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Randy F Fela1,4, Andréas Pastor2, Patrick Le Callet2, Nick Zacharov3∗, Toinon Vigier2, Søren Forchhammer4

1SenseLab, FORCE Technology, 2970 Hørsholm, Denmark
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ABSTRACT

To open up new possibilities to assess the multimodal perceptual
quality of omnidirectional media formats, we proposed a novel open
source 360 audiovisual (AV) quality dataset. The dataset consists
of high-quality 360 video clips in equirectangular (ERP) format and
higher-order ambisonic (4th order) along with the subjective scores.
Three subjective quality experiments were conducted for audio,
video, and AV with the procedures detailed in this paper. Using
the data from subjective tests, we demonstrated that this dataset can
be used to quantify perceived audio, video, and audiovisual quality.
The diversity and discriminability of subjective scores were also
analyzed. Finally, we investigated how our dataset correlates with
various objective quality metrics of audio and video. Evidence from
the results of this study implies that the proposed dataset can benefit
future studies on multimodal quality evaluation of 360 content.

Index Terms— omnidirectional media format, audiovisual
dataset, 360 video, ambisonic, quality evaluation.

1. INTRODUCTION

Omnidirectional media formats (as 360 video with spatial audio)
offers a more immersive experience than traditional audiovisual
presentations, leading to an increasing level of adoption across
multimedia service platforms [1]. To achieve a high-level user
experience for multimedia services, perceived quality needs to
be better understood, which is commonly evaluated through
computational objective metrics validated by a series of subjective
experiments. While multisensory evaluation is necessary to perform
a higher degree of model prediction, a study in this integral quality
is relatively unexplored due to the lack of multimodal dataset.

Public datasets of 360 video that contains subjective quality
scores are IVQAD [2], VR-VQA [3], and VQA-ODV [4]. However,
these datasets are limited partially due to the 4K video resolution
[2] and/or sourced from streaming services with unknown quality
control [3, 4]. Meanwhile, large spatial audio datasets can be found
in projects of 3D-MARCo [5], EigenScape [6], and ARTE [7].
However, all mentioned datasets were mainly focused on a single
modality and none of the spatial audio datasets performed audio
quality evaluation.

To better understand the quality of audio-visual multimodal
quality, a high quality multimodal dataset is required. For traditional
multimedia applications such as 2D video and channel-based audio,
several audiovisual datasets exist such as PLYM [8], TUM 1080p50
[9], VQEG [10], Vienna Made for Mobile [11], VTT [12], and INRS
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Fig. 1: Experimental setup for subjective experiments.

[13]. In comparison to traditional media formats, it is important
to investigate immersive multimedia formats as they provide spatial
information, allowing users an increased spatial experience. Several
databases have been proposed and studied for different purposes
such as attribute evaluation [14], developing media player [15],
audio generation [16], and audiovisual attention [17]. However,
there is a current shortage of high quality immersive audiovisual
datasets and the absence of subjective quality scores.

In this work, we present a dataset which consists of recorded 8K
360 video with higher/4th order ambisonic (HOA) audio along with
mean opinion scores collected from audio, video, and audiovisual
subjective experiments. The focus of this paper is to present our
investigation on subjective scores which include overall mean-CI
analysis, SOS analysis benchmarked with existing datasets, and
evolution of accuracy performance. After the investigation of
subjective scores, a number of audio and video objective quality
metrics were computed to investigate how these metrics perform
in correlation to our subjective data, and to identify potential
metrics towards the development of audiovisual quality metrics. To
the best of our knowledge, this is the first recorded audiovisual
dataset created to support perceptual quality research in immersive
audiovisual content.

The remainder of this paper is organized as follows. Section
2 includes the description of the database, encoding and decoding
steps to create processed sequences, and subjective evaluation
procedures. We discuss our findings from subjective evaluations
and objective quality metrics in Section 3. Finally, the conclusion
is addressed in Section 4.



Fig. 2: Equirectangular video previews of the proposed dataset.

2. MATERIALS AND EVALUATIONS

In this section, we describe HOA–SSR database, encoding
parameters to create processed audio/video sequences, and
evaluation of objective quality metrics and subjective data.

