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1 Introduction

Waterflooding is one of the most commonly employed method for oil recovery
from underground reservoirs. Due to different factors such as rock
heterogeneities and unfavorable viscosity ratio between oil and water, this
technique becomes however sometimes inefficient. To remedy the excessive
water mobilization, injection of hydrosoluble polymers has been used. The aim
of this technique is to place a selective barrier which remains permeable to oil
but lowers water mobility (Zaitoun & Kohler', Broseta & al.z).

During a polymer-solution injection, macromolecules are adsorbed on pore
walls and three tendencies result (Zaitoun & Kohler®) : i) water mobility (ratio
of relative permeability to viscosity) is reduced since water preferentially flows
under the form of a film on polymer-coated pore-walls ; ii) oil mobility is almost
not modified since oil flows in the center of the pores while water films induce a
lubrication effect ; iii) due to pore-size diminution rather than a change of oil to
water interfacial tension, the capillary pressure is significantly increased. Up to
date, these tendencies have been appreciated from a qualitative point of view at
a macroscopic scale of observation and for further investigations, microscopic
pore scale studies are required to quantify water-mobility reduction as well as
capillary pressure increase as a function of the lubricating layer thickness for
instance

In this work, we initiated a two-dimensional numerical study of a two-phase
flow in a cell of a periodic pore-like structure. Starting from a guess on the free
surface separating the two phases, our goal is first to compute the evolution of
this surface towards the stationary solution for the given wetting-fluid
saturation. Due to the presence of the fluid-fluid interface, we found it adequate
to base our numerical scheme on a boundary element technique as reported in
Wrobel & Brebbia® using constant approximations. Subsequently, cellular
quantities such as permeabilities and capillary pressure, will be computed.
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2 Governing equations

2.1 Description of the model - Hypotheses

We consider a two-phase flow in a periodic two-dimensional divergent-
convergent channel. The wetting fluid (B—phase) flows near the pore walls while
the non-wetting one (y-phase) flows in the center of the channel. We assume
that the channel diameter is small enough for gravity forces to be negligible in
comparison to viscous and capillary effects.

Both fluids are assumed to be
newtonian, non-compressible and
immiscible and the flow is supposed
to be slow enough to obey Stokes
approximation.

Once periodicity and horizontal
symmetry are taken into account,
we can limit our study to the unit
cell depicted in Figure 1.

Figure 1. Unit cell.

2.2 Dimensionless boundary value problem
According to our hypotheses, the physical process under consideration can be
described by the following dimensionless boundary value problem :

Vp, =V
P(x o o (1)
() {V.va =0
with the corresponding boundary conditions :
(B.C.1) v =0 on Ay 2)
: Hp
(B.C.2) Vp=—"1V, on Ag, 3)
My
: Co
(B.C.3) E[}.nm = Zy.nm + mnuy on ABY (€))

Y

Since we consider the flow in an infinite succession of identical cells, two extra
conditions -one on the velocity and one on the pressure- are derived from
periodicity considerations to close the problem. These two conditions are :

vo(r+t)=v,(r) Q)
Pu(F+)=po(r)+Lh, (6)

where r is the position vector relative to a fixed origin, | represents the
characteristic vector for periodicity and, as in Eq. (4), hy is a uniform pressure
gradient prescribed in the o-phase. Here we have :
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l=tle, @)

h(i. = hu € (8)
A close attention to the consequence of periodicity conditions indicates that the
two pressure gradients must be equal (hg =h, =h), and this can be easily
justified by considering the boundary condition in Eq. (4) at points P and P’ (see
Figure 1) along with the fact that curvatures are equal at these two points.

Once the periodicity condition is taken into account between entrances and exits
of our unit cell in Figure 1, this readily gives :

- V(x!/\]a (9)

v A2a -

o

(-2 ), =ne-(-Z,), (10)

In these relationships, v, p,, and W, respectively represent the velocity,

w?
pressure and dynamic viscosity in the a-phase, o referring to either § or vy ; C
and o are the curvature of AB_{ and the interfacial tension. We have used the

notation ng, for the unit normal vector to A, , directed from the [-phase

towards the y-phase, n, for the outwardly directed unit normal vector to Q4 on
Ak (k=1,2) and Z, for the stress tensor in the a-phase defined by :

To=pa I+ (Vv + 'Vy,) (a=B or ) (an

The first boundary condition in Eq. (2) expresses the classical no-slip condition
on the solid wall. The second one in Eq. (3) indicates that no mass transfer and
no slip occur on the fluid-fluid interface while the third one in Eq. (4) follows
from the exact balance between the normal stress jump and capillary forces on
Ay, .

