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Abstract

We study message credibility in social networks with biased and unbiased agents. Biased agents

prefer a specific outcome while unbiased agents prefer the true state of the world. Each agent who

receives a message knows the identity (but not type) of the message creator and only the identity and

types of their immediate neighbors. We characterize the perfect Bayesian equilibria of this game and

demonstrate filtering by the network: the posterior beliefs of agents depend on the distance a message

travels. Unbiased agents, who receive a message from a biased agent, are more likely to assign a higher

credibility and transmit it further when they are further away from the source. For a given network, we

compute the probability that it will always support the communication of messages by unbiased agents.

Finally, we establish that under certain parameters, this probability increases when agents are uncertain

about their network location.
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1 Introduction

Suppose Alice sends you information (a message) about an event you have not observed. She

sends you this message because you are friends. So you know (i) whether she created the mes-

∗We like to thank Eric Bahel, Pascal Billand, Ozan Candogan, Liza Charroin, Annie Liang and KS Mallikarjuna

Rao for useful suggestions.
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sage – because she is the one who observes the event – or she transmits a message obtained

from someone else – because she is not the one who observed the event, and (ii) her opinions

or her bias. Therefore, when you receive a message from her, you take into account her bias

and whether she is the creator of the message or not in assessing the credibility of the mes-

sage. What makes a network setting different is that Alice may not be the creator of the initial

message, but simply passing along a message that her friend Bob sent her. For example, Alice

forwards you an email she received from Bob. So you know that the message was created by

an individual named Bob, but since Bob is not your friend, you do not know his bias.

How does your perception of the event change under these circumstances? Suppose you know

that Alice is biased in favor of a specific event and wants to convince you as well. When she

observes an event and sends you a message she has created, knowing her bias, you do not

believe her if the a priori likelihood of such an event is low, i.e., Alice’s message does not

influence you. But, when Alice sends you a message that she received from Bob, you will rea-

son that if the event was not consistent with her bias, then Alice would not forward to you that

message. However, since Alice is not the creator of the message but is simply a transmitter, the

credibility you put on this message depends on your beliefs about Bob’s bias. Furthermore,

it is possible that Bob is not the person who observed the event, and like Alice, is simply a

transmitter. You now have to determine whether the social network is acting as a filter for false

information or not. This is the question we address in this paper.

From this story, it is clear that the distance, between the source of the message – the person

observing the event and sending the first message – and you, plays an important role. To il-

lustrate this, suppose that there are two states of the world 0 and 1, and the latter occurs with

probability 0.45. Let Bob be biased in favor of 1, and the one who observes the state of the

world, i.e., he creates the message. Suppose that you and Alice are Bob’s friends, i.e., directly

linked to Bob in the network. Then your posterior, as an unbiased agent, is 0.45, and and you

do not believe Bob’s message – you believe messages when your posterior is at least 0.5. Since

you do not believe the message, you do not transmit it. Now suppose that you are a friend of

Alice who is a friend of Bob. Moreover, like 10% of the agents in the network, Alice is biased.

Finally, Bob creates message 1, sends it to Alice who sends it to you. Then, your posterior

beliefs that the state of the world is 1 is: 0.55/(0.1× 0.45 + 0.55) = 0.92. Thus, you strongly

believe that the message you received is true and you transmit the message. This example il-

lustrates that in some situations an agent who is at distance 1 from a biased agent that observed

the message thinks that his message is not very credible, whereas an agent who is at a distance

2 from the agent that observed the message may believe in the message he receives from a
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biased agent with a high probability. In the latter case, he transmits the message, in the former

he does not. Thus distance traveled by information in a network can play an important role in

exacerbating false information because of the role played by agents at each step in spreading

or stopping a message.

In this paper, we are interested in identifying conditions under which a biased message will al-

ways be transmitted (and therefore in what affects its credibility) in social networks where the

distance between the agent who creates the message and the agent receiving a message plays

a crucial role in determining the receiver’s posterior beliefs. Given the social network setting

of our problem, we adopt some of the assumptions made in Bloch et al. (2018). In particular,

we assume that the social network is (i) connected, and (ii) does not contain cycles. Due to (i)

Bob can receive a message from any agent if it is not blocked by at least one agent. Because

of (ii), if Bob sends a message to Alice about the event, then Bob cannot receive a message

back from Alice. This assumption allows us to avoid feedback loops: we do not want the

credibility of the message to increase for Bob because he transmitted a message. Formally, we

focus our attention on social networks that are trees. Furthermore, to simplify the presentation,

we assume that only the agent who observed the event can lie about it. Other agents can only

transmit, or not, the message they have received.1

We present two frameworks in which agents only know their own type and the types of their

immediate neighbors in the social network. In addition, only agents who obtain a message

know the identity of the creator of the message. In a social network, when a message is for-

warded, the identity of the creator of the message is generally known, but one cannot be certain

of his type.2 We start by analyzing a benchmark model where each agent knows the architec-

ture of the social network in which the communication of messages takes place. A crucial

role is devoted to specific strategies where (i) regardless of the true state, each agent biased

in favor of state 1 always creates message 1, transmits it, and blocks the other message, and

(ii) each unbiased agent creates message 1 only when it matches the true state of the world

and transmits it when he thinks it is correct. In our first result, we show that these strategies

constitute an equilibrium, called a maximal communication equilibrium. We also provide the

1In the discussion section, we relax this assumption. We thank an anonymous advisory editor for their suggestion

on how to relax this assumption.
2In an email forward, for instance, it is not possible to know the creator’s type. On a social media platform while

it may be possible to learn more about the creator it is not always feasible to determine their bias. Hence, we assume

that agents have localized knowledge and only know the types of their direct neighbors. We do not concern’s ourselves

with agents whose biases are well known. In that case, everyone is at a distance 1 from these people.
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posterior beliefs of unbiased agents when these specific strategies are used. More precisely,

the credibility of message 1, sent by a biased agent to an unbiased agent i, increases with the

distance between i and the agent who observed the event, say i0. By contrast, the credibility

of message 1, sent by an unbiased agent to an unbiased agent i, decreases with the distance

between i and i0. Moreover, when the agent who observed the event is biased and transmits

a message to an unbiased agent, the latter does not transmit this message. Thus, we provide

conditions under which, in equilibrium, unbiased agents believe that the state of the world is

1 when they receive message 1 through the social network. We call a network where each un-

biased agent believes message 1 in equilibrium a full communication rooted-tree. Since a full

communication rooted-tree does not always exist, we provide the probability of its occurrence

given a social network and the exogenous probability of an agent’s bias. Moreover, we provide

the class of networks that maximize the probability of obtaining a full communication rooted-

tree when the probability that an agent is biased is less than 0.5. Next, we characterize the

class of networks that minimize the probability of obtaining a full communication rooted-tree

when the creator of the message sends false information.

Second, we take into account that in many social situations, agents do not know their dis-

tance from the creator of the message.3 Hence, we modify the benchmark model by assuming

that some of the agents who obtain a message do not know their location in the social net-

work; they only know who sends them the message, his type, and the types and identities of

agents in their neighborhood. This can be viewed as the model with incomplete information

about the location of agents in the social network. To summarize, with the exception of the

agent observing the event and his immediate neighbors, the remaining agents do not know

how far they are from the agent that observed the event. More precisely, agents do not know

the architecture of the social network. We assume that each tree has the same probability to

be chosen as the social network. Hence, given their neighborhood and the agent who sends

them the message, each agent can calculate probabilities about his distance from the creator

of the message. In our first result, we establish that the above specific strategies, which sat-

isfy (i) and (ii), constitute a maximal communication equilibrium for some parameters. Next,

we establish that there are parameters for which the probability of obtaining a full communi-

cation rooted-tree is higher in the model with incomplete information about location than in

the benchmark model. Finally, we provide the conditions under which there is a full commu-

3For example, the social network Twitter lets you know who is sending you the message, but it is not always easy

to determine which other people in the network have acted as intermediaries. Agents only have information about their

direct neighbors.
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nication rooted-tree in the model with incomplete information about the locations of agents

(respectively in the benchmark model) when there is a full communication rooted-tree in the

benchmark model (respectively in the model with incomplete information).

The paper is organized as follows. In Section 2, we examine the related literature. In

Section 3, we present the model setup. In Section 4, we study the benchmark model. In

Section 5, we analyze the model with incomplete information regarding the location of agents

in the social network. In Section 6, we successively relax several assumptions and discuss

the consequences of these changes. We also explain how to compute the social benefit of

fact-checking sites. Proofs of all results are reported in the Appendix (Section 7).

2 Related Literature

The seminal paper that examines a biased agent observing an event and sending a message to

an unbiased agent is the Crawford and Sobel (1982) paper. The authors study the conditions

under which the biased agent can influence the action of the unbiased agent in cheap talk

situations. We approach this problem from a network perspective to examine how the depth of

a network relates to the spread of false information.4

Our paper is most closely related to the recent paper by Bloch et al. (2018) on the diffusion

of rumors in social networks. In this paper agents do not know who started the rumor, i.e., the

creator of the message. Because the social network on which the rumor spreads is a tree, the

agents know that the message was created by an agent located above them in the tree. More-

over, every agent knows the type of each agent but not the identity of the agent who created

the message. The authors provide a necessary and sufficient condition for a network to be a

full communication network, i.e., one where the message associated with the state for which

some agents are biased, say message 1, is believed by every unbiased agent. This condition

depends on the proportion of biased and unbiased agents in the population of potential message

creators. More precisely, for each agent, the proportion of biased agents must be sufficiently

low. They also extend this framework to the situation where each agent knows the identity and

type of his neighbors and the proportion of biased and unbiased agents who are connected to

him through any of his neighbors. They show that their result is preserved in this extension.

By contrast, in our benchmark model, the agents, who obtain a message, know the identity

4For a recent survey on the spread of false information on social media we refer the interested reader to Kumar and

Shah (2018).
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of the person creating the message and thus his location, but they do not know his type (except

the immediate neighbors of this person). Next, in our model agents do not know the types of

other agents – just the type of their immediate neighbors. In addition, agents do not know the

proportion of unbiased and biased agents that are connected to them or their neighbors. They

calculate the probability that the message they receive is true given the type of agent from

whom they receive the message, given that they receive the message. These assumptions allow

us to highlight the role played by the distance between the source of the message and agent i

on the credibility that agent i assigns to the message he receives. We address the same question

as Bloch et al., namely what are the conditions that allow us to obtain a network in which the

message is never blocked? We establish that it is necessary and sufficient that no unbiased

agent close enough to the creator of the message obtains the message from a biased agent.

Bloch et al. study full communication equilibria, i.e., equilibria where message 1 is always

transmitted. More specifically, they build an algorithm for obtaining a maximal diffusion of

message 1 within the network when the original network does not allow for the diffusion of the

message. However, it may not always be possible to modify the original network. Hence we

focus on the probability of obtaining a full communication network given that Nature draws

both the type of each agent and the creator of the message. We also explore situations where

unbiased agents do not transmit message 1 when they receive it.

In the second part of the paper, following Bloch et al., we also introduce the possibility that

agents do not know the identity and the location of the creator of the message. However, there

are several differences with Bloch et al. In our case, agents do not know the architecture of the

social network. Each agent knows if one of his neighbors is the creator of the message. Thus,

each agent knows when he is at distance 1 from the creator of the message. But, the agents,

located at a distance 2 or more from the creator of the message, do not know who the creator

of the message is and how far they are from this creator. Moreover, these agents do not know

the proportion of biased and unbiased among the agents who have possibly received the signal

from Nature. We assume that Nature draws a social network in the set of trees. Each tree is

drawn with the same probability. This allows each agent to calculate probabilities associated

with his location. For this case, we establish that the conditions associated with the maximal

probability of obtaining a full communication rooted-tree are weaker than in the benchmark

model. Again this clearly demonstrates that distance between the agent that must transmit or

block the message and the agent that creates the message plays a crucial role in the spread of

messages.

Lenoir (2020) extends the paper of Bloch et al. by allowing for the possibility of persuasion
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of biased agents and characterizes the equilibria in such a context. More precisely, the author

studies a communication network where agents can publicly commit ex ante to fact-checking

any message they send with a reliability of their choice. He shows that unbiased agents use

fact-checking as a device to verify information while biased agents use fact-checking as a per-

suasion device to improve their credibility. In particular, he establishes a relationship between

the cost of the persuasion device and the type of agents who will incur this cost in order to

enable the diffusion of information in the network. In the discussion section of the paper we

also examine the implications and the social benefits of having third party verification.