2.1. 360 audiovisual stimuli

This audiovisual (AV) dataset consists of 12 recorded audiovisual
scenes selected from HOA–SSR database which contains immersive
AV contents with unique characteristics i.e. nature–mechanical,
indoor–outdoor, static–dynamic, traffic–quiet, impulsive–steady,
and speech–music. The video scenes were recorded using an
Insta360 Pro2, a professional spherical 360 camera, that consists
of 6 camera lenses to capture every angle of a scene at once. The
final video format for the dataset was provided in .mov container
with 8K resolution (7680x3840), 30fps, 8-bit color depth, and
in YUV422. The audio signals were recorded using the em32
Eigenmike, a spherical microphone with an array of 32 microphones.
The output of these recordings was in a raw 32-channel ambisonic
A-format then processed in 4th order ambisonic B-format AmbiX
(25 channels) in ACN ordering and SN3D normalization. All audio
files were in PCM 1152 kbps/channel, 24bit and 48kHz. In terms
of spatial characteristics of a microphone, a previous study reported
the highest directional accuracy of em32 compared to all other high
order sound field microphones [18, 19]. The AV dataset used in this
study as illustrated in Figure 2 is publicly available upon request1.

In order to cover a use case with cinematic VR video, additional
4 AV stimuli were provided from joint work of Vtopia3602 and
VRTonung3. All videos were in the same quality and format
as the HOA–SSR and the audio signals were recorded by using
an ORTF-3D microphone4 mixed into 24 channel NHK layouts
and provided in ADM format. While in principle, the ORTF-3D
provided superior localization accuracy [20], it was only compared
to first order ambisonic format. Higher-order ambisonic format
will increase the spatial resolution, hence improving localization
accuracy. In our study, the use of these two types of recording
techniques was considered equivalent since only internal quality
(e.g. bitrate) was evaluated without any comparison of recording
technique and assessment of attribute quality.

2.2. Stimulus preparation: Encoding and decoding

From the original raw format YUV422, all video sources were
downscaled to a resolution of 6144x3072 and in YUV420 format

1https://bit.ly/HOA-SSR-Dataset
2https://vtopia360.com/
3https://www.vrtonung.de/en/
4https://schoeps.de/en/products/surround-3d/

ortf-3d.html

Fig. 3: Mean opinion score (CI 95%) of (a) audio, (b) video, and
(c-d) audiovisual (AV).

due to the maximum limit of our playback system. We
used libx265 (H.265/HEVC) in FFmpeg 4.45 to encode the
source videos into three resolutions i.e. 6K (6144x3072), 4K
(3840x1920), 2K (1920x1080) and 4 QPs (0, 22, 28, 34),
resulting in 12 encoding parameters and 192 video stimuli in
total. Meanwhile, the ambisonic audio sources were encoded
from 32-channel A-format into 25-channel 4th order ambisonic
in ambiX. All audio was encoded using FFmpeg with AAC-LC
encoder into four different bitrates/channels (16kbps, 32kbps,
64kbps, PCM/reference) resulting in 64 audio stimuli in total.
Due to the limitation of the channel number in the AAC encoder,
the audio channels were split into six groups of 4-channel and
1 mono channel prior to encoding and re-grouped thereafter.
Ambisonic audio files were decoded by using the All-Round
Ambisonic Decoding (AllRAD) algorithm as proposed in [21] into
26 multichannel loudspeaker setups that follow the standard in [22].
AllRAD provides energy preservation across direction and average
localization sharpness. Only decoding part was required for NHK
audio format. For the experiments, 20s length out of 1 minute
original duration was selected based on spectral frequency profile.

2.3. Subjective evaluations

Twenty-one selected and trained assessors (13 males, 8 females)
with age range 22 – 37 years (mean = 27.9, std = 4.0) were invited to

5https://github.com/GyanD/codexffmpeg/releases/
tag/4.4
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Fig. 4: SOS analysis for audio (left), video (middle) and audiovisual (right) experiments against existing datasets of the literature.

participate in three consecutive subjective experiments carried out
at FORCE Technology SenseLab including I: listening/audio, II:
viewing/video, and III: AV test. The experiments were performed in
a standardized listening room that meets the acoustical requirements
of EBU 3276 [23] and ITU-R BS.1116-3 [24], compliants for
listening and VR experiment with head-mounted display. The
experimental setup for AV experiment is depicted in Fig 1.