In the above equations, we have made use of dimensionless quantities defined
from the corresponding dimensional ones -with superscript *- by :

ML, =
‘(l:_(_l’v(l 12
hi? (12)
_i * (13)

p(l ht p(l
c=C"t (14)

while lengths have been made dimensionless by {.

At this point of the analysis, the problem is not time dependent although the
initial condition on the free-surface is not the stationary solution of the flow.
Assuming the flow to be very slow and made of a succession of equilibrium
states, we make use of the classical kinematic condition which can be expressed
as:
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D® oJd
—=—q4v_.VO =0 15
Dt ot “ (15)

o

to displace the free surface Ag, of equation ®(x,y,t)=0 at time t.

3 Boundary element formulation

According to the physical boundary conditions, we chose to use a boundary
integral formulation based on velocities and normal stress variables
(Ramachandran®). Since the flow under consideration involves two different
fluids separated by an interface, a sub-region partition technique has been
employed (Huyakorn & Pinder®). A boundary integral form of the initial Stokes
problem is first written in each sub-region Qg and €, and compatibility
conditions (Eqgs. (3) and (4)) between the two formulations are used in a second
step along with the boundary and periodicity conditions to yield the final global
system that provides velocities where normal stresses are prescribed and vice-
versa.

3.1 Continuous integral formulation

Since entrance and exit surfaces A, and Ay, are artificial boundaries on which
periodicity is applied, we only consider the interior Stokes problem for each
domain Qg and €,. Starting from the formulation derived elsewhere with both
interior and exterior Stokes problems (Da Costa Sequeira’), it is easy to obtain
the integral form, interior to Q, (Lasseux®):

J.{Za (Ve (%), P (X)) u (X —x) = Z (U, (Xx—X(), t, (x—xo)).va(x)}.n dlr=0
Qq

k=1,2 (16)

where 0Q, is the boundary of Qg, n is the outwardly directed unit normal to

0Q,, x is a field point and xo the source point ; t, and uy are the solution of the
fundamental Stokes problem :

Vi, = Viu, =k3(x—x,) an
Vau, =0
and are given by (Ladyzhenskaya’) :
X — X: ) (X — X

uij(x—xo)=i[—8ij ln(r)+( o "§ 2 ’)] i,j=1,2 (18)

4n r

1 dln(r) .

tj(x“x())zg M ,,j=1,2 (19)

J

In Eq. (17) k refers to one of the base vectors e, or e; and 3(x —x,) is the
Dirac delta function, while, in Eq. (18), 8, is the Kronecker delta and :
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r? :|x—xo| (20)

From a physical point of view, u;; represents the ith component of velocity at
point x due to a point force (Stokeslet) in the j-direction applied at point xo
(Pozrikidis'®).

3.2 Discrete form
Boundaries 9Q; and 0Q, are discretized with constant elements and a special

care is taken to obtain the same discretization on Agy for connection purpose.
The choice of constant elements was suggested by its fast implementation, its
good accuracy, as pointed out by Sugino & Tosaka'', and by the fact that tricky
problems to precisely evaluate normal derivatives at corner nodes (where the
normal is discontinuous) are avoided (Mitra & Ingber'z). Boundaries of the
physical domain are replaced by a succession of straight line segments of
constant length with nodes placed in the middle. On each element, velocity and
normal stress are assumed to be constant functions defined by the nodal value.
The two integral equations (16) are discretized accordingly leading to a set of
elementary integrals which are evaluated analytically (Lasseux®). At node i of
the interface, the curvature is calculated from the mean value of the rate of
change of the norm of the tangential vector between elements i-1 and i and
elements i and i+1.

Once both domains are connected together and boundary, symmetry as well as
periodicity conditions are taken into account, one clearly sees that the system is
still singular and this sounds natural since no pressure reference has been
specified. To remove the undetermination, we chose to set a null x-normal
stress component on the first element of A, above the horizontal axis. This

choice remains of course arbitrary.

