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Alternating submodules for partition algebras, rook algebras, and
rook-Brauer algebras

John M. Campbell

Abstract

Letting n ≥ 2k, the partition algebra CAk≥2(n) has two one-dimensional subrep-
resentations that correspond in a natural way to the alternating and trivial characters
of the symmetric group Sk. In 2019, Benkart and Halverson introduced and proved
evaluations in the two distinguished bases of CAk(n) for nonzero elements in the one-
dimensional regular CAk(n)-submodule that corresponds to the Young symmetrizer∑

σ∈Sk
σ; in 2016, Xiao proved an explicit formula for the analogue of the sign rep-

resentation for the rook monoid algebra. In this article, we lift Xiao’s formula to a
diagram basis evaluation in the partition algebra CAk(n). We prove that our dia-
gram basis evaluation for this lifting, which we denote as Altk ∈ CAk(n), generates
a one-dimensional module under the action of multiplication by arbitrary elements in
CAk(n). Our explicit formula for Altk gives us a cancellation-free formula for the other
one-dimensional regular CAk(n)-module, with regard to Benkart and Halverson’s lifting
of
∑

σ∈Sk
σ. We then use a sign-reversing involution to evaluate our one-dimensional

generators in the orbit basis, and we use our explicit formula for Altk to lift Young’s
N - and P -functions so as to allow set-partition tableaux as arguments, and we use this
lifting to construct Young-type matrix units for CA2(n) and CA3(n).

1 Introduction

We adopt notation, for the most part, concerning partition algebras from [15], writing CAk(n)
to denote the partition algebra of order k with a complex parameter n. For a partition of
the set {1, 2, . . . , k, 1′, 2′, . . . , k′}, we denote this set-partition as a graph, with vertices la-
beled with {1, 2, . . . , k} arranged into a top row and with vertices labeled with {1′, 2′, . . . , k′}
arranged into a bottom row. A labeled graph of this form such that its components are pre-
cisely the elements in a given set-partition is referred to as a partition diagram corresponding
to this set-partition. For such a set-partition S of {1, 2, . . . , k, 1′, 2′, . . . , k′}, and for any cor-
responding partition diagram π, we let dπ or dS denote what is referred to as a diagram basis
element of CAk(n). The set of all such expressions of the form dπ forms what is referred
to as the diagram basis of CAk(n), with the multiplicative operation on CAk(n) defined as
explained below. In this article, we introduce new results and constructions concerning the
representation theory of CAk(n), building on the recent work of Benkart and Halverson [1]
as well as Young’s classical construction in the representation theory of symmetric group
algebras [9].

For diagram basis elements dπ and dµ in CAk(n), we take the graph π, with its vertices
arranged in the manner we have indicated, and place it on top of µ, and then identify the
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bottom vertices of π with the top vertices of µ so as to form a new graph, and then we remove
the middle row and form new edges if necessary to maintain top and bottom vertices being
in the same component. If we let π ◦ µ denote the new partition diagram formed from this
procedure, then dπdµ = nℓdπ◦µ, where ℓ denotes the number of components removed from
the middle row in the formation of π ◦ µ, again letting n denote a complex parameter. This
article is mainly concerned with the following problem: Find an explicit, cancellation-free
formula for a nonzero partition algebra element xk ∈ CAk(n) such that a xk is always a scalar
multiple of xk for any element a ∈ CAk(n), and such that xk is a lifting of the alternating
subrepresentation of the regular representation for the symmetric group algebra CSk. We
succeed in solving this problem, and we apply our construction to lift to partition algebras
functions involved in Young’s construction of symmetric group algebra matrix units [9, §1].

Given a diagram basis element dπ in CAk(n), the propagation number of π or of dπ refers
to the number of components of π with at least one vertex in the top row and at least one
vertex in the bottom row. So, we see that the subalgebra of CAk(n) spanned by diagram
basis elements of propagation number k is isomorphic to the symmetric group algebra CSk.
Since the partition algebra CAk(n) is such a rich generalization of the symmetric group
algebra CSk, this motivates the pursuit of research based on how the representation theory
for symmetric groups can be generalized to partition algebras [1, 2, 3, 14, 15, 20, 21]. We
explicitly evaluate generators, which we denote as Altk, for regular CAk(n)-representations
that correspond to the sign representations for CSk. We use bijective arguments to determine
cancellation-free formulas for Altk in terms of the the two distinguished bases of CAk(n).