To avoid bias occurring between auditory and visual memory,
the subjective test ordering was audio, then video, and finally
AV experiment. We used SenseLabOnline 4.2 [25] as the user
interface and ran double blinded-randomized trials. The participant
was seated on a rotating chair, located in the acoustically sweet
spot, and used a pad controller to perform the test. The user
interface was displayed on a projection screen for experiment I and
virtually in the Head Mounted Display (HMD) for experiments 2
and 3. Multiple stimulus with hidden reference without anchor
(modified MUSHRA) was used to generalize the common evaluation
methodology found in SAMVIQ [26] for video and MUSHRA [27]
for intermediate audio quality. Each assessor was asked to rate their
overall perceived quality of the audio, video, and audiovisual to a
continuous rating scale between 0 and 100 categorized into 5 labels
(Bad, Poor, Fair, Good, Excellent). We limited the number of stimuli
on each trial set to 7 according to Miller’s Law [28].

In experiment I, the participants rated the audio quality of
sound stimuli reproduced over a 26-channel setup of 8040A
Genelec loudspeakers. The sound level of stimuli were subjectively
calibrated to 65 – 73 dB for most comfortable loudness, depending
on the samples. Experiment II was a viewing test, where the task
was to assess the perceived quality of 360 videos. Visual stimuli
were displayed in VR using a Samsung Odyssey+ HMD which has
a display resolution of 1440 × 1600 per eye, 110◦ horizontal field
of view and 90Hz refresh rate. Finally, experiment III was an AV
test where the participants rated the integrated AV quality in overall
experience. One subject was withdrawn in the middle of experiment
II due to a comfort issue, therefore the total number of participants
was 20 subjects (12 males, 8 females; mean = 28.1, std = 4.0) for the
last two experiments.

2.4. Evaluation of objective quality metrics

We evaluated 360 video quality metrics: S-PSNR [29], WS-PSNR
[30], and CPP-PSNR [31]. In addition, we calculated VMAF
[32, 33] and its components, VIF and DLM [34, 35] as shown
in previous studies [36, 37]. Lastly, we calculated 2D image
quality metrics: PSNR, SSIM[38], and MS-SSIM[39]. For audio
quality metrics, we evaluated PEAQ [40, 41], ViSQOL [42, 43],
and AMBIQUAL [44] for W-channel component of ambisonic as
it represents both ambient and direct signals, and center channel of
NHK format. Only listening quality feature of AMBIQUAL was

computed. Three frequency bands were calculated for ViSQOL:
denoted as ViSQOLnb (150 – 3400Hz), ViSQOLwb (50 – 8000Hz),
and ViSQOLaswb (50 – 16000Hz).

3. RESULTS AND ANALYSIS
3.1. Perceived audio, video, and audiovisual quality

Figure 3 depicts the results obtained from audio, video, and AV
subjective experiments to analyze perceptual difference between
encoding parameters. The data is presented as Mean Opinion
Score (MOS) over all stimuli with 95% confidence interval (CI). In
listening test (Figure 3(a)), there is a large perceptual gap between
16 and 32 kbps, and between 64kbps and PCM, where PCM is the
reference. Although the difference is statistically significant, mean
score difference is perceptually small between 32 and 64kbps. Video
quality test presented in Figure 3(b) shows by nature of perceived
video quality over encoding parameters, that MOS score is, as
expected, higher in lower QP and higher resolution, and vice versa.
It can also be seen that there is a significant difference between QPs
at each resolution. Finally, Figure 3(c-d) show the results from
the audiovisual experiment averaged over resolutions and QPs in
relation to audio bitrates, respectively. It is shown that perceived
audiovisual quality difference in all bitrates is statistically different
if video quality is higher (QP ≤ 28, resolution ≥ 4K).

