Conference on
Advances in Mobile Computing & Multimedia, 2013, pp.
525–531.

[10] Karam Naser, Vincent Ricordel, and Patrick Le Callet, “Mod-
eling the perceptual distortion of dynamic textures and its ap-
plication in hevc,” in 2016 IEEE International Conference on
Image Processing (ICIP). IEEE, 2016, pp. 3787–3791.

[11] Karam Naser, Vincent Ricordel, and Patrick Le Callet, “A
foveated short term distortion model for perceptually opti-
mized dynamic textures compression in hevc,” in 2016 Picture
Coding Symposium (PCS). IEEE, 2016, pp. 1–5.

[12] Hui Men, Hanhe Lin, Mohsen Jenadeleh, and Dietmar Saupe,
“Subjective image quality assessment with boosted triplet com-
parisons,” IEEE Access, vol. 9, pp. 138939–138975, 2021.

[13] Laurence T Maloney and Joong Nam Yang, “Maximum like-
lihood difference scaling,” Journal of Vision, vol. 3, no. 8, pp.
5–5, 2003.

[14] Kenneth Knoblauch, Laurence T Maloney, et al., “Mlds: Max-
imum likelihood difference scaling in r,” Journal of Statistical
Software, vol. 25, no. 2, pp. 1–26, 2008.
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