If we take the subalgebra of CAk(n) given by the linear span of the diagram basis el-
ements in CAk(n) such that each top vertex is adjacent with at most one bottow vertex,
and if we then set the complex parameter n to be equal to 1, then resultant structure is
equivalent to what is known as the rook monoid algebra. Our formula for Altk generalizes
a corresponding formula due to Xiao [27] for alternating subrepresentations on rook monoid
algebras. Our proof that the linear C-span LC{Altk} is closed under the action of multipli-
cation by arbitrary elements in CAk(n) generalizes a corresponding result due to Xiao [27]
for rook monoid algebras.

For a diagram basis element dπ in a partition algebra, it is often convenient to identify
the set-partition or the partition diagram denoted as π with dπ, in terms of our notation.
Following [15], we define the relation≤ so that dπ ≤ dµ if i and j being in the same component
of π implies that i and j are in the same component of µ. We define

d =
∑
d≤d′

od′ , (1)

for a given diagram basis element d ∈ CAk(n), so that the set of all expressions of the form
oµ ∈ CAk(n) for all possible partition diagrams µ forms a basis of CAk(n), which is referred
to as the orbit basis CAk(n). The diagram basis and the orbit basis are the two canonical
bases of CAk(n). We use a sign-reversing involution to evaluate Altk in the orbit basis.

For k ≥ 2, CAk(n) has two one-dimensional subrepresentations. These representations
correspond in a natural way to the trivial and alternating subrepresentations of CSk; see [15]
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for a way of formalizing this. For the regular representation of CSk, the trivial subrepresen-
tation is given by the CSk-submodule

LC

{∑
σ∈Sk

σ

}
, (2)

which is, of course, closed under the action of multiplication by permutations in Sk and by
linear combinations of permutations in Sk. The alternating subrepresentation of the regular
representation of CSk is given by the CSk-submodule

LC

{∑
σ∈Sk

sgn(σ)σ

}
. (3)

In a 2019 article from Benkart and Halverson [1], explicit evaluations in the diagram and
orbit bases of CAk(n) were given for an element y ∈ CAk(n) such that

LC {y} ⊆ CAk(n) (4)

is closed under the action of multiplication by elements in CAk(n) and such that this CAk(n)-
module corresponds to (2) in the sense that the character tables are the same when restricted
to multiplication by permutations or permuting diagrams. So, the Benkart–Halverson evalu-
ations for the element y indicated in (4) leads us to consider the following problem: Determine
explicit, cancellation-free formulas in the orbit and diagram bases of CAk(n) for an element
x ∈ CAk(n) such that LC {x} is closed under the action of multiplication by elements in
CAk(n) and such that this regular CAk(n)-module lifts the alternating CSk-module in (3)
in the sense that the character tables are the same when restricted to permutations or per-
muting diagrams. As indicated above, we have successfully solved this problem; it appears
that our construction of and evaluations for alternating, regular partition algebra submod-
ules are original. Moreover, apart from our applying our construction/evaluations for such
submodules to generalize classic constructions by Alfred Young [9, §1], our interest in Altk
is also motivated by what we refer to as rook-type algebras, as we consider below.

1.1 Rook-type algebras

A Brauer diagram is a partition diagram such that all blocks have size 2, and the Brauer
algebra CBk(n) is spanned by diagrams of this form that form set-partitions of {1, 2, . . ., k,
1′, 2′, . . ., k′}.

Example 1.1. Using the SageMath [26] convention for denoting diagram basis elements, we
have that the partition diagram

is a Brauer diagram in CB4(n) ⊆ CA4(n).
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Similarly, the rook-Brauer algebra CRBk(n) is the diagram algebra over C spanned by
order-k diagrams that are either Brauer diagrams or are obtained from Brauer diagrams by
removing edges [13].