It is also worth mentioning that Acemoglu et al. (2020) examine the spread of false informa-

tion in a network. However, their perspective is quite different – they examine the trade-off

between aggregating information that agents share with each other in the presence of different

types of agents and the spread of misinformation. Finally, there is also a recent literature that

examines the incentives for individuals to share private information with others. Through this

transmission, agents can influence and benefit from the actions of others. For example, agents

have to be coordinated on the same action (see for instance Hagenbach and Koessler, 2010;

Galeotti et al., 2013; Chatterjee and Dutta, 2016).

3 Model Setup

3.1 Agents and States of the World

Let N = J1,nK, with n ≥ 3, be the set of agents. The set of states of the world is denoted by

Θ = {0,1}, with θ a typical member of Θ. Agents have a common prior belief that θ = 1 with

probability π, where π < 1/2. Agents earn payoffs from a collective decision denoted by x.

We assume that there are two types of agents according to their preferences.

Unbiased agents. They belong to the set U , and prefer the outcome to match the state of

the world. Their utility function, vU , satisfies: for every θ ∈ Θ,

vU (x,θ) =

 a if x = θ,

b′ otherwise,

with a > b′.

Biased agents. They belong to set B, and prefer outcome x = 1 regardless of the state of

the world. Hence their utility function, vB, satisfies: for every θ ∈ Θ,

vB(1,θ) > vB(0,θ).
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The configuration of types, C = (X1, . . . ,Xi, . . . , Xn) ∈ {B,U}n, summarizes the types of

agents in the population; with a slight abuse of notation Xi = B means that agent i is of type

B, and Xi = U means that agent i is of type U .

3.2 Network

Agents belong to a fixed social network that we model using an undirected graph g = (N,E),

with E ⊂ N ×N as the set of links between agents. With a slight abuse of notation we denote

the link between i and j in g by ij instead of {ij} ∈ E. The set of neighbors of agent i in g

is denoted by Ni = {j ∈ N \ {i} : ij ∈ E}. A path between i and j in g, Pa(i,j; g), is a

sequence i = i0, i0i1,i1, . . .,im−1, im−1im, im = j. A network is connected if there exists a

path between any pair of agents (i,j) ∈ N ×N \ {i}. A network is acyclic if there is at most

one path between two agents. We assume that g is an undirected tree, i.e., an acyclic connected

network. The set of undirected trees is denoted by G.

For every pair (g,i0) ∈ G×N , we define a directed i0-rooted-tree, T (g; i0) = T , as follows.

Agent i0 is the root of the tree: there is a directed link,
−→
i0j, from i0 to each of her neighbors j.

We say that agents in Ni0 are located at Level L1 of T . Similarly, for agent j1 ∈ Ni0 , there is a

directed link,
−→
j1k from j1 to other agents k inNj1 \{i0}. We say that agents in ∪j∈Ni0Nj \{i0}

belong to Level L2 of T . We build subsequent levels of the directed tree T accordingly and

denote by Lλ the last level of T .

Any agent i has two potential types of neighbors in T : a direct predecessor who may send him

a message about the state of the world, and direct successors to whom i may send a message.

We denote by N+
i (T ) the set of direct successors of i in T – clearly, any agent located at Lλ

has no direct successors and i0 has no direct predecessor. The successors of j in the i0-rooted-

tree T are agents i 6= j such that Pa(i0,i; g) contains agent j. The set of successors of j in T

is denoted by N s
j (T ).

It is useful to describe the sequence of agent types between agent i0 and agent j in T . Let

S(k) =
{

(Xi`)`∈J0,k−1K : ∀` ∈ J0, k − 1K, Xi` ∈ {B,U}
}

be the set of sequences with k agent

types. For example, S(2) = {(B;B), (B;U), (U ;U), (U ;B)}. Moreover, let SX(k) ∈ S(k) be

a sequence with k elements equal to X , X ∈ {B,U}. For example, SB(2) = (B;B). Finally,

S(k,NB) is the set of sequences of length k where there is no B that is a predecessor of U .

For example, S(2,NB) = {(B;B), (U ;B), (U ;U)}.
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3.3 Collective vote

Following Bloch et al. (2018), we assume that payoffs are determined by a probabilistic voting

model. Agents have the opportunity to vote either for alternative 0, or alternative 1. Let

f(z) = z/n be the probability that alternative 1 is implemented when z agents vote for it.

Obviously, 1− f(z) is the probability that alternative 0 is implemented. This assumption rules

out strategic voting by the agents.

3.4 Timing of Moves in the Benchmark Model

Stage 1. Given a network g, Nature draws three types of events:

(a) Nature independently draws the type of each agent i ∈ N . More precisely, Nature

assigns to each agent i type B with probability b, and type U with probability 1− b.
Hence, Nature draws a vector C = (X1, . . . ,Xj , . . . , Xn) where Xj ∈ {B,U} is

the realized type of agent j ∈ N ;

(b) Nature draws the state of the world given that θ = 1 occurs with probability π ∈
(0, 1/2);

(c) Nature draws one agent, say i0, chosen randomly and called the rooted agent. Every

agent has the same probability, 1
n , and Nature sends a perfect signal about the state

of the world, σ ∈ {0,1}.

At the end of Stage 1, there is a realization of a pair (T (g; i0); C) which indicates for

each agent what level he is at and his specific type as well as the specific type of the

agent who can send him a message.

Stage 2. After agent i0 receives σ ∈ {0,1} from Nature, he has the opportunity to create a

message Mi0(σ) ∈ {0,1,∅}, and sends it to agents who belong to Level L1 of T (g; i0).

For the game to be interesting, we assume that agent i0 who obtains Nature’s signal can

send any message – in particular Mi0(0) = 1 is a possibility.

Stage 3. Agent i1, located at Level L1, who receives message Mi0 ∈ {0,1} from agent i0

either transmits this message, mi1 = Mi0 , or he blocks it, mi1 = ∅.
Similarly, every agent ik, located at Level Lk, k ≥ 2, who receives message mik−1

∈
{0,1} from agent ik−1 at Level Lk−1 has two possibilities: either he transmits message

mik = mik−1
to all his neighbors, or he does not transmit any message, mik = ∅.

In short, agents located at Level Lk, k ≥ 1, can only pass or block the message they

received.
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Stage 4. Every agent i ∈ N votes for one of the two states of the world given the information

(message or signal) he has obtained and his preferences. The outcome of the collective

choice is revealed after all agents have voted.

Since every agent i is biased with probability b and unbiased with probability (1 − b), we

associate with any sequence S ∈ S(k) a probability w(S) = bq(1 − b)k−q, where q is the

number of biased agents in sequence S.

In Stages 2 and 3, we have assumed that only the agent who creates the message has the

possibility to lie, i.e., to transmit a message different from the one he receives. Actually this

assumption is not required. Indeed, if we assume that each agent has the possibility to lie by

creating their own message, we obtain results that are qualitatively the same.5

3.5 Information Set of Agents

Let us now define the information available to each agent j ∈ N . Recall that every agent i has

a prior π < 1/2 that θ = 1. Similarly, every agent i ∈ N knows that an agent is biased with

probability b. We assume that every agent j ∈ N knows his type and the type of every agent

in Nj(g). It is common knowledge that all agents have this information. Finally, we explore

two frameworks.

1. In the benchmark model, every agent j ∈ N knows the architecture of the social network

g. Note that by construction if agent j belongs to Level Lk, k ≥ 1, then the message

comes from an agent in Lk−1. Hence, we simplify information obtained by agent j by

using pair (mLk ,X) where mLk , k ∈ J0, λ− 1K, indicates that the message has been

sent by an agent located at Level Lk, and X ∈ {B,U} indicates the type of the agent

who sent the message to j. We denote by ρj = ρ(mLk−1
,X) the posterior belief on

θ = 1 of agent j who obtains a message from an agent located at Level Lk−1, of type

X . Similarly, with a slight abuse of notation, the posterior belief of agent j when he

receives no message is ρj(∅). To simplify the presentation, we say that agent j believes

message 1 he receives when ρj ≥ 1/2. Only agents who receive a message know the

identity of the creator of the message and therefore their distance from him – agents who

do not receive any message have no information about the identity of the creator of the

message.

2. In the model with incomplete information about locations of agents, agents do not know

5We present the differences between the two frameworks in the discussion section.
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the architecture of the network in which they are embedded. Formally, in addition to

points (a) – (c) listed in Stage 1, Nature draws an undirected tree g from G. Although

they do not know the network, the agents know that each tree has the same probability

of being drawn by Nature. In addition, each agent knows the type and identity of all

his neighbors, who sends him the message and whether the latter is the creator of the

message. Except when the creator of the message is one of his neighbors, an agent does

not know the identity of the creator of the message.6 Due to all this information, each

agent is able to compute probabilities concerning his location in the network.

Note that in both frameworks, for an unbiased agent who receives the signal from Nature his

posterior belief is 1 when σ = 1 and 0 when σ = 0.

3.6 Equilibrium Strategies

The strategy of each agent i describes, for each rooted agent and configuration drawn by Na-

ture, the decisions of agent i. More precisely, when Nature draws agent i0 and configuration

C, strategy of agent i is:

1. if i = i0, then there is a mapping Mi : {0,1} → {0,1,∅}, σ 7→Mi(σ), that describes the

action of i when he is drawn by Nature; and

2. if i 6= i0, then there is a mapping ti : {0,1} → {0,1,∅},m 7→ ti(m) such that ti(m) ∈
{m,∅} that describes the action of i when he does not obtain Nature’s signal.

An equilibrium consists of message creation strategies, transmission strategies, and beliefs for

every choice of Nature, for every agent i, such that each agent’s strategy is sequentially rational

given the strategies of others, and beliefs that are formed using Bayes’ rule whenever possible.

4 Analysis of the Benchmark Model

Given the collective vote defined in Section 3.3, in Lemma 1 (see Appendix) we establish that

in equilibrium:7

1. each biased agent votes for alternative 1;

2. each unbiased agent j votes for alternative 1 if ρj > 1/2, 0 if ρj < 1/2, and votes 0 or 1

with equal probability if ρj = 1/2.
6This assumption does not qualitatively change our results – see the discussion section.
7This result follows from Bloch et al. (2018).
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4.1 An Introductory Example

We begin with an example that explains how agents form their beliefs.

Example 1 Let g be as shown in Figure 1. We assume that, following Stage 1 given in Section

3.4, agents 1, 2, 4, 6, 8, 11, 12, 13 and 14 colored blue belong to U , and agents 3, 5, 7, 9 and

10 colored red belong to B. Moreover, agent 1 is the agent who obtains signal σ = 1 from

Nature. In Figure 2, we draw 1-rooted-tree T (g; 1) that describes the flow of messages. Agent

2 ∈ N+
1 (T (g; 1)) obtains the following message: m1 = 1. Since agent 2 knows that agent 1

is unbiased and obtains σ from Nature, agent 2 knows that θ = 1. Consider the information

that agent 4 has: he knows that he is located at Level L2, m2 = 1 and agent 2 ∈ U . For agent

4, there are two possibilities concerning agent 1 located at Level L0. (i) Agent 1 is biased, so

M1 = 1, and the posterior of agent 2 is equal to his prior ρ2 = π < 1/2. By Lemma 1, agent

2 has no incentive to transmit the message: t2(M1) = ∅. (ii) Agent 1 is unbiased, M1 = σ.

Then, agent 2 transmits message t2(M1) = 1. In other words, Agent 4 knows that if m2 = 1,

then θ = 1.

Agent 11 knows that there is only one possibility for obtaining message 1 when θ = 0: agent

1 is biased and σ = 0. There are two possibilities for obtaining message 1 when θ = 1:

σ = 1, and agent 1 is biased or agent 1 is unbiased. Consequently, by using Bayes’ rule

ρ11(mL1 = 1,B) = π
(1−π)b+π . By Lemma 1, agent 11 transmits message 1 – when he has a

successor – if and only if ρ11(mL1 = 1,B) ≥ 1/2. In this example, we assume π and b are

such that ρ11(mL1 = 1,B) < 1/2.