3.2. SOS analysis

When investigating perceptual quality scores, one may gain the
information from the collected data by observing user rating
diversity. Therefore, we employed the Standard deviation of Opinion
Scores (SOS) hypothesis, which postulates a quadratic relationship
between the MOS and SOS2 which depends only on one parameter
α. We modified the equation formulated in [45] for Absolute
Category Rating (ACR) use case 1 – 5 to our continuous rating scale
0 – 100,

σ2(MOS) = α(MOS − 0)(100−MOS) (1)

Several existing audio and video datasets were benchmarked
with ours to investigate rating diversity in typical studies. We
selected three datasets available in the SEBASS-DB database named
SASSEC, SiSEC08 and SiSEC18 datasets originally collected for
evaluation of audio source separation algorithms [46], and IRCCyN
datasets for video quality evaluation case [47]. We focused on the
datasets which use multiple stimulus methodologies, MUSHRA for
audio and SAMVIQ for video. However, no available AV dataset
exists with this rating paradigm.

Figure 4 summarizes SOS analysis for audio and video
experiments benchmarked with existing datasets, and Figure 4(right)
represents SOS analysis for our three experiments. Our observation
is on the SOS parameter α. In audio experiments, α is 0.051 for



Fig. 5: The evolution of the percentage of significantly different
pairs (y-axis) with an increasing number of assessors (x-axis) for
the 3 experiments: audio, video, and AV. Over 100 simulations, the
curves represent mean percentages and the error bars represent 95%
confidence intervals.

SiSEC08 and 0.157 for SiSEC18. In comparison, our audio dataset
has an α of 0.1081, which is in the range observed for audio studies
with MUSHRA. The SOS score and the α value indicate that the
dataset has consistent rating scores with low diversity.

For video datasets, α is in the same value range as both IRCCyN
datasets, since α for our dataset is 0.077. Compared to our dataset,
the diversity of user judgments in benchmark datasets is higher for
scores between 20 and 60. By plotting our three datasets in Figure
4(right), even if the number of systems tested and signals rated are
different, it is shown that the α values are small within the range of
0.077 and 0.108. These small values of α indicate the consistency
of user experience quality, as we argue also as the benefit of using
trained assessors [48, p. 105].

Overall, the difference for all tested datasets in this study is
considerably low compared to previous audio studies, which ranges
between 0.269 and 0.590 [46]. A wide range of benchmark studies
also showed that the range of α in image and video QoE is 0.037
– 0.590. Nevertheless, the primary purpose of the SOS analysis in
this study is to support comparisons and reliability checks between
subjective studies. A large and in-depth benchmarking study is
required in order to categorize the level of diversity based on α and
SOS score, particularly in multiple stimulus rating methodologies.

3.3. Subjective scores discriminability analysis

As suggested in [49], we can examine the evolution of
discriminability for subjective scores with an increasing number of
assessors. A two-sample Wilcoxon test is performed on all the
possibles pairs of stimuli and a pvalue of 0.05 is used to compute the
percentage of pairs significantly different. The number of possible
pairs for audio, video, and AV experiments is 2016 pairs, 18336
pairs, and 294528 pairs, respectively. The result is presented in
Figure 5 with 95% confidence interval over 100 simulations.

Regarding the overall trend of the curves, video and
AV experiments show the highest and lowest discriminability,
respectively. Audio and video tests started with similar
discriminability, where audio CI is larger than video. However, by
increasing the number of assessors, the rate of discriminability of
video is higher than audio, which is shown by the gap between the
two curves. This could be that the stimuli and step sizes between
video stimuli are larger and easier for assessor compared to audio.
For AV task, two modalities were used, making a larger cognitive
load, thus the task of evaluating critically both AV was harder, hence
the results in Figure 5. As previously investigated by [50], perceptual

Table 1: Performances of Full-Reference metrics to relation to the
DMOS scores of the audio dataset. Bold best performance score and
underlined scores are not significantly different from the best score.

Metric PLCC SRCC KRCC C0% AUCBW AUCDS

Ambiqual 0.878 0.905 0.746 0.933 0.989 0.916
PEAQ 0.753 0.753 0.552 0.815 0.944 0.851

ViSQOLnb 0.864 0.884 0.720 0.914 0.970 0.851
ViSQOLwb 0.897 0.912 0.755 0.938 0.981 0.885

ViSQOLaswb 0.924 0.938 0.800 0.958 0.995 0.921

Table 2: Performances of Full-Reference metrics to relation to the
DMOS scores of the video dataset. Bold best performance score and
underlined scores are not significantly different from the best score.