Example 1.2. The partition diagram

is in CRB4(n).

The rook algebra CRk(n) is a subalgebra of CAk(n) of dimension
∑k

i=0

(
k
i

)2
i! spanned

by partial permutations, i.e., diagrams consisting of blocks of size 1 and blocks of size 2
consisting of a vertex in the upper row and a vertex in the lower row [14].

Example 1.3. The partition diagram

is in CR4(n).

As in [27], Rdk denotes the set of all rook k-diagrams, whereas, for each integer r such
that 0 ≤ r ≤ k, Rdk[r] is the set of rook k-diagrams that have exactly r isolated vertices in
each row. For example, the diagram in Example 1.3 is in Rd4[2].

The evaluations we provide for Altk ∈ CAk(n), as defined in (14) below, are such that
the complex space LC {Altk} is a subspace of CRBk(n) and CRk(n) and is closed under
the actions of multiplication by elements in CRBk(n) and CRk(n). In other words, our
evaluations for Altk also give us formulas for sign representations for rook algebras and rook-
Brauer algebas. A construction of the irreducible representations for semisimple algebras
of the form CRBk(n) is given in [13], but it is not clear how to obtain the formula in (14)
from this construction or from relevantly related literature as in [4, 5, 6, 7, 8, 22]. However,
Xiao [27] proved an equivalent version of (14) for the rook monoid algebra, as we describe
below. A construction for Specht-type modules for the rook monoid is also given in [11]
(cf. [25]), and the irreducibles for the q-rook partition algebra are given in [12], but these
constructions do not provide us with the orbit basis evaluation highlighted in Theorems 3.16
or our cancellation-free diagram basis evaluation for Altk.

1.2 Organization of the article

In Section 2, we briefly review relevant background material. The rest of our article is
organized in the following manner:

• Section 3 is mainly devoted to CAk(n)-submodules of the form LC{Altk};
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• In Section 3.1, we prove that LC{Altk} is closed under the action of left-multiplication by
elements in CAk(n), following a similar approach relative to [27];

• In Section 3.2, we introduce a sign-reversing involution to prove an explicit, cancellation-
free formula for expansing Altk in the orbit basis;

• Section 4 largely concerns the application of our formula/definition for Altk in the lifting of
Young’s N - and P -functions so as to be applicable to partition algebras, in the construction
of partition algebra matrix units in a non-recursive way (cf. [15]);

• In Section 4.1, we introduce a partition algebra morphism Stretchα,k that we employ to
define an analogue of Young’s N - and P -functions, using our definition/formula for Altk;

• In Section 4.3, we succeed in applying our liftings of Young’s N - and P -functions so as
to construct full families of Young-type matrix units for the partitions algebras CA2(n) and
CA3(n); and

• In Section 5, we conclude by considering a conjectural universal formula for Young-type
matrix units for partition algebras.

2 Background

Let GLn(C) denote the group of invertible n×nmatrices with complex entries. Let Sk denote
the group of permutations on a set of k elements. Schur–Weyl duality refers to GLn(C) and
Sk generating the centralizer algebras for one another. This was discovered by Issai Schur
and introduced in his 1901 thesis [24]. Schur–Weyl duality allows us to use properties of
Sk-representations to determine results on GLn(C)-representations and vice-versa [15].

Let W λ,n denote an irreducible representation for GLn(C), and let Sλ be an irreducible
representation for Sk. For an n-dimensional vector space V , we let Sk and GLn(C) act on
the tensor space V ⊗k, in the following manner. The symmetric group Sk acts on V ⊗k by
permuting the tensor positions, and GLn(C) acts diagonally, so thatm(vi1⊗vi2⊗· · ·⊗vik) =
mvi1⊗mvi2⊗· · ·⊗mvik . These actions give the tensor power V

⊗k the structure of a bimodule.
Schur–Weyl duality relates the structure of these modules through the decomposition of V ⊗k

as a direct sum
V ⊗k ∼=

⊕
λ⊢k

W λ,n ⊗ Sλ.