Finally, agents 8 and 12 have the same information set, so they will have the same posterior.

Indeed, they receive the same message m5 = m10 = 1, the message is transmitted by the

same type of agents – agents 5 and 10 are biased – and agents 8 and 12 are located at the same

level, L3. What are the posterior of agents 8 and 12? Let us examine posterior of agent 8 since

posterior of agent 12 is the same. We know that the only case where θ = 0 and message 1 is

received by agent 8 occurs when σ = 0 and agents 1,2 ∈ B. Similarly, cases where θ = 1

and message 1 is sent to agent 8 occurs when σ = 1, and agents 1,2 ∈ B or agents 1,2 ∈ U
or agents 1 ∈ U and 2 ∈ B. Consequently, ρ8(mL2 = 1,B) =

π(b2+1−b)
b2+(1−b)π . If ρ8 ≥ 1/2, then

agent 8 transmits message 1 to his successor – if he exists.

In Example 1, posterior of agent 8 can be written as follows:

ρ8 =
π
∑
S∈S(2,NB) w(S)

(1−π)w(B;B)+π
∑
S∈S(2,NB) w(S)

= π(w(B;B)+w(U ;B)+w(U ;U))
(1−π)w(B;B)+π(w(B;B)+w(U ;B)+w(U ;U)) .
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Figure 1: Network g of Example 1

How do we determine the posterior of an unbiased agent, say 14, located at Level L4 who

receives message 1 from a biased agent? There are two possibilities. Agent 14 receives mes-

sage 1 when θ = 0: if σ = 0 and sequence SB(3) = (B;B;B) occurs since unbiased agents

located at Levels L1 and L2 block message 1 that they receive from biased agents. Similarly,

Agent 14 receives message 1 when θ = 1 if σ = 1 and one of the following sequences oc-

cur: (B;B;B) or (U ;B;B) or (U ;U ;B) or (U ;U ;U). These sequences together form the set

1:L0

2:L1 3:L1

4:L2 5:L2

6:L3 7:L3 8:L3 9:L3

10:L2 11:L2

12:L3

13:L4 14:L4

M1 = 1

M1 = 1

m2 = 1

m2 = 1
m3 = 1

m3 = 1

m4 = 1
m4 = 1 m5 = 1

m5 = 1

m8 = 1 m9 = 1

m10 = 1

Figure 2: 1-rooted-tree, T (g; 1), of Example 1
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S(3,NB). Consequently, the posterior belief of agent 14 is:

ρ14 =
π
∑
S∈S(3,NB) w(S)

(1−π)w(B;B;B)+π
∑
S∈S(3,NB) w(S)

= π(w(U ;U ;U)+w(U ;U ,B)+w(U ;B,B)+w(B;B;B))
(1−π)w(B;B;B)+π(w(U ;U ;U)+w(U ;U ,B)+w(U ;B,B)+w(B;B;B))

=
π(w(B;B)+w(U ;B)+w(U ;U))+π

b
w(U ;U ;U)

(1−π)w(B;B)+π(w(B;B)+w(U ;B)+w(U ;U))+π
b
w(U ;U ;U)

> ρ8,

since a+ξ
b+a+ξ >

a
b+a for every a,b,ξ > 0. Let ρ̂(k) be the posterior of belief of agent j ∈ U

located at Level Lk, k ≥ 2, who obtains message mi = 1 from i ∈ B. We have:

ρ̂(k) =
π
∑

S∈S(k−1,NB)w(S)

(1− π)w(SB(k − 1)) + π
∑

S∈S(k−1,NB)w(S)
. (1)

Let us start with a remark concerning function ρ̂(·). This function will play a crucial role in

the rest of the analysis.

Remark 1 ρ̂(k) is increasing in k, k ≥ 2.

In other words, as long as the unbiased agents block message 1 received from a biased

agent, the credibility of message 1 received by an unbiased agent from a biased agent increases

with the distance between the former and the agent obtaining the Nature’s signal. This result

follows from the fact that the spread of false information through the network requires that

the event “only biased agents are involved in the path between the creator of the message and

the agent” occurs. The probability of this event decreases with the length of this path. We

draw contours of ρ̂(·) associated with pairs (b,π) for Levels Lk, k ∈ J2,5K, in Figure 3. The

posterior of message 1 is higher than 1/2 for pairs above the curves.

4.2 Equilibrium Analysis

Our game allows for a multiplicity of equilibria – in particular babbling equilibria where mes-

sages are never transmitted will certainly exist. In the following, we are interested in a specific

type of equilibrium: we examine an equilibrium in which the strategy of transmitting message

1 by unbiased agent j is consistent with the posterior beliefs of j.

Clearly, due to Remark 1, if ρ̂(λ − 1) < 1/2, then unbiased agent jk located at Level Lk,

k ≤ λ − 1, has posterior beliefs lower than 1/2 when he receives message 1 from a biased

agent, and in equilibrium he will not transmit message 1, and will not vote 1.
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Figure 3: Contour curves of ρ̂(k) = 0.5 associated with pairs (b,π) for k ∈ J2,5K

Assume that π ≥ π̄λ = w(SB(λ−2))
w(SB(λ−2))+

∑
S∈S(λ−2,NB) w(S)

, i.e., ρ̂(λ − 1) ≥ 1/2, and let k? =

min{k ∈ J2,λ − 1K : ρ̂(k) ≥ 1/2}. By definition of k?, Lk? is the level after which unbiased

agents transmit message 1 they receive from a biased agent, while unbiased agents located at

Level Lk, k < k?, block message 1 received from biased agents. In the following result, we

focus on a specific Bayesian equilibrium that will play a crucial role in our analysis.

Theorem 1 The following strategies constitute a – Bayesian – equilibrium.

1. For σ ∈ {0,1}:
Mi(σ) = 1, if i ∈ B,
Mi(σ) = σ, if i ∈ U .

2. For i ∈ B, i located at Level Lk, k ∈ J1, λ− 1K, ti(1) = 1 and ti(0) = ∅.

3. For j ∈ U , j located at Level Lk, k ∈ J1,λ− 1K, tj(0) = 0, and

tj(1) =

 1 if ρj ≥ 1/2,

∅ otherwise,
(2)

with

ρj = ρj(mLk−1
= 1,B) =


ρ̂(k? + 1) if k > k?,

ρ̂(k?) if k = k?,

ρ̂(k) if k ∈ J2,k? − 1K,

π if k = 1
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when agent who sent message 1 to j is biased, and

ρj = ρj(mLk−1
= 1,U) =

 ρ̂(k? + 1) if k > k?,

1 if k ≤ k?,

when agent who sent message 1 to j is unbiased. Moreover, ρj(∅) ≤ π. We assume the

following beliefs off the equilibrium path for agent j ∈ U: ρj(ML0 = 0,B) = ρj(mLk =

0,B) = π for k ≥ 1.

In Theorem 1, we observe that the properties of the posteriors of the unbiased agents de-

pend on the type of the agent that sends message 1. Specifically, the posterior of unbiased

agents that receive message 1 from a biased agent, are non-decreasing with their distance from

the root of the tree – and strictly increasing up to Level Lk? . On the other hand, the posteriors

of unbiased agents that receive message 1 from an unbiased agent are non-increasing with their

distance from the root.

We now illustrate that the strategies given in Theorem 1 are not the only equilibrium strate-

gies. However, as is often the case in games of strategic communication some of these equilib-

ria are not particularly interesting and we will ignore them in our detailed analysis. Consider

for instance that the root of the rooted-tree, say i0, is biased and all his neighbors are un-

biased. Then, because of Bayes rule, message 1 sent by i0 ∈ B will never be transmitted.

Consequently, agent i0 is indifferent between his different actions, and in equilibrium he may

choose for example to not send a message. Now suppose that due to Nature’s random draw, all

neighbors of i0 ∈ B are biased, and all of them do not transmit the message they obtain from

i0. In that case, i0 plays a best response when he sends message 0, given the strategies of his

neighbors, and his neighbors plays a best response given i0 sends 0. Finally, suppose that i0

is unbiased and that all his neighbors are biased. Then i0 is indifferent between creating the

message 0 and not creating a message when he receives σ = 0. Indeed, neighbors of agent i0

do not transmit message 0.

This examples clearly highlight the potential for coordination failures. Note that in all of these

examples, some agents are indifferent between some of their strategies because they do not

affect the voting of unbiased agents and therefore, these equilibria are not interesting in terms

of the behavior of agents. In the rest of the section, we focus on a class of equilibria, E , where

strategies of agents can affect the voting of unbiased agents.

Equilibria in E satisfy the two following properties:

(TR1) biased agents create message 1 when they obtain σ from Nature, and they transmit

message 1 when they receive it;
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(TR2) unbiased agents create message that matches with the signal given by Nature, and every

unbiased agent j plays the following strategy: tj(0) = 0, and tj(1) = 1 if and only if

ρj ≥ 1/2.

Clearly, the specific equilibrium identified in Theorem 1 belongs to E . Note that (TR1) and

(TR2) can be interpreted as tie-breaking rules to get around coordination problems. Moreover,

for agent j, whose successors are all biased agents, in T (g; i0) given C, his strategy cannot

modify the vote of other agents – all agents who can be influenced by the message sent by

j always vote 1 regardless of what the strategy of j is. We assume as a tie-breaking rule

according to which agent j chooses his strategy in line with his posterior.

In the next result, we highlight an equilibrium that plays a specific role in E : it maximizes

the transmission and the communication of message 1 between agents.

Proposition 1 If there exists an equilibrium in E where an unbiased agent j believes message

1, then this agent j believes message 1 in the equilibrium described in Theorem 1.

Our goal in this paper is to study how strategic considerations affect cheap talk, especially

in the context of a network. Thus, following Bloch et al. (2018), we are interested in equilibria

where the communication of message 1 is maximized. Following Proposition 1, we say that

strategies and beliefs given in Theorem 1 constitute a Maximal Communication Equilibrium in

E .

Given g, (T (g; i0),C) leads to a Full Communication Rooted-Tree if for strategies that

constitute a maximal communication equilibrium – those given in Theorem 1 – message 1

is believed by all unbiased agents when they receive it, i.e., all unbiased agents vote 1, and

consequently transmit messages when they can. Full communication rooted-trees are thus

a very specific outcome where the spread of information, possibly false, does not stop and

message 1 influences all unbiased agents. However, it is important from an agent’s perspective

because they do not know that they are part of a full communication rooted-tree as they are

unaware of the complete draw of types or the entire vector C.

In what follows, we examine the probability of obtaining a full communication rooted-

tree given the social network g. For example, we consider social network g drawn in Figure

4.(i), called a line network since it is a tree where only two agents have a unique neighbor.

Social network g allows for three rooted-trees drawn in Figure 4.(ii) – (iv) according to the

agent drawn as the creator of the message by Nature. These rooted-trees can be combined with

23 = 8 configurations of types, C, that Nature can randomly draw. Consequently, there are

3 × 8 = 24 possible pairs (T (g; i0),C). In some rooted-trees and configurations, message 1
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Figure 4: Tree g and its rooted trees

is not believed by all unbiased agents when they receive it while this message is believed in

others. For example, in T (g; 1) agent 2 does not believe message 1 and does not transmit it

when 1 ∈ B and 2 ∈ U , while T (g; 1) is a full communication rooted-tree when 1,2,3 ∈ U .

Our main result, Theorem 2, consists in providing the probability that Nature draws a pair

(T (g; i0),C) such that T (g; i0) is a full communication rooted-tree. We begin by providing an

additional property which ensures that (T (g; i0),C) leads to a full communication rooted-tree.

(P1) In (T (g; i0),C), for every agent ik ∈ N , located at LevelLk, k ∈ J1,k?−1K, the sequence

of types of agents in the path between i0 and ik belongs to S(k + 1,NB).

Property (P1) means that there is no sequence of agents in T (g; i0) such that a biased agent

is a predecessor of an unbiased agent up to Level Lk? . Note that false information can be

transmitted when (P1) is true. Consider for example the rooted-tree T given in Figure 5 and

suppose π ∈ [b2/(2b2 − b+ 1),b/(1 + b)), i.e., k? = 3. We assume that agents 1, 2 and 3 are

biased and Nature transmits signal σ = 0 to agent 1. Clearly, unbiased agents 4, 5 and 6 believe

message 1 created and transmitted by biased agents. Note that T together with the previous

specific configurations of the type of the agents lead to a full communication rooted-tree.