Metric PLCC SRCC KRCC C0% AUCBW AUCDS

VMAF HD 0.859 0.927 0.767 0.924 0.973 0.760
VMAF 4K 0.919 0.957 0.822 0.954 0.983 0.828
VMAF B 0.915 0.955 0.816 0.952 0.988 0.824

VMAF Neg 0.917 0.957 0.819 0.954 0.989 0.830
DLM 0.893 0.938 0.787 0.935 0.980 0.788

V IFscale0 0.770 0.765 0.586 0.826 0.910 0.691
SSIM 0.693 0.823 0.645 0.856 0.922 0.680

MS-SSIM 0.671 0.843 0.662 0.867 0.921 0.648
PSNR 0.616 0.719 0.538 0.800 0.891 0.678

S-PSNR 0.628 0.743 0.559 0.811 0.902 0.691
WS-PSNR 0.617 0.720 0.538 0.800 0.892 0.682
CPP-PSNR 0.622 0.731 0.547 0.805 0.897 0.686

evaluation of single modality is less complex compared to multiple
modalities.

3.4. Objective quality metrics

The correlation between objective metrics and subjective data is
presented in Table 1 and 2, respectively, for audio and video quality
metrics. We computed Pearson, Spearman and Kendall correlation
coefficients. In addition, we ran statistical pairwise analysis on
the performances of the different metrics, using the indicators
presented in [51]: percentage of correct classification, C0%, from
pairs with statistical significance differences, and AUCs from ROC
analysis (AUCBW and AUCDS). In the tables, underlined metrics are
not significantly different compared to the best performing metric
reported in bold.

From table of audio quality metrics, the best performing metric
on the audio dataset is ViSQOLaswb, where we use the largest
frequency bands in the calculation. PEAQ has the lowest score
followed by AMBIQUAL which competing with ViSQOLwb. It is
well known that AMBIQUAL was specifically designed to compute
listening quality and localization accuracy of ambisonic signal as
the performance proved in [44] for low bitrate codec in 1st and
3rd order ambisonic. However, the performance of AMBIQUAL
compared to other metrics, especially its predecessor (ViSQOL)
remains unexplored.

For video quality metrics, VMAF 4K, and the bootstrapped
version (VMAF B) outperforms other metrics. It is also interesting
to see the performance of VMAF Neg on part with the previous
one. This finding is supported by other studies that demonstrated
the superiority of VMAF 4K in terms of perceptual correlation in
360 video compared to other video quality metrics [36, 37]. Metrics
based on PSNR and directly optimized for 360 contents (S-PSNR,
WS-PSNR, CPP-PSNR) are not providing any gain compared to
their 2D counterparts computed on the ERP.

4. CONCLUSION
In this paper we present an audiovisual dataset comprising 360
video and ambisonic spatial audio with associated subjective scores.
The work focused on the exploratory analysis of subjective data



to understand 1) the overall perceptual difference between each
encoding parameter as perceived by assessors, 2) the span of
subjective scores, and 3) the improvement of subjective scores
accuracy as function of assessor number. Furthermore, we showed
the performance of the dataset in relation to a set of objective quality
metrics for audio and video.

The findings provided in this research confirm that there are
perceptual differences for different encoding parameters. The SOS
analysis confirms that our dataset has a low α value and variance
for stimuli in the middle of the rating scale, proving the quality
of the proposed dataset. We also found that the α value for audio
part of the dataset is comparable to other works that used MUSHRA
methodology. However, the threshold remain unclear for α value
in this application and further benchmark analysis is required. In
subjective scores discriminability analysis, video experiment was
placed the highest, followed by audio and AV experiment. All
curves have a low CI, with a steady trend after 12 number of
assessors, confirming our choice of 20 assessors on each task. Lastly,
objective metrics analysis concludes that ViSQOLaswb and VMAF
4K outperform other audio and video quality metrics, respectively.

The proposed dataset and findings in this research open new
possibilities for future studies on primarily, but not limited to,
AV quality evaluation in 360 videos with ambisonic spatial audio.
Furthermore, the dataset from experiments can be used to advance
existing objective quality metrics as well as propose a new ones by
employing ML/DL based models. Our future work is to extend
subjective and objective analysis together with the development of
an AV perceptual quality model for 360 content.
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