Schur–Weyl duality may be understood to refer to the (GLn(C), Sk)-bimodule decomposition
given above. From the bimodule structure

GLn(C)

⟳(
V ⊗k

) ⟲

Sk

that we have given to V ⊗k, the action of GLn(C) generates the centralizer algebra EndSk
(V ⊗k),

and, dually, the action of Sk generates EndGLn(C)(V
⊗k).

If G is a subgroup of GLn(C), then CSk is a subalgebra of EndG(V
⊗k). For a matrix

subgroupM of GLn(C) containing all the n×n permutation matrices, the underlying multi-
plicative binary operation on EndM(V ⊗k) may be defined using the graph-theoretic operation
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of diagram multiplication, as defined above. If G ∼= Sn is the group of all permutation ma-
trices in GLn(C), and if 2k ≤ n, the algebra EndG(V

⊗k), in this case, is referred to as a
partition algebra, and is isomorphic to the algebra CAk(n) defined above. The partition
algebra was introduced in the 1990s, in the context of the study of statistical mechanics, by
Martin [17, 18, 19, 20] and Jones [16] as a centralizer algebra of the form EndSn(V

⊗k).

2.1 The Benkart–Halverson subrepresentation

As in [1], we let Ψk,n denote the representation from CSn to End
(
V ⊗k

)
given by the diagonal

action, letting n ≥ 2k. Again, following [1], we let ϵ(n−k,k) denote the primitive central
idempotent in CSn. In 2019 [1], an orbit basis expansion was proved for an expression
denoted as Ξk,n, and it was proved that Ξk,n = Ψk,n

(
ϵ(n−k,k)

)
. The expression Ψk,n

(
ϵ(n−k,k)

)
corresponds to the one-dimensional subrepresentations of CAk(n) indexed by (n− k, k) [1].
Benkart and Halverson [1] proved that LC{Ξk,n} is closed under multiplication by elements
in CAk(n) by showing that this linear span is closed under multiplication by members of a
generating set for CAk(n).

A rook partition diagram is a partition diagram π consisting of blocks that are of size
1 or size 2, and such that the number of 2-blocks equals the propagation number of π. In
Theorem 6.5 in [1], a formula for evaluating Ξk,n = Ψk,n

(
ϵ(n−k,k)

)
in the orbit basis is proved;

this formula is equivalent, up to a scalar multiple, to (5) below.

Definition 2.1. Define the element Quasik ∈ CAk(n) as follows (cf. [1]):

Quasik =
k∑

i=0

∑
d

(−1)i(n− 2k + 1)(i)(k − i)!od, (5)

where the inner sum is over all rook partition diagrams of propagation number i, and where
our notation for the second factor in the above displayed summand refers to the rising fac-
torial function.

The normalized version of Quasi2 is recorded in [21]. As indicated above, for k > 1, the
set of all scalar multiples of Quasik is closed under the action of multiplication by elements
in CAk(n), as shown in 2019 by Benkart and Halverson [1].

2.2 Lifting Young’s construction

As in [9, §1], we define an injective tableau as a partition tableau with k cells such that the
cells of this tableau are labeled with {1, 2, . . . , k}. Among the key “building blocks” used in
Young’s construction are expressions of the forms

N(T ) =
∑

β∈C(T )

sgn(β)β (6)

and
P (T ) =

∑
α∈R(T )

α, (7)
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for an injective tableau T , where C(T ) and R(T ) respectively denote the column and row
groups of T ; see [9, §1]. Symmetric group algebra elements of the forms∑

σ∈Sk

σ and
∑
σ∈Sk

sgn(σ)σ (8)

may be referred to as Young’s symmetrizers and anti-symmetrizers, respectively. Our interest
in partition algebra analogues of expressions as in (6), (7), and (8) is due to our desire to
apply such analogues in the study of the semisimple structure of partition algebras. More
to the point, since Young’s N - and P -functions may be thought of as being defined using
variants of sums as in

∑
σ∈Sk

sgn(σ)σ and
∑

σ∈Sk
σ, respectively, this motivates the lifting

of these classical functions, using partition algebra analogues of (8), so as to mimic Young’s
classical construction of symmetric group algebra matrix units [9, §1]; see [3] for our related
work on this subject as applied to 0-propagated subrepresentations of partition algebras.