3.3 Algorithm
Numerical experiments begin with a guess on the free surface Ag, that satisfies

periodicity conditions. Elements and nodes are placed along all the boundaries
and the following algorithm is used :

1. each elementary integral is computed for both 3- and y-phases, and the linear
system is formed. To do so, horizontal symmetry, periodicity and boundary
conditions are taken into account,

2. the system is solved using a Gauss elimination method,

3. the interface is updated according to the computed velocity field on the free-
surface. This step is performed using the following discrete form :

r = 48, v 1)

which represents an explicit Euler scheme of the first order of Eq. (15). In Egs.
(21) r; is the position vector of interfacial points and t,, represents the time step
associated to the a-phase. Superscripts n and n+1 denote variables at time steps
n and n+1.
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4. The free surface is re-gridded keeping the initial element size (Sugino &
Tosaka'").

Steps 1. through 4. are repeated until the stationary solution is found for the
interface. This solution corresponds to a configuration for which velocities are
everywhere tangential to the interface and we check this by forcing the
maximum difference, d, between the derivative at each point of the interface and
the ratio v .e,/v .e, at the corresponding point to be smaller than a given
value (typically, 1%). Precision of computations is checked through the
divergence integral over each fluid domain. This quantity is less than 10™ in our
simulations.

4 Results

4.1 Validation

Our numerical tool was first experienced on a problem which corresponds to a
pair of plane parallel infinite plates (see Figure 1 with a=m) distant from 2R with
a wetting coating film of thickness e. Assuming that this configuration is stable,
it clearly represents an attractive test since the solution is known a priori. At
entrances and exits of each phase, it is characterized by constant and linear x-
and y-normal stress components respectively and a Poiseuille-like horizontal
flow-pattern given by :

vi=vpe, =1/2(R7-y?) (22)
vy=v e =1/2((R-0) =y )-p, /21y (R-c)* ~R?) (23)

On the free surface, the velocity is constant and horizontal while on the solid
wall, the x- and y- normal stress components are constant and linear
respectively.

) In  Figure 2, we
y B represented the two
08 T Interface above theoretical
""""""""""""""""""""""" data along with the

06 T corresponding
04 + numerical results
o Num. Y obtained with
027 ——Theor. MY/MB =11 and
0 s % ¢ e=0.7R. The
0 01 02 03 excellent agreement
Up/UoVerX between the two

approaches allow to
Figure 2. Velocities on entrances and exits on the test ~ conclude that our

problem. numerical scheme is
well  adapted to

simulate this kind of problem.
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Figure 3. Domain configuration.
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In this section, we present an example

of our results obtained for the
stationary interface in a periodic
convergent-divergent channel as

represented in Figure 1.

The experiment was performed with the
following parameters : Wp=10" Pa.s ;
=1 1x10° Pa.s ; 6=30x10> N/m ; hi=1
Pa (! is the period) and 8ty =0.1 in the

geometrical configuration depicted in
Figure 3. The evolution of the interface

from the initial guess towards the stationary solution is depicted in Figure 4 for
tp=0, tg=1.4 and finally tg=16.4 for which & <0.01. In fact, as shown in Figure
5, the interface derivative and the ratio vg.e, / v.€; match (to 1%) for this last

computation time. Figure 4 clearly shows how the two fluid domains are
reshaped to satisfy the prescribed forces.

061

T . ++:+ - g
0.59 P d-___.__-- +++++
057 + .5" -t

y o~ e,
055 ot -
_:"++ - Ini.cond. -‘9*
0537 o + =14 Y
=t £

051 et . 1p=164 e
0.49 -+ t + t +

0 02 04 06 08 1

Figure 4. Interface evolution from the initial guess towards the stationary

solution.

dy/dx

vB.ez/vB.e1

0.3
02T

01 %

x  dy/dx

+ v;;.ezlv;;.e,

0
-0.1 T

0.2 1

-0.3

Figure 5. Interface derivative an ratio vB.ez/vB.e1 artg=164.
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5 Conclusion

In this work, we performed numerical experiments on a two-phase two-
dimensional Stokes flow in periodic convergent-divergent channels
representative of a pore structure of a porous medium. Taking into account
symmetry and periodicity, we showed how, from a guess on the initial interface,
we obtained the stationary solution with a numerical scheme based on a
constant boundary integral element method. This study represents an important
step towards subsequent computations of cellular permeabilities and capillary
pressure during multiphase flow in porous material and especially for the
comprehension of the role of polymer injection in porous media during oil
recovery.
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