1 2 3 4 5Nature 6
M1 = 1σ = 0 m2 = 1 m3 = 1 m4 = 1 m5 = 1

Figure 5: Rooted-tree T

Proposition 2 Suppose i0 ∈ N is the agent who obtains the signal σ from Nature. (T (g; i0),C)
leads to a full communication rooted-tree if and only if (P1) holds.

Note that in Proposition 2 we provide a property under which all unbiased agents believe

message 1 when they receive it. Because of the specific role played by the strategies and beliefs

given in Theorem 1, we are interested in the probability of obtaining a full communication
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rooted-tree depending on the architecture of the social network g when such strategies and

beliefs are used.

For any rooted-tree T = T (g; i0), N(T,k) is the set of agents who are located at Level Lk′ ,

k′ < k. Moreover, let N s
i (T,k) = N s

i (T ) ∩ N(T,k) be the set of agents located at Lk′ , with

k′ < k, who are successors of i in T . Finally, we define a recurrence equation on the neighbors

of agent j ∈ N , given rooted-tree T , that allows us to provide the probability of obtaining a

full communication rooted-tree.

For each agent j located at Level Lk, we define Φj(T,k) as follows. For j ∈ N(T, k?),

Φj(T,k) = b|N
s
j(T,k

?)|+1 + (1− b)
∏

`∈N+
j (T )

Φ`(T, k + 1), (3)

and for j 6∈ N(T, k?), Φj(T,k) = 1. We observe that Φi0(T,0) is the recurrence equation

associated with the agent who obtains signal σ from Nature, i0 – every agent inN is a successor

of i0 in T (g; i0). The following result relies on the fact that in a full communication rooted-

tree, all successors of a biased agent located at Levels Lk with k < k?, must be biased.

Theorem 2 Given a social network g, the probability of a full communication rooted-tree

occurring is:
1

n

∑
i0∈N

Φi0(T (g; i0),0).

Moreover, the probability of a full communication rooted-tree occurring is at most:

1− 1

n

∑
i0∈N

b
(
1− b|Ni0 |

)
.

Clearly, the architecture of the social network plays a crucial role in Equation (3), and thus

in the probability of obtaining a full communication rooted-tree.

We now turn to the following question: What is the best architecture for social networks for

the communication of messages? In other words, what is the architecture that allows message

1 to be believed with the highest probability by unbiased agents?

To answer this question, we define star networks as trees in which one agent, called the

center agent, has a link with all the other agents and other agents, called peripheral agents,

have a unique link with the center. In the first result, we restrict our attention to π ≥ b/(1 + b),

i.e., k? = 2. This expression also suggests that a high prior of the state being 1 implies that

a false message 1 will be transmited further. Note that while k? is endogenous, below we

sometimes use k? for ease of exposition.
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Proposition 3 Let π ≥ b/(1 + b). Then, star networks are the trees that generate full commu-

nication rooted-trees with the highest probability.

1 2

34

5

(i) g1

1 2

3

45

(ii) g2

1

2

34

5

(iii) g3

Figure 6: Trees with 5 agents

It is difficult to obtain general results concerning architectures of social networks that max-

imize the probability of obtaining full communication rooted-trees. Indeed, such a maximizer

is parameter dependent. For instance, let us examine the situation with 5 agents. We draw the

three possible trees with 5 agents in Figure 6. Suppose π ∈ [b2/(2b2 − b+ 1), b/(1 + b)), i.e.,

k? = 3. Network g3 maximizes the probability for obtaining a full communication rooted-tree

when b = 0.25, while network g1 maximizes this probability when b = 0.5. In the follow-

ing result, we show that when agents are more likely to be unbiased than biased, there are

(weak) conditions under which star networks are the trees that generate full communication

rooted-trees with the highest probability.

Proposition 4 Suppose n > 5, π ∈ [π̄λ, b3/(b3 + 2b2 − 2b + 1)), and b ≤ 0.5. Then,

star networks are the trees that generate full communication rooted-trees with the highest

probability.

Another important question concerns the most efficient social network architecture for re-

ducing the spread of false information. Intuitively, star networks seem to be the social networks

with the highest potential for filtering false information. In other words, they should be social

networks that minimize the probability of obtaining full communication rooted-tree when the

creator of the message sends a false message. This intuition is correct when π ∈ [π̄λ, b/(1+b)),

i.e., k? > 2. However, the following example established that this intuition is not correct when

π ≥ b/(1 + b), i.e., k? = 2.

Example 2 Let N = J1, 4K and π ≥ b/(1 + b), i.e., k? = 2. There are two possible social

networks when |N | = 4: the line network called network g1 (drawn in Figure 7.(i)) and the

star network called network g2 (drawn in Figure 7.(ii)). In the figure, we indicate inside the
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square for each agent i the probability of obtaining a full communication rooted-tree, i.e., a

configuration, where no agent votes 0 when θ = 0. For instance, in the star network, each

rooted-tree associated with peripheral agents has a probability b2 to be a full communication

rooted-tree where all agents vote 1 when σ = 0. Indeed, since k? = 2, agent who obtains the

signal from Nature and all his direct neighbors – and only them – have to be biased. Clearly,

the probability of obtaining a full communication rooted-tree under these conditions is 1
4(2b2+

2b3) for g1 and 1
4(3b2+b4) for g2. Clearly, 3b2+b4−(2b2+2b3) = (b(1−b))2 > 0. Therefore,

the probability of obtaining a full communication rooted-tree is higher in the star network than

in the line network.

b3b3 b2b2

(i) g1

b4

b2 b2 b2

(ii) g2

Figure 7: Diffusion of false information when k? = 2

We are able to obtain the following general result for social networks that minimize the

diffusion of false information.

Proposition 5 Trees that minimize the probability of obtaining full communication rooted-

trees when message 0 is sent by Nature to a biased agent are line networks when π ≥ b/(1+b),

and star networks when π ∈ [π̄λ, b/(1 + b)).

We now deal with social networks that maximize the diffusion of false information. We know

that line networks are not the social networks that maximize the diffusion of false information

when k? = 2. Actually, by using arguments similar to those given in the proof of Proposition

5, it is possible to show that star networks maximize the diffusion of false information when

π ≥ b/(1 + b), i.e., k? = 2. Intuitively, line networks seem to be the most efficient networks

when π ∈ [π̄λ, b/(1 + b)), i.e., k? > 2 for maximizing the diffusion of false information. We

show through an example that this intuition is not true: the architecture of social networks that

maximizes the diffusion of false information is parameter dependent.

Example 3 Suppose N = J1,7K and π ∈ [b2/(2b2 − b + 1),b/(1 + b)), i.e., k? = 3. We

consider two social networks g1 and g2 drawn in Figure 8. Again, we report for each agent i

the probability of obtaining a full communication network, where no agent votes 0 and θ = 0,
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when agent i obtains the Nature signal. Since k? = 3 the agent who receives the signal from

Nature and all agents at distance 2 or less of the latter – and only them – have to be biased.

Probability of obtaining a full communication rooted-tree in line network g1 is 1
7(2(b3 + b4) +

3b5) and this probability is 1
7(3(b3 + b5) + b7) in g2. The sign of the difference between these

probabilities depends on the sign of 2b4 − b3 − b7 = (1− b)b3(b3 + b2 + b− 1). For b = 1/2,

b3 + b2 + b− 1 = −1/8, and for b = 3/5, b3 + b2 + b− 1 = 22/125. It follows that the line

network is not always the network that maximize the spread of false information.

b3

b4

b5 b5 b5 b4 b3

(i) g1

b3

b5

b3 b5 b7 b5 b3

(ii) g2

Figure 8: Diffusion of false information when k? = 3

In the next section, we examine how important it is for an agent to know the distance

at which it receives the signal, i0, by looking at cases where agents have only a probability

distribution on the distance between themselves and agent i0.

5 Uncertainty about Network Distance

In the previous section we assumed that the agents know the network structure. However, in

practice this may not be the case: agents may not be aware of the entire network and may only

have some idea about the network. We model this by assuming that the agents do not know

the network structure which is tantamount to not knowing distance from the source. This

allows us to study the importance of the knowledge of the network itself in the spread of false

information. Formally, in this section, we assume that social network g is not given. Nature

draws a social network fromG, say g; each tree has the same probability of being drawn. Then,

Nature reveals to each agent i:

1. the identity of the agent who sends him the message and whether this agent has received

the signal from Nature; and

2. his set of neighbors Ni(g).
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Only agents located at Levels L0 or L1 know their distance from the root i0 since agents

at Level L1 know that i0 obtains the signal from Nature. Other agents who obtain a message

do not know the identity of i0.8 In this section we provide conditions under which agents who

do not know where they are located in the network, believe message 1 when they receive it.

5.1 Posterior Beliefs of Agents: an Example

Recall that message 1 is never blocked by an agent located at level Lk, k ≥ 2. We begin

with the following question: Given that agents located at Level Lk, k ≥ 2, do not know their

location in the network, what is the probability that agent j receives true message 1 from a

biased agent, given his location? Denote by p2(j) the probability agent j assigns to the event

he is located at Level L2.

Example 4 We assume that agent j ∈ U receives message 1 from agent i ∈ B, and his

neighbors have not received the signal from Nature.

1. agent j thinks he is located at levelL2 with probability p2(j). In that case, the probability

he receives a true message is equal to π
(1−π)b+π .

2. With probability 1 − p2(j), agent j is located at Level Lk, with k > 2. Given that all

agents transmit message 1, we have:
π(b2+1−b)
b2+(1−b)π , for every k > 2.

Consequently, posterior beliefs of agent j when he receives message 1 from biased agent i

is ρ̃j(B) = π
(1−π)b+πp2(j) +

π(b2−b+1)
b2+(1−b)π (1 − p2(j)). To ensure that agent j located at Level

Lk, k ≥ 2, has an incentive to transmit message 1 sent by a biased agent, we must have

ρ̃j(B) ≥ 1/2.

By inspecting the previous example, we define the posteriors beliefs for agent j ∈ U located

at Level Lk, k ≥ 2, when he receives message 1 from a biased agent, ρ̃j(B), and from an

unbiased agent, ρ̃j(U). We have:

ρ̃j(B) = ρ̂(2)p2(j) + ρ̂(3)(1− p2(j)), (4)

ρ̃j(U) = p2(j) + ρ̂(3)(1− p2(j)). (5)
8In the discussion section, we present some alternative possibilities regarding the information provided to agents.
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5.2 Agents’ Beliefs about Their Location

In this section, we provide results that allow us to study the beliefs of agent j ∈ N about his

location in a tree, given that he knows when he is at level L0 or L1, who his neighbors are, and

who sent him the message. As we established in the previous section, we are only interested

in the beliefs of j about his probability of being located at Level L2, p2(j). We denote the

set of successors of agent j given that his neighbor i sends him the message in rooted-tree T ,

N s
j (T |i). Let us begin with an example that illustrates the calculation of p2(j) by agent j.

Example 5 Suppose that N = J1,6K and agent 4 is not located at Level L0 or L1. We as-

sume that N4(g) = {3,5,6} and agent 4 receives message 1 from agent 3. Because of our

assumptions, agent 4 knows that agent 3 did not obtain σ from Nature. Thus, for agent 4

there are 3 possibilities concerning the social network g that has been drawn by Nature given

that N4(g) = {3,5,6} and it generates a rooted-tree T where agent 4 receives a message

from agent 3: N s
4 (T |3) = {5,6} or N s

4 (T |3) = {1,5,6} or N s
4 (T |3) = {2,5,6}. Note that

N s
4 (T |3) = {1,2,5,6} is impossible because of our assumptions. In Figure 9, we draw all so-

cial networks, g1, g2 and g3, that generate a rooted-tree T such that N s
4 (T ) = {5,6} and agent

4 is linked with agent 3 – by Cayley’s theorem9 (see Harary and Palmer, p. 20, 1973) there

are 3 possible trees. Clearly, there is one tree, g1 drawn in Figure 9.(i), where agent 3 has two

direct neighbors. In that case, agent 4 is located at Level L2 with probability 1. Similarly, there

are two trees, g2 and g3 drawn in Figures 9.(ii) and 9.(iii), where agent 3 has only one direct

neighbor. In these cases, agent 4 is located at level L2 with probability 0.5 since agents 1 and

2 have the same probability to obtain the signal from Nature. Moreover, there are 2 trees, g4,

g5, drawn in Figure 10.(i) and (ii), that generate a rooted-tree T such that N s
4 (T |3) = {2,5,6}

and N4(g4) = N4(g5) = {3,5,6}. In each of these trees, agent 1 obtained the signal with

probability 1 and agent 4 is surely located at Level L2. Finally, there are 2 trees, g6, g7, drawn

in Figure10.(iii) and (iv), that generate a rooted-tree T such that N s
4 (T |3) = {1,5,6} and

N4(g6) = N4(g7) = {3,5,6}. Again in each of these trees, agent 4 is surely located at Level

L2. By assumption, each tree has the same probability of occurring, i.e., 1/7. It follows that

agent 4 is located at Level L2 with probability 5× 1/7× 1 + 2× 1/7× 1/2 = 6/7.

We need to present an additional graph theoretic result for obtaining p2(j) in any situation.

The idea behind the calculation of p2(j) follows what we developed in the previous example,

i.e., find trees compatible with the information held by agent j, then compute the probability

9For every positive integer n, the number of trees on n labeled vertices is nn−2.
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Figure 9: Social networks that allow for N s
4 (T ; 3) = {5,6}
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Figure 10: Social networks that allow for |N s
4 (T ; 3)| = 3

that j is located at levelL2 in each of these trees. The following theorem allows us to determine

the total number of trees where a specific agent, say i, has ni neighbors in a tree withm agents.

Theorem 3 (Clarke, 1958) The number of trees g with m agents in which a given agent, say

i, has ni = |Ni(g)| neighbors, ni ∈ J1,mK, is

C`(ni,m) =

(
m− 2

ni − 1

)
(m− 1)m−ni−1.

Corollary 1 Let W ⊂ N \ {i} be a subset of agents, with |W | = ni, ni ∈ J1,n − 1K. The

number of trees g in which a given node, say i, satisfies Ni(g) = W , is

C`(W,m) =
C`(ni,m)(

n−1
ni

) .

From Corollary 1, we obtain two lemmas (2 and 3), given in the appendix, that allow

us to state the main result of this section. Lemma 2 provides the number of social networks,

ΓNj =
∑n−3

v=nj−1
(n−1−nj
v−nj+1

)
(n−v−1)n−v−3C`(Nj(g)\{i},v+1) with nj = |Nj(g)|, that are

compatible with the information obtained by agent j from Nature. In particular, (1) j knows

that he receives the message from a specific agent, say i, and (2) j knows the identity of his
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neighbors – they belong to Nj(g). In Lemma 3, we provide the number of social networks,

ΓNj (ni,v) =
(n−1−nj
v−nj+1

)
C`(ni − 1,n − v − 1)C`(Nj(g) \ {i},v + 1), that satisfy (1) and (2),

and where agent j has v successors and |Ni(g)| = ni. Lemmas 2 and 3 allow us to determine

p2(j). Indeed, ΓNj (ni,v)/Γnj provides the proportion of trees compatible with the information

owned by agent j where agent i has ni neighbors and generate a rooted-tree where the number

predecessors of i is n− v − 2. Because agent j is located at Level L2 when the root is one of

the ni − 1 neighbors of i, and the number of agents candidate for being the root is n− v − 2,

the probability that agent j is located at Level L2 is (ni − 1)/(n− v − 2). Finally, we have to

take into account all the possible values for ni and v. Using these arguments, in the following

proposition, we state the value of p2(j).

Proposition 6 Suppose that agent j receives message from agent i. Then,

p2(j) =

n−3∑
v=nj−1

n−v−1∑
ni=1

(ni − 1)ΓNj (ni,v)

(n− v − 2)ΓNj
.

5.3 Full Communication Rooted-Trees

In the following, we are interested in situations where all unbiased agents located at Level Lk,

k > 1, believe message 1 when they receive it. Let j′ ∈ arg minj∈U{ρ̃j(B) = ρ̂(2)p2(j) +

ρ̂(3)(1−p2(j))} be the unbiased agent who has the lowest posterior when he receives message

1 from a biased agent in the rooted-tree. Since ρ̂(·) is increasing, j′ ∈ arg maxj∈U{p2(j)}.
Let ρ̃j′(B) = ρ̃(B) and p2(j

′) = p2. We define the two following properties:

(P1’) ρ̃(B) ≥ 1/2;

(P2’) if i0 ∈ B, then every j ∈ Ni0(g) belongs to B.

Property (P1’) ensures that message 1 sent by a biased agent to an unbiased agent located at

Level Lk, k > 1, is not blocked. Property (P2’) ensures that the agent, say i0, who obtains the

signal from Nature has no neighbors who are unbiased when i0 is biased.

Proposition 7 If properties (P1’) and (P2’) hold, then (T (g; i0),C) leads to a full communi-

cation rooted-tree.

In the rest of the section, we assume ρj(∅) ≤ π, and for agent j ∈ U : ρj(ML0 = 0,B) =

ρj(mLk = 0,B) = π, for k ≥ 1 as in Section 4. By using the same argument as in the

benchmark model, we obtain the following result.
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Theorem 4 Suppose agents use strategies given in Theorem 1. Moreover, let g be the social

network drawn by Nature. If ρ̃(B) ≥ 1/2, then the probability of a full communication rooted-

tree occurring is:

1− 1

n

∑
i0∈N

b(1− b|Ni0 (g)|). (6)

Recall that in the benchmark model, full communication rooted-trees occur with the prob-

ability given in Equation (6) only when ρ̂(2) ≥ 1/2. This is the maximum probability for

obtaining a full communication rooted-tree in the benchmark model. As ρ̃(B) > ρ̂(2) in net-

works with at least 3 levels, under the incomplete information model there is a larger class of

parameters than in the benchmark model in which the maximum probability of obtaining a full

communication rooted-tree is achieved. In the following result, we provide the conditions un-

der which (T (g; i0), C) leads to a full communication rooted-tree in the model with incomplete

information when it is a full communication rooted-tree in the benchmark model. Similarly,

we provide conditions under which (T (g; i0), C) leads to a full communication rooted-tree in

the benchmark model when it is a full communication rooted-tree in the model with incomplete

information. We consider agents to be embedded in the same network, g, in both settings.

Proposition 8 Suppose that agents use strategies given in Theorem 1. Moreover, Nature sent

the signal to i0, and draws configuration C.

1. Suppose that (T (g; i0), C) leads to a full communication rooted-tree in the model with

incomplete information on locations. If there is no agent j ∈ U who obtains message

from agent i ∈ B located at Level L2 in T (g; i0), then (T (g; i0), C) leads to a full

communication rooted-tree in the benchmark model.

2. Suppose that (T (g; i0), C) leads to a full communication rooted-tree in the benchmark

model. If there exists an agent j ∈ U located at level L2 who obtains message from

agent i ∈ B, then (T (g; i0), C) leads to a full communication rooted-tree in the model

with incomplete information on locations.

The latter proposition highlights the following point. Whether or not players have information

about the architecture of the social network does not determine whether it is easier to get an

full communication rooted-tree since this will depend on the drawn configuration C.
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6 Discussion

Till now, we have assumed that only the agent receiving the message from Nature has the

ability to transmit a false message, all other agents can only transmit or block the messages

they have received. Let us examine what happens in a context where we relax this assumption

and allow each agent who receives a message to modify it. First, note that the agents’ strategies

are modified since they must take into account the strategy that will be used by the agent to

whom they send a message. For example, an unbiased agent who gets message 0 and believes

it to be a true message will not send this message to a biased agent since the latter will transmit

message 1. Similarly, a biased agent does not send message 1 to an unbiased agent if the

latter will not believe this message since he will transmit message 0. It follows that, as in

our model, message 0 cannot pass through a path that contains biased agents even in this

situation. The difference is that in our model, message 0 is blocked by biased agents, while it

is blocked by unbiased agents that are the predecessors of biased agents in the current context.

Likewise, message 1 cannot pass through a path that contains unbiased agents who have a

biased predecessor located at Level Lk, k < k?. Consequently, strategies we describe in

Theorem 1 constitute an equilibrium and our results are preserved.10 However, there is a slight

difference. Indeed, in equilibrium, unbiased agents, located at Level Lk with k < k?, cannot

obtain message 1 from a biased agent. Therefore, beliefs about this event must be assumptions

because they are off the equilibrium path.

We have also assumed that neighbors of agent i0, who creates the message, are aware that

i0 is the creator of the message. What happens if agent i0’s neighbors do not know that he

received the signal?11 We now address this question in our benchmark model when the social

network is the line network g drawn in Figure 11 where agent 2, who is a biased agent, gets

the signal.

1 2 3 4 5

Figure 11: Line network g

10It is worth noting that in our model, each agent must know the type of the agent who sends him the message, but

the type of his direct successors has no consequence on his decision. If each agent can lie, then each agent must know

and take into account not only the type of his predecessor but also his direct successors.
11Under this assumption the setting is the same as the setting explored by Bloch et al. (2018) in Theorem 4, but

here we deal with situations where message 1 is not transmitted.
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1 2 3 4 5

Figure 12: Line network g′

Then agent 3, who observes g, does not know whether he is at distance 1 or distance 2 from

the agent who obtained σ. Since each agent has the same probability of being drawn by Nature

and agent 3 does not know the type of agent 1, his posterior is equal to $ = π
2 + π

2((1−π)b+π) .

In other words, agent 3 assigns a credibility to the message sent by 2 that is higher than the

credibility (π) he assigns when he knows that agent 2 obtains σ. Note that when agent 2 is

an unbiased agent as in network g′ drawn in Figure 12, agent 3 knows that the message is

true. Indeed, either agent 2 obtains the signal and the message is true, or agent 1 obtains the

signal and agent 2 transmits the message to agent 3 only if agent 1 is unbiased. This type of

arguments can be used for agent 4 in network g′ when $ < 1/2.

We now discuss the assumptions of the model with incomplete information about the loca-

tion of agents. In the current paper, we have chosen to examine situations where agents, who

are not neighbors, do not know the identity of the agent, say i0, who receives the signal from

Nature. By inspecting Lemmas 9 and 10, it is clear that if we assume that each agent knows

the identity of i0, the results given in Section 5 will be qualitatively the same. Similarly, it is

possible to assume that agents do not know the identity of their neighbors, but only their num-

bers, without qualitatively changing the results. This assumption is relevant to the analysis of

certain social media such as Twitter where some agents have several million followers.

Next, we have assumed that any agent can observe the event, and thus that Nature can send

its signal to any of them. In some contexts, only one agent is likely to observe the event – for

example, because of his spatial position. So, we examine only one rooted-tree, the one where

the agent observing the event is the root. In this case, it can be established (using arguments

similar to those given in the Appendix) that the i0-rooted-trees that maximize the probability of

being a full communication rooted-tree is either the star network where i0 is the center, or the

i0-rooted-trees where there is only one agent at each Level Lk with k ∈ J0,k?− 1K. Moreover,

the i0-rooted-tree that minimizes the probability of being a full communication rooted-tree

when i0 sends a false message is the star network with i0 as the center.

Finally, the models we have presented allow us to see the role played by fact-checking sites

(for example sites like FactCheck in USA, CaptainFact in France and Full Fact in UK). These

sites have been created by journalists who check whether a piece of information is true or not.

Every – unbiased – agent can use these sites to check whether the message they receive is true.
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In our model, if a biased agent obtains the signal and has unbiased neighbors with successors,

then there is no possibility of obtaining a full communication rooted tree. When it is possible

for unbiased agents to verify information through an exogenous mechanism, it is possible to

achieve a maximal communication equilibrium in the previous situation if the reliability of the

fact-checking site, i.e., the probability that its verification is correct, is higher than 1 − π. In

other words, sufficiently reliable fact checking is a device that can ensure that there is always

a full communication rooted-tree. Finally, our paper suggests that there exists a threshold k?

based on the parameters of the model after which message 1 will be believed by all agents in

the social network. A simple device to counter this might be to require that all social media

platforms automatically include a link to a fact-checking website in a message that is getting

forwarded many times to facilitate verification by receivers.
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7 Appendix

7.1 Maximal Communication Equilibrium

Lemma 1 [Adapted from Lemma 1, Bloch et al., 2018] A Nash equilibrium of the voting

game consists of the following strategies: Each biased agent votes for alternative x = 1. Each

unbiased agent i votes for alternative x, with

x =

 1 if ρi > 1/2,

0 if ρi < 1/2,

and i votes 0 and 1 with equal probability if ρi = 1/2.

Proof of Lemma 1 This proof is a straightforward adaptation of the proof of Bloch et al.

(2018, Lemma 1). At the end of the transmission stage, we consider unbiased agent i and I
his information set. The set I includes other’s strategies as well as the message or signal imay

have received and who sent him the message. Other’s vote depend on their own information

but not on i’s vote. Let us denote the number of agents who vote for alternative 1 by z and by

P(θ, z | I) their joint probability with the state as is perceived by i. Thus i’s expected utility

from voting for ` ∈ {0,1}, E(vU (x̃,θ̃ | `,I)), is equal to:∑
z∈J0,n−1K
θ∈J0,1K

(
z + `

n
vU (1,θ) +

(
1− z + `

n

)
vU (0,θ)

)
P(θ, z | I).

Clearly, agent i ∈ U votes 1 if and only if A =
∑

z,θ
1
n(vU (1,θ) − vU (0,θ))P(θ, z | I) ≥ 0.

We have vU (1, 1) − vU (0, 1) = a − b′ and vU (1, 0) − vU (0, 0) = b′ − a. Moreover, note
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that
∑

z[P(1, z|I)] = P(1|I) and
∑

z[P(0, z|I)] = P(0|I). Consequently, we obtain that the

incentives to vote 1 or 0 only depend on the sign of 2
∑

z[P(1, z|I)]− 1 = 2ρi− 1. The result

follows. �

Proof of Remark 1 We have for k ≥ 1:

ρ̂(k + 1) = 1− (1−π)w(SB(k))
(1−π)w(SB(k))+π

∑
S∈S(k,NB) w(S)

= 1− (1−π)bw(SB(k−1))
(1−π)bw(SB(k−1))+π(w(SU (k))+b

∑
S∈S(k−1,NB) w(S))

> 1− (1−π)bw(SB(k−1))
(1−π)bw(SB(k−1))+bπ

∑
S∈S(k−1,NB) w(S))

= 1− (1−π)w(SB(k−1))
(1−π)w(SB(k−1))+π

∑
S∈S(k−1,NB) w(S)

= ρ̂(k).

Finally, ρ̂(1) = π < π
(1−π)b+π = ρ̂(2) since (1− π)b+ π < 1. �

Proof of Theorem 1 We establish that strategy of every agent is a best response given strategies

of others and his beliefs by using Bayes rule, and show that these beliefs are consistent with

strategies. We assume that Nature sends a message to agent i0. First, we provide beliefs

obtained from strategies by using Bayes’ rule.

1. For j ∈ U located at Level L1, ρj(mL0 = 1,U) = 1, ρj(mL0 = 0,U) = 0, and

ρj(mL0 = 1,B) = π. This result derives from strategy Mj0(σ) = σ, Mi0(σ) = 1 used

by j0 ∈ U and i0 ∈ B located at Level L0, and Bayes’ rule.

2. For j ∈ U located at Level Lk, k < k?, we have ρj(mLk−1
= 1,B) = ρ̂(k). This result

follows Bayes’ rule and the fact that unbiased agents do not transmit message 1 obtained

from a biased agent before Level Lk? . Indeed, by construction, for k < k?, j ∈ U ,

ρj(mLk−1
= 1,B) = ρ̂(k) < 1/2, and tj(1) = 1 if and only if ρj ≥ 1/2.

3. For j ∈ U located at Level Lk, k ∈ J2,k?K, ρj(mLk−1
= 1,U) = 1. We know that

unbiased agents do not transmit message obtained from biased agents before Level Lk? .

Hence, agent j ∈ U located at Level Lk, k ≤ k?, obtains message 1 from an unbiased

agent only when θ = 1 and sequence SU (k) occurs.

4. For jk? ∈ U located at Level Lk? , ρjk? (mLk?−1
= 1,B) = ρ̂(k?). Indeed, we know that

there is only one possibility for jk? ∈ U to obtain mi = 1, i ∈ B, and θ = 0: when

sequence SB(k? − 1) occurs – we do not take into account the biased agent who sends

message 1 to agent jk? . Moreover, agent jk? obtains message mi = 1, i ∈ B when

θ = 1, in cases where one of the sequences in S(k? − 1,NB) occur and again we do

not take into account the biased agent who sends message 1 to agent jk? . Consequently,

given strategies played by agents and by Bayes’ rule, the posterior of agent jk? is ρ̂(k?).
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5. For jk ∈ U located at Level Lk, with k ≥ k? + 1, we have: ρjk(mLk−1
= 1,B) =

ρjk(mLk−1
= 1,U) = ρ̂(k? + 1). We only establish the result for ρjk(mLk−1

= 1,B)

since the arguments are similar for ρjk(mLk−1
= 1,U). We know that no agent j ∈ U

located at Level L`, ` < k?, transmits message 1 received from a biased agent. It follows

that message 1, obtained by jk, is false when θ = 0 and k? first elements of the sequence

between the root i0 and jk together form the sequence SB(k?). Moreover, message 1,

obtained by agent jk?+1, is true when θ = 1 and k? first elements of the sequence

between i0 and jk belong to S(k?,NB). Consequently, posterior of agent jk is given by

ρ̂(k? + 1).

We now establish that beliefs given in Theorem 1 are consistent with strategies, given Bayes’

rule and strategies of agents.

1. Posterior ρj(mL0 = 0,B) = ρj(mLk = 0,B) = π, for k ≥ 1, provides a probability

to the event: a biased agent sends message 0 to agent j ∈ U . This event occurs off the

equilibrium path.

2. Posterior ρj(∅) ≤ π. First, agents may not receive any message because a biased agent

has blocked the transmission. Then, θ is surely equal to 0. Second, agents may not re-

ceive a message because it has been blocked by an unbiased agent. In that case, posterior

of the unbiased agent who has blocked the message is strictly lower than 1/2. Finally,

the receipt of no message would occur off the equilibrium path if a biased agent fails to

transmit message 1 or an unbiased agent fails to transmit a message. Posterior ρj(∅) ≤ π
is consistent with all these possibilities.

Finally, we show that strategies given in Theorem 1 constitute an equilibrium together with the

previous beliefs. For j ∈ U , j located at Level Lk, k ≥ 1,

tj(mi = m,B) = tj(mi = m,U) =

 m if ρi ≥ 1/2,

∅ otherwise.
(7)

For every j ∈ U , we have ρj(m,X ) ≥ 1/2, for every X ∈ {B,U} j believes that θ = m. By

Lemma 1, j votes m. Moreover, his expected payoff increases in the number of agents who

vote m. Consequently, j has an incentive to transmit m given other strategies and beliefs. We

use the same arguments for strategies described in Points 1 and 2.

�

Proof of Proposition 1 We call the equilibrium obtained from beliefs and strategies given in

Theorem 1 the original equilibrium. Due to (TR1) and (TR2) we know that message sent by the
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agent who obtains the signal from Nature uses the same strategy in an alternative equilibrium in

E as in the original one. Moreover, strategies used by biased agents are the same in the original

equilibrium and the alternative one. Recall that agent j knows the distance between him and

the agent who receives the signal and the type of the neighbor who sent him the message.

In any equilibrium, the posterior ρj is obtained by using Bayes’ rule given the type of agent

who sends message 1 to agent j and the location of j. Clearly, the type of agent who sends a

message to j and location of agent j do not depend on the strategies of others. Moreover, due

to (TR2), in any equilibrium, every unbiased agent believes and transmits message 1 only if

his posterior is at least 1/2. Consequently, agent j knows that unbiased agents located at Level

Lk, k < k?, do not believe and transmit message 1 sent by biased agents. Hence, Bayes’ rule

leads to the same posterior for agent j in the original equilibrium and in any alternative one

when he receives message 1. Since agent j believes and transmits a message in the alternative

equilibrium, then, by Lemma 1, j increases the probability that an agent votes 1. It follows

that in the alternative equilibrium the posterior of agent j, associated with his location and

the type of agent who sends him message 1, ρj is at least 1/2. By construction of strategies

given in Theorem 1, in the original equilibrium agent j believes and transmits message 1 since

ρj ≥ 1/2. �

Proof of Proposition 2 Recall that we use strategies and beliefs given in Theorem 1.

Sufficiency. By (P1), every agent j ∈ U located at Level Lk, k < k?, receives message 1 from

an unbiased agent. Hence, j believes and transmits message 1. Note that ρj(mLk−1 = 1,U) =

1. By inspecting the proof of Theorem 1, for agent j′ ∈ U located at Level Lk, k ≥ k?, we

have ρj′(mLk−1 = 1,U) ≥ ρj′(mLk−1 = 1,B) ≥ 1/2. Hence, agent j′ ∈ U always believes

and transmits message 1 when (P1) is satisfied.

Necessity. Suppose that (P1) does not hold. Then, there exists an unbiased agent j, located

at Level Lk′ , k′ < k?, who receives message m from a biased agent i. Suppose that m = 1.

Then, ρj(mLk′−1
= 1,B) = ρ̂(k′) < 1/2. Hence by strategies given in Theorem 1, unbiased

agent j does not believe and transmit message 1. �

Proof of Theorem 2 We prove successively the two parts of the Theorem.

1. By Proposition 2, when agents use strategies given in Theorem 1, (T (g; i0),C) leads to

a full communication rooted-tree if and only if (P1) is satisfied. Every biased agent, and

every unbiased agent located at Level Lk, k ≥ k?, believes message 1 when he receives

it. Hence, for obtaining the probability that (T (g; i0),C) leads to a full communication

rooted-tree, it is sufficient to obtain the probability that every unbiased agent i, located at
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Level Lk, k < k?, believes message 1 when he receives it. Due to the fact that strategies

of Theorem 1 are used, we know that unbiased agent i, located at Level Lk, k < k?,

believes message 1 only when he receives it from an unbiased agent. It follows that

every agent i located at Level Lk, k < k?, is either a biased agent, or an unbiased agent

who receives message from an unbiased agent in T (g; i0).

In Equation (3), the first term of the sum, b|N
s
j(T,k

?)|+1, takes into account the fact that

if j ∈ N(T (g; i0), k
?) is biased, then all his successors who belong to N(T (g; i0), k

?)

have to be biased in a full communication rooted-tree. Note that the location of j at Level

k?−1 imposes no restriction on the type of agents inN+
j (T (g; i0)) due to the recurrence

equation. The second term of the sum, (1 − b)
∏

`∈N+
j (T )

Φ`(T, k + 1), takes into account

the fact that if j is not biased, then there is no restriction on the type of his successors.

Product operator follows the fact that the event “agent j′ ∈ N is biased” is independent

on the event “agent j′′ ∈ N \ {j′} is biased”. The result follows.

2. If (T (g; i0),C) leads to a full communication rooted-tree when ρ̂(k) ≥ 1/2, for k > 2,

then (T (g; i0),C) leads to a full communication rooted-tree when ρ̂(2) ≥ 1/2. There-

fore, the maximal probability that (T (g; i0),C) leads to a full communication rooted-tree

occurs when ρ̂(2) ≥ 1/2.

Clearly, when ρ̂(2) ≥ 1/2, (T (g; i0),C) does not lead to a full communication rooted-

tree if (i) i0 ∈ B, and (ii) at least one agent, say j ∈ Ni0(g), belongs to U . This event

occurs with probability b
(
1− b|Ni0 |

)
. Consequently, (T (g; i0),C) leads to a full commu-

nication rooted-tree with probability 1 − b
(
1 − b|Ni0 |

)
. Since every agent i ∈ N gets

Nature’s signal with the same probability, obtaining a full communication rooted-tree

occurs with probability 1
n

∑
i0∈N

(
1− b

(
1− b|Ni0 |

))
.

�

Proof of Proposition 3 Note that that π ≥ b/(1 + b) implies k? = 2. Since k? = 2, agents

at Level Lk, k ≥ 2, believe message 1 they receive from any agent. Consequently, a i0-rooted

network T (g; i0) is not a full communication network if only if i0 ∈ B and one of his neighbors

is unbiased. Hence, the probability that a social network g leads to a full communication

network is equal to P (g) = 1
n

∑
`∈N 1 − b(1 − b|N`(g)|) = 1

n

(
n−

∑
`∈N b(1− b|N`(g)|)

)
.

Let ĝ be a social network that is a maximizer of P (·), i.e., P (ĝ) ≥ P (g) for all g ∈ G.

Consequently,

ĝ ∈ arg min
g∈G

{
P̄ (g) =

∑
`∈N

b(1− b|N`(g)|)

}
.
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To introduce a contradiction, suppose that ĝ is not a star. Let agent i be such that |Ni(ĝ)| =

max`∈N{|N`(ĝ)|}. Since ĝ is a tree that is not a star, there exist an agent j and a peripheral

agent j′ for whom |Nj′ | = 1, such that j′ /∈ Ni(ĝ) and j′ ∈ Nj(ĝ). By construction |Ni(ĝ)| ≥
|Nj(ĝ)|. We build network g′ that is identical to ĝ except that we replace the link j′j by j′i.

We have

P̄ (g′)− P̄ (ĝ) = b((1− b|Ni(ĝ)|+1) + (1− b|Nj(ĝ)|−1))
−b((1− b|Ni(ĝ)|)− (1− b|Nj(ĝ)|))

= b(b|Ni(ĝ)| − b|Ni(ĝ)|+1 + b|Nj(ĝ)| − b|Nj(ĝ)|−1)
= b(b|Ni(ĝ)|(1− b) + b|Nj(ĝ)|−1(b− 1))

= b(1− b)(b|Ni(ĝ)| − b|Nj(ĝ)|−1)
< 0.

The inequality follows the fact that |Ni(ĝ)| ≥ |Nj(ĝ)| − 1 and b ∈ [0; 1]. Consequently, ĝ is

not a minimizer of P̄ (·), a contradiction. �

Proof of Proposition 4 Note that π ∈ [π̄λ, b3/(b3 + 2b2 − 2b + 1)) implies k? > 4. Let

sj = |N s
j (T )| and ν(T ) be the probability that rooted-tree T is a full communication rooted-

tree (FCR). For a star network gs, and a peripheral agent ip, we have νp = ν(T (gs, ip)) = (1−
b)2+(1−b)bn−1+bn, and for the central agent ic, we have νc = ν(T (gs, ic)) = (1−b)+bn >

νp. To introduce a contradiction suppose that social network g is a tree that is not a star network

that maximizes the probability of a FCR. We define three types of agents in g. Peripheral agents

belong to A1 = A1(g), agents who are directly linked to at least one peripheral agent belong

to A2 = A2(g), and all other agents belong to A3 = A3(g), A3 is possibly empty. Since g

is a tree |A1| ≥ 2, and since g is not a star network |A2| ≥ 2. The proof is divided into four

main steps. First, we establish that a rooted-tree T = T (g; i) that contains an agent at Level

L4 satisfies ν(T ) < νp. Second, we show that for any rooted-tree T = T (g; i) with i ∈ A3, we

have ν(T ) < νp. Third, we establish that
∑

i∈A2
ν(T (g; i)) < νc + (|A2| − 1)νp. Fourth, we

show that for any rooted-tree T = T (g; i) with i ∈ A1, we have ν(T ) < νp. Consequently, we

conclude that
∑

i∈N ν(T (g; i)) < νc + (n− 1)νp, i.e., star networks maximize the probability

of obtaining a FCR.

Consider the i-rooted tree, T = T (g; i), such that there is an agent at Level L4. Then,

T is a FCR for configurations where types of agent i and his successors at Levels L1, L2,

L3 and L4 belong to S(5, NB). The probability that one sequence in S(4, NB) occurs is∑4
`=0(1 − b)`b4−` = (1 − b)4 + (1 − b)2b2 + b4 ≤ (1 − b)3 + b4 since b ≤ 0.5. We have

νp − ν(T ) > (1 − b)2 − ((1 − b)3 + b4) = b(1 − b)2 − b4 = b((1 − b)2 − b3) > 0 since
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b ≤ 1/2.

We establish that i-rooted trees, T = T (g; i), associated with agents i ∈ A3 are such that

ν(T ) < νp. We determine a maximum for ν(T ). To introduce a contradiction suppose that

there is a path i, j, j2, j1 in T with j` ∈ A`, ` ∈ {1, 2}, and j ∈ A2 ∪ A3. Note that there

is no other agent in this path otherwise there exists an agent located at Level L4 in T and

ν(T ) < νp. Similarly, j2 is linked only with peripheral agents in the i-rooted-tree. Finally,

A2 ∩ (N \ N s
j (T )) 6= ∅ since in any T (g; i1), i1 ∈ A1, i has successors otherwise i 6∈ A3.

We build network g′ that is identical to g except that the link jj2 is replaced by the link ij2

and j and all his successors become direct successors of j2. Note that when i ∈ B only the

configuration where all agents are biased allows T (g; i) and T ′ = T (g′; i) to be FCR since

there is no agent located at Level L4. Let νU (Tj) ≥ 0 be the probability that T is a FCR

when agent j and his successors in T are removed from T and i ∈ U . Probability that T is a

FCR is at most (1− b)2νU (Tj) when j and j2 are unbiased,
(
bsj2+1(1− b)

)
νU (Tj) when j is

unbiased and j2 is biased, and bsj+1νU (Tj) when j is biased. In g′, the probability that T ′ is

a FCR when j2 is unbiased is at most (1 − b)νU (Tj) and bsj+1νU (Tj) when j2 is biased. We

have 1−b+bsj+1 > (1−b)2+bsj2+1(1−b)+bsj+1 since sj2 ≥ 1 and b ≤ 1/2. Consequently,

for obtaining the highest value for ν(T ) we assume that there is no agents between i ∈ A3 and

any agent in A2.

We now show that we obtain a higher value for ν(T ) if we concentrate a maximal number

of peripheral agents on the same agent in A2. Suppose that j, j′ ∈ A2 and sj ≥ sj′ > 1. Let

νU (Tj,j′) be the probability that T is a FCR when agents j and j′ and their successors in T are

removed, and i ∈ U . If we increase the number of peripheral agents linked to j by one and

decrease the number of peripheral agents linked to j′ by one, the variation for the probability

that T is a FCR is νU (Tj,j′)(1 − b)2(bsj′−1 − bsj ) > 0. The last inequality follows the fact

that sj ≥ sj′ > 1. We conclude that every agent in A2 except one, say j, has one successor in

T . We now establish that ν(T ) increases when agent j′ ∈ A2 \ {j} and his successor become

successors of j in T . Indeed, the variation induces by this change is νU (Tj,j′)((1−b−(1−b)2+

(1−b)b2+bsj+1(1−b))) = νU (Tj,j′)(1−b)(b−b2−bsj+1) ≥ (1−b)b(1−2b) ≥ 0 since sj ≥ 1

and b ≤ 1/2. Consequently, the highest value for ν(T ) is obtained when |A2| = 2, one agent in

A2, say j′, satisfies |N+
j′ (T )| = 1 and the other agent in A2, say j, satisfies |N+

j (T )| = n− 4.

Hence, we have ν(T ) ≤ (1− b)((1− b)2 + (1− b)b2 + (1− b)bn−3 + bn−1) + bn. We have

νp − ν(T ) = (1− b)2(b− b2 − bn−3) > 0 since b ≤ 1/2 and n > 5.

Second, we deal with ν(T ) for T = T (g; i) with i ∈ A2. We divide the analysis into two

steps.
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1. Suppose that |A2| ≥ 3. We start by obtaining a maximum for B = 1
|A2|

∑
`∈A2

ν(T (g;

`)) given that |A2| ≥ 3 and establish that this maximum is lower than 1
|A2|(νc + (|A2| −

1)νp). Since |A2| ≥ 3, there is at most one agent, say agent 1, such that all agents in

A2 are his direct neighbors. For all other agents in A2, there exists an agent in A2 that

is not his direct neighbors, i.e., for every agent i ∈ A2 \ {1}, there is at least one agent

in A2 located at Level L2 in T (g; i). We begin by assuming that there exists an agent in

A2, agent 1, who is linked with all other agents in A2. First, we establish that the value

associated with ν(T (g; i)), i ∈ A2\{1}, increases when the number of agents at LevelL1

in T = T (g; i) decreases. Suppose that there are two agents 1, j ∈ A2 located at Level

L1 in T . Then νU (T1,j)((1−b)2+(1−b)bs1+1+(1−b)bsj+1+bs1+sj+2) is the probability

that T is a FCR when i ∈ U . Let g′ be the network identical to g except that agents in

N s
j (T )∪{j} belong toN s

1 (T (g′; i)). Probability that T ′ = T (g′; i) is a FCR when i ∈ U
is νU (T1,j)((1− b) + bs1+sj+2) ≥ νU (T1,j)((1− b)2 + (1− b)bs1+1 + (1− b)bsj+1 +

bs1+sj+2) since s1, sj ≥ 1 and b ≤ 1/2. By using the same argument, we establish that

the value associated with ν(T (g; i)), i ∈ A2 \ {1}, increases when the number of agents

at Level L2 decreases – hence, the maximal value of ν(T (g; i)) is obtained when there

is at most one agent at Level L2, i.e., when |A2| = 3. Then, we use the same arguments

as for i ∈ A3 to establish that we obtain the highest value of ν(T (g; 1)) when agent 1 is

directly linked to any agent in A2 and when |A2| = 3. Consequently, for maximizing B,

we assume that g satisfies A2(g) = {1, 2, 3}, A3(g) = ∅, and N1(g) ⊃ {2, 3}. Suppose

now that s2 ≥ s3 and let g′ be identical to g except that we replace the link between

one agent, say j, in N3(g) \ {1} and agent 3 by a link between j and agent 2. By using

the same arguments as for i ∈ A3, ν(T (g′, 1)) − ν(T (g, 1)) ≥ 0. Moreover, we have

ν(T (g′; 2)) + ν(T (g′; 3))− (ν(T (g; 2)) + ν(T (g; 3))) = (1− b)3(bs3 − bs2+1) + (1−
b)2
(
bn−s2−1−bn−s3

)
≥ 0 since s2 ≥ s3. Consequently, for maximizing B, we assume

that g satisfies A2(g) = {1, 2, 3}, A3(g) = ∅, N1(g) ⊃ {2, 3} and |N3(g)| = 2. Clearly,

ν(T (g; 1)) + ν(T (g; 2)) + ν(T (g; 3)) is equal to

f(s1, s2) = 3((1− b)3 + bn) + 2(1− b)2(b2 + bs2+1)

+(1− b)
(
bn−s1−1 + bn−s2−1+bn−1

)
,

Suppose that s2 ≥ s1. Then f(s2, s1) − f(s1, s2) = 2(1 − b)2(bs1+1 − bs2+1) ≥ 0.

Consequently, to obtain a maximum for B, we assume that s2 < s1. Moreover, let us

move one agent from N2(g) to N1(g). We have f(s1 + 1, s2 − 1) − f(s1, s2) > 0.

It follows that a maximum for B is obtained in a network g where A2(g) = {1, 2, 3},
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A3(g) = ∅, N1(g) ⊇ {2, 3} and |N1(g) ∩ A1| = n − 5, |N2(g)| = |N3(g)| = 2.

Let us now establish that B associated with g is lower than 1/3(νc + 2νp). We have

νc − ν(T (g; 1)) = (1 − b) − ((1 − b)3 + 2(1 − b)2b2 + (1 − b)b4) ≥ (1 − b)(1 −
(1 − b)2 − (1 − b)b − b4) = (1 − b)b(1 − b3) > 0 since b ≤ 1/2. Moreover, we have

νp− ν(T (g; 2)) = νp− ν(T (g; 3)) ≥ (1− b)2− (1− b)3− (1− b)2b2− (1− b)bn−2 ≥
(1−b)2(b−b2−bn−3) > (1−b)2b(1−2b2) > 0 since b ≤ 1/2 and n > 5. Let us increase

the number of agents in A2(g). By reiterating the same arguments, we establish that

ν(T (g; 1)) decreases, i.e., ν(T (g; 1)) < νc, and for any i ∈ A2 \ {1}, ν(T (g; i)) < νp.

It follows that
∑

i∈A2
ν(T (g; i)) < νc + (|A2| − 1)νp.

Let us now assume that there does not exist an agent in A2 that is linked with all other

agents in A2. Then, for every agent i ∈ A2, there exists at least an agent located at Level

L3 in T (g; i). Note that for agent i ∈ A2 for which there exists at least one agent located

at Level L4 in T (g; i), we know that ν(T (g; i) < νp. By restricting our analysis to agents

i in A2 such that there is no agent located at Level L4 in T (g; i), and by using the same

arguments as in the case where there exists a unique agent in A2 who is linked with all

other agents in A2, we obtain the result.

2. Suppose that |A2| = 2, A2 = {i, j}. First, by using the same arguments as in the

previous points, ν(T (g; i))+ν(T (g; j)) increases if both agents inA2 are directly linked.

Similarly, ν(T (g; i)) + ν(T (g; j)) increases when we concentrate peripheral agents on

i or j. Indeed, let si ≥ sj > 1, if we replace a link between j and one of its successor

j′ by a link ij′ in g′, we obtain ν(T (g′; i)) + ν(T (g′; j)) − ν(T (g; i)) + ν(T (g; j)) =

(1 − b)2(bsj − bsi+1) > 0. Hence, ν(T (g; i)) + ν(T (g; j)) is bounded above by 2(1 −
b)2 + (1 − b)(b2 + bn−2) + 2bn. We obtain νc + νp − (ν(T (g; i)) + ν(T (g; j))) ≥
(1 − b) + (1 − b)bn−1 − ((1 − b)2 + (1 − b)(b2 + bn−2)) = b(1 − b)2(1 − bn−3) > 0

since b ≤ 1/2 and n > 5.

Finally, we establish that for i ∈ A1, ν(T (g; i)) < νp. Given that there are at least two agents

inA2, say j and j′, νp−ν(T (g; i)) = (1−b)2−((1−b)3+(1−b)2b2) ≥ b(1−b)2(1−b) > 0.

The result follows. �

Proof of Proposition 5 Note that π ≥ b/(1 + b) implies k? = 2, and π ∈ [π̄λ, b/(1 + b))

implies k? > 2.

Suppose k? = 2. Assume that Nature sends message 0 to i0 ∈ B. Then, in T (g; i0),

message 1 is believed by all unbiased agents if and only if all agents in Ni0(g) are biased.

Hence, the probability that all unbiased agents believe message 1 in T (g; i0), when θ = 0, is
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(1 − π)b|Ni0 (g)|+1. Therefore, the probability that a social network g leads to a full commu-

nication network when Nature sends 0 to a biased agent is P ′(g) = (1 − π)
∑

`∈N b
|N`(g)|+1.

Let ĝ = arg ming∈G{P ′(g)}. We will establish that ĝ is a line network. To introduce a

contradiction, suppose that ĝ is a tree that is not a line network. Let agent i be such that

|Ni(ĝ)| = max`∈N{|N`(ĝ)|} since ĝ is not a line network, |Ni(ĝ)| ≥ 3. There exist agents j

and j′ such that j′ ∈ Ni(ĝ), j′ 6∈ Nj(ĝ) and Nj(ĝ) = 1 since |Ni(ĝ)| = max`∈N{|N`(ĝ)|}.
To summarize |Ni(ĝ)| ≥ 3 and |Nj(ĝ)| = 1. We build network g′ that is identical to ĝ except

that we replace the link j′i by j′j. We obtain P ′(g′)−P ′(ĝ) = (1−π)(1−b)(b|Ni(ĝ)|−b2) < 0

since |Ni(ĝ)| ≥ 3, a contradiction.

Suppose k? > 2. When the central agent in the star, ic, is biased and receives 0 from Nature, no

unbiased agent who receives message 1 from ic believes it. Therefore, the only configuration

where no (unbiased) agent votes 0 is the one where all agents are biased. When a peripheral

agent in the star, ip, is biased and receives 0 from Nature, no unbiased agent located at Levels

L1 or L2 who receives message 1 from a biased agent believes it. Therefore, the only config-

uration, where no unbiased agent votes 0, is the one where all agents are biased. Clearly, in

any rooted-tree, the configuration where all agents are biased leads to a full communication

rooted-tree. Hence, star networks are the trees that minimize the probability of obtaining full

communication rooted-trees when signal 0 is sent to a biased agent. �

7.2 Incomplete information on location of agents

Proof of Corollary 1 By Theorem 3, we know that there areC`(ni,m) trees where the number

of neighbors of agent i is ni. These neighbors have to be chosen from W , with |W | = ni,

whereas they are chosen in N \ {i} in Clarke’s theorem. The result follows. �

Lemma 2 The number of trees g that generate at least one rooted-tree T where (1) agent j

obtains message from i, and (2) agent j is located at level Lk, k ≥ 2 in T , is

ΓNj =

n−3∑
`=nj−1

(
n− 1− nj
v − nj + 1

)
(n− v − 1)n−v−3C`(Nj(g) \ {i},v + 1),

with v ≤ n− 3.

Proof Let V ⊆ N \{i,j}, V ⊇ Nj \{i}, be a subset of agents with v = |V | ∈ Jnj−1, n−3K.

This set is identified to the set of successors of j in a rooted-tree.
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1. We compute the number of trees g that generate at least one rooted-tree T such that

N s
j (T |i) = V , and agent j obtains message from i.

(a) We are interested in trees that restrict the population of agents to j and his succes-

sors. By Corollary 1, there are C`(Nj(g) \ {i},v + 1) trees g with the following

properties (I) whose set of agents is V ∪ {j} ⊆ N \ {i}, and (II) where agent i is

a predecessor of j.

(b) We are interested in trees that restrict the population of agents to N \ (V ∪ {j}).

By Cayley’s theorem, there are (n − v − 1)n−v−3 trees whose set of agents is

N \ (V ∪ {j}).

(c) It follows from (I) and (II) that the number of trees g, built with the entire popu-

lation of agents, that generate at least one rooted-tree T where N s
j (T |i) = V , and

there is a link between i and j is

(n− v − 1)n−v−3C`(Nj(g) \ {i},v + 1).

2. Given that the set V \ (Nj(g) \ {i}) of agents is chosen among n− 1− nj agents, there

are (
n− 1− nj
v − nj + 1

)
(n− v − 1)n−v−3C`(Nj(g) \ {i},v + 1)

trees g that generate a rooted-tree T where (I) |N s
j (T |i)| = v, and (II) j obtains message

from i. Indeed, there are no trees g1 and g2 that satisfy the properties given in point 1

(a) – (b) that are isomorphic when the rooted-tree associated with g1 and g2 respectively

T1 = T (g1; i) and T2 = T (g2; i) satisfy N s
j (T1|i) 6= N s

j (T2|i). Indeed by construction,

there exists an agent, say `, such that ` ∈ N s
j (T1|i) and ` 6∈ N s

j (T2|i). Clearly, the path

between i and ` goes through j in g1, while this path does not go through j in g2, hence

g1 and g2 are not isomorphic.

We now observe that v ≤ n− 3. Indeed, if v ≥ n− 2, then agents i or j obtains signal σ

and agent j knows that he is located at Level L0 or L1. Consequently, v ∈ Jnj − 1,n− 3K and

the result follows.

�

Lemma 3 The number of trees g that generate a rooted-tree T where (a) agent j obtains

message from i, (b) |N s
j (T |i)| = v, v ∈ Jnj−1, n−3K, and (c) agent i has ni ∈ J2, n−v−1K

neighbors, is
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ΓNj (ni,v) =

(
n− 1− nj
v − nj + 1

)
C`(ni − 1,n− v − 1)C`(Nj(g) \ {i},v + 1).

Proof The proof is similar to the proof of Lemma 2 except for part 1.(b). Indeed, we have

to compute the number of trees whose set of agents is N \ (V ∪ {j}), given that agent i ∈
N \ (V ∪ {j}), and i has ni − 1 neighbors since agent j ∈ Ni(g). By Clarke’s theorem, the

number of these trees is C`(ni − 1,n− v − 1). The result follows. �

Proof of Proposition 6 The probability that Nature draws a tree that satisfies properties (a)

– (c) given in Lemma 3 among trees that satisfy properties (a) – (b) given in Lemma 2 is

Γnj (ni,v)/Γnj . Moreover, in each of these trees g, agent j knows that he is located at Level

L2 if the signal σ is obtained by an agent inNi(g)\{j}. Moreover, j knows that the number of

agents who can obtain signal σ is n−v−2 since agent i cannot obtain the signal. Indeed, when

i gets the signal, agent j is located at Level L1 and knows it. It follows that agent j knows

that there is a probability (ni − 1)/(n− v− 2) that he is located at Level L2 in rooted-trees T

where the number of predecessors of i is n− v − 2. The result follows. �

Proof of Proposition 7 We consider strategies and beliefs given in Theorem 1, ρj(∅) ≤ π,

and for agent j ∈ U : ρj(ML0 = 0,B) = ρj(mLk = 0,B) = π, for k ≥ 1. Due to (P2’) the

posterior beliefs of unbiased agents, located at LevelL1 and who can transmit the message to at

least one other agent in T (g; i0), are equal to 1. By (P1’) the posterior beliefs of every unbiased

agent j, located at Level Lk, k ≥ 2, who receives message 1 from a biased agent, is ρ̃j(B) ≥
ρ̃(B) ≥ 1/2. Similarly, the posterior beliefs of every unbiased agent j, located at Level Lk,

k ≥ 2, who receives message 1 from an unbiased agent, is ρ̃j(U) ≥ ρ̃j(B) ≥ ρ̃(B) ≥ 1/2. It

follows that the strategies given in Theorem 1 lead every unbiased agent located at Level Lk,

k ≥ 2, to transmit message 1 when he receives it. The result follows. �

Proof of Theorem 4 The posterior of unbiased agent j, located at Level Lk, k ≥ 2, who

receives message 1 from a biased agent i, is given by Equation (4). Similarly, the posterior of

unbiased agent j, located at Level Lk, k ≥ 2, who receives message 1 from an unbiased agent

i, is given by Equation (5). We have ρ̃j(U) ≥ ρ̃j(B) ≥ ρ̃(B) ≥ 1/2. Due to strategies given in

Theorem 1, unbiased agents located at Level Lk, k ≥ 2, who receive message 1 believe it. It

follows that (T (g; i0),C) leads to a full communication rooted-tree when the following event

does not occur: the agent who obtains the signal from Nature, i0, is biased, and there is at least

one unbiased agent in Ni0(g). The result follows.

�
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Proof of Proposition 8 We successively prove the two parts of the proposition.

1. Since (T (g; i0), C) leads to a full communication rooted-tree in the model with incom-

plete information on locations, message 1 is believed by unbiased agents located at Level

L1. Further, for any unbiased agent j located at Level Lk, k ≥ 2, who receives message

1 from a biased agent i, we have 1/2 ≤ ρ̃(B). Therefore, for every unbiased agent lo-

cated at Level Lk, k > 2, we have 1/2 ≤ ρ̃(B) = p2ρ̂(2) + (1 − p2)ρ̂(3) ≤ ρ̂(k). The

last inequality follows from Remark 1: ρ̂(·) is increasing. By Theorem 2, we have for

every agent j located at Level Lk, k > 2, ρ̂(k) = ρj(mLk = 1,B) ≤ ρj(mLk = 1,U)

in the benchmark model. It follows that posterior of every unbiased agent j is at least

equal to 1/2 when he receives message 1 in the benchmark model. By using strategies

and beliefs given in Theorem 1, the result follows.

2. Since (T (g; i0), C) leads to a full communication rooted-tree in the benchmark model,

no agent located at Level L1 blocks message 1. Moreover, since there exists agent j2,

located at Level L2, who obtains message from a biased agent, we have ρj2 = ρ̂(2) ≥
1/2. Further, we have for every j ∈ U , located at Level Lk, k ≥ 2, who receives message

1 from biased agent, ρ̃(B) = p2ρ̂(2) + (1− p2)ρ̂(3) ≥ ρ̂(2) when every unbiased agent

transmits message 1. Moreover, for every j ∈ U , located at Level Lk, k ≥ 2, who

obtains message 1 from agent vj , ρ̃(U) ≥ ρ̃(B). Hence, the posterior of every agent

j ∈ U is at least equal to 1/2 in the model with incomplete information on locations. By

using strategies and beliefs given in Theorem 1, the result follows

�
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