A standard Young tableau of shape λ ⊢ k is a partition tableau of this shape with cells
labeled with {1, 2, . . . , k} and with increasing rows and columns. It is common to let fλ

denote the number of such tableaux of shape λ. A basic result in the representation theory
of the symmetric group states that the irreducible representations of CSk are indexed by the
partitions λ ⊢ k and that the dimension and multiplicity of the irreducible representation
of CSk corresponding to λ are both equal to fλ. We intend to make use of a similar result
concerning a closely related class of tableaux, in order to construct matrix units for infinite
families of semisimple partition algebras.

With regard to the following definition, we define an ordering on subsets S, T ⊆ {1,2,
. . ., k} such that S ∩ T = ∅ so that S < T if max(S) < max(T ).

Definition 2.2. Let n be a positive integer. A set-valued tableau T of shape λ ⊢ n on
{1, 2, . . . , k} is a map from the cells of λ to subsets of {1, 2, . . . , k} such that

{T (i, j) : (i, j) ∈ λ and T (i, j) ̸= ∅} (9)

is a set partition of {1, 2, . . . , k} and such that T (i, j) < T (i+1, j) whenever both (i, j), (i+
1, j) ∈ λ and T (i, j) ≤ T (i, j + 1) whenever both (i, j), (i, j + 1) ∈ λ,

Example 2.3. Let n = 8 and let k = 4. Note that the inequality 2k ≤ n holds. Now, let T
denote the tableau indicated below:

3
2 14

.

We see that T is of shape (7, 1) ⊢ 8 on {1, 2, 3, 4 = k}. The labels of this tableau are given by
a map from the cells of λ to 2{1,2,3,4}, and we see that the set indicated in (9), in this case, is
equal to the following set partition: {{2}, {1, 4}, {3}}. Also, we find that the rows of T are
weakly increasing, and that its columns are strictly increasing.

Since the summations in (8) are over sets of permutations, it is unclear as to what might
be considered as suitable analogues of the definitions in (6) and (7) if set-partition tableaux
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are used as arguments, as opposed to Young tableaux, referring the interested reader to [3, 14]
for recent work on the use of set-partition tableaux in the representation theory of partition
algebras. As a way of approaching the problem indicated in the preceding sentence, we begin
by considering what might be something of a more natural way of expressing the summations
in (6) and (7): In particular, letting λ′ denote the transpose of an integer partition λ, if we
let

C1, C2, . . . , Cℓ(shape(T )′)

denote the columns of T , then the product identity

N(T ) = N(C1)N(C2) · · ·N(Cℓ(shape(T )′)) (10)

holds, and if we let
R1, R2, . . . , Rℓ(shape(T ))

denote the rows of T , then we have that

P (T ) = P (R1)P (R2) · · ·P (Rℓ(shape(T ))) (11)

also holds. It is common to define N(T ) and P (T ) as in (10) and (11); see [23, p. 60] and
[10], for example.

Informally, for a set-partition tableau T , if we take a given column C of T , we can think of
N(C) as being defined by taking the alternating subrepresentation of the partition algebra of
an appropriate dimension and “stretching” the terms in its diagram basis expansion accord-
ing to the set-valued labels of C; similarly for P (R) for a row R of T . We formalize this idea
in Section 4, in which we explore, using our definition for Altk, the idea of constructing full
bases of partition algebra matrix units that are defined in a similar way relative to Young’s
fundamental formula

eλi,j = γλi σ
λ
i,j

(
1− γλj+1

) (
1− γλj+2

)
· · ·
(
1− γλfλ

)
, (12)

borrowing notation from [9, §1], and where Young’s γ-elements, as in (12), are equal to
idempotent scalar multiples of expressions of the form N(T )P (T ) for an injective tableau
T of shape λ; see [9, §1] for details. In our recent paper [3], we had proved that a direct
analogue of (12) holds for non-propagating partition algebra submodules, but the situation
becomes much more difficult when dealing analogues of Young’s N - and P -functions in full
generality, so as to construct matrix units in a meaningfully similar manner relative to (12)
for semisimple partition algebras in full generality.

3 A lift of Xiao’s anti-symmetrizers

We adopt notation for generating sets for partition algebras from [19, 20]. In this direction,
let 1i,j = {{1, 1′}, {2, 2′}, . . . , {i, j′}, {j, i′}, . . . , {k, k′}}.
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Example 3.1. In CA5(n), the elemenet 12,4 may be denoted as

.

Define pi = {{1, 1′}, {2, 2′}, . . . , {i}, {i′}, . . . , {k, k′}}.

Example 3.2. In CA5(n), the element p4 may be denoted as

.

Define Ai,j = {{1, 1′}, {2, 2′}, . . . , {i, j, i′, j′}, . . . , {k, k′}}.

Example 3.3. In CA5(n), the elemenet A4,5 may be denoted as

.

One of the most basic results in the theory of partition algebras is given by the property
whereby elements of the following forms generate the partition algebra CAk≥2(n): 1i,j, pi,
and Ai,j [19, 20]. In order to prove that the CAk(n)-submodules under consideration in this
Section are closed under the action of left-multiplication by elements in CAk(n), we make
use of a similar generating set for CAk(n). In particular, from the generating set consisting
of elements of the forms 1i,j, pi, and Ai,j, it is easily seen that all elements in CAk(n) of the
following forms generate CAk(n): All permutations in CAk(n), A1,2, and p1.

In 2016, Xiao [27] introduced the formula

X2 =
∑
σ∈Sk

sgn(σ)σ +
∑

η∈Rdk[1]

sgn(η)η (13)

as a direct analogue of the anti-symmetrizer for the symmetric group, with the linear span
of X2 giving us a one-dimensional submodule of the rook monoid algebra [27]. As we shall
see, (13) naturally corresponds to the partition algebra element

n
∑
σ∈Sk

sgn(σ)σ −
∑

η∈Rdk[1]

sgn(η)η ∈ CAk(n) (14)

that is the subject of this Section, where we have to take into account the parameter n as
involved in diagram multiplication in the algebra CAk(n), and where the sign function in
the latter sum in (14) is defined differently for partition algebras.
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3.1 Alternating regular subrepresentations for partition algebras,
rook algebras, and rook-Brauer algebras

We find it convenient to refer to elements in Rdk[1] as near-permutations. That is, a near-
permutation of order k may be defined as an order-k rook partition diagram of propagation
number k − 1 [27].

Example 3.4. The diagram

is a near-permutation of order 3.

Following Xiao [27], it is easily seen that: Given a near-permutation d of order k ∈ N,
there exist permutations σ and ρ of order k such that σ · {{1, 1′}, {2, 2′}, . . . , {k − 1, (k −
1)′}, {k}, {k′}} · ρ is equal to d, noting that these permutations are not necessarily unique.
Again with regard to [27], it is not difficult to show that: If σ, σ′, ρ, and ρ′ are permuting
diagrams in CAk(n) such that σ · pk · ρ = σ′ · pk · ρ′, then σ · ρ = σ′ · ρ′. This gives us that
the sign of a near-permutation, as below, is well-defined [27].

Definition 3.5. Given a near-permutation η in CAk(n), the sign of η, denoted as sgn(η),
is defined as sgn(σ)sgn(ρ), where σ and ρ are any permutations in Sk such that σ · pk · ρ = η
(cf. Definition 3.2 in [27]).

As indicated above, partition algebra elements of the form indicated in the below defini-
tion are a main subject of interest in this article.

Definition 3.6. We define Alt = Altk = n
∑

σ∈Sk
sgn(σ)σ−

∑
η∈Rdk[1] sgn(η)η ∈ CAk(n) (cf.

Proposition 3.6 in [27]).

Example 3.7. The element Alt2 is as below. The idempotent scalar multiple of this same
element is recorded in Martin and Woodcock’s work [21] on central idempotents for partition
algebras:

− + + − + n − n .

Martin and Woodcock’s construction from [21] is not directly related to or applicable to our
results.

We may factorize Altk as below:

Altk =

(∑
σ∈Sk

sgn(σ)σ

)(
n · id−

k∑
i=1

pi

)
(15)

=

(
n · id−

k∑
i=1

pi

)(∑
σ∈Sk

sgn(σ)σ

)
.

10



Lemma 3.8. The identity σ ·Altk = sgn (σ)Altk holds for all permutations σ in CAk(n) (cf.
[27, §3]).

Proof. This follows immediately from the initial factorization formula for Altk provided
above.

Lemma 3.9. The product

· · ·︸ ︷︷ ︸
k−2

∑
σ∈Sk

sgn(σ)σ (16)

vanishes.

Proof. Let σ be a permutation of order k, denoted as a diagram in CAk(n). Observe that

· · ·︸ ︷︷ ︸
k−2

σ

is the diagram obtained from σ by connecting 1, 2, σ(1)′, and σ(2)′. Now, consider the
product (12)σ. We see that

· · ·︸ ︷︷ ︸
k−2

σ = · · ·︸ ︷︷ ︸
k−2

(12)σ (17)

and that σ and (12)σ are of opposite signs. This can be used to construct a sign-reversing
involution, in the following manner. Define the ϕ : Sk → Sk so that ϕ(σ) = (12)σ. So, we see
that ϕ is an involution and reverses the sign of its argument. So, by rewriting the product
in (16) as

∑
σ∈Sk

sgn(σ)

 · · ·︸ ︷︷ ︸
k−2

σ

 ,

if we take a given permutation σ ∈ Sk, we see that the term

sgn(σ)

 · · ·︸ ︷︷ ︸
k−2

σ


11



cancels with

sgn(ϕ(σ))

 · · ·︸ ︷︷ ︸
k−2

ϕ(σ)

 ,

from the equality in (17) together with the fact that σ and (12)σ are of opposite signs. So,
from this matching property, together with the fact that ϕ is bijective, we obtain the desired
vanishing result.

As a consequence of Lemma 3.9 , we have that

· · ·︸ ︷︷ ︸
k−2

Altk

also vanishes, due to the factorization formula on display in (15).

Lemma 3.10. The product

p1

(
n · id−

k∑
i=1

pi

)(∑
σ∈Sk

sgn(σ)σ

)
(18)

vanishes (cf. [27, §3]).

Proof. Rewrite the product of the first two factors in (18) as below:

p1

(
n · id−

k∑
i=1

pi

)
= n · p1 − p1

k∑
i=1

pi

= n · p1 − p21 −
k∑

i=2

p1pi

= −
k∑

i=2

p1pi.

Now, let σ be a permutation in CAk(n). Letting i > 1, we know that {1′} is a block in p1pi.
We see that the index i is such that {i′} is also a singleton block in the bottom row of p1pi.
Now, consider the product p1piσ. We see that p1piσ = p1piσ(1, i). Since σ and σ(1, i) are
of opposing signs, this gives us a suitable sign-reversing involution that gives us the desired
result.

From Lemmas 3.8–3.10, we are led to the following result, giving us a lifting of Xiao’s
formula for X2.

12



Theorem 3.11. Let d be a diagram in CAk(n). Then, the following identity holds:

dAlt =

{
sgn(d)Alt if d is a permutation,

0 otherwise.

Proof. The initial case in the above identity holds by Lemma 3.8. Now, suppose that d
is a non-permuting diagram in CAk(n). The diagram d can be written as a product of
permutations, copies of

· · ·︸ ︷︷ ︸
k−2

,

and copies of p1 ∈ CAk(n) [19], so the desired result follows from the remaining lemmas,
together with our factorization formulas for Alt.

Corollary 3.12. The linear span LC{Altk} has the structure of a CRk-submodule under the
action of multiplication by elements in CRk, and has the structure of a CRBk-module under
the action of multiplication by elements in CRBk.

Proof. This follows in a direct way from Theorem 3.11, since Alt is in both CRk and CRBk,
and since both CRk and CRBk are contained in CAk(n).

3.2 Expansion in the orbit basis

We recall the definition of the orbit basis indicated in (1). We adopt the SageMath [26]
convention whereby orbit basis elements are denoted with partition diagrams with black
nodes.

Example 3.13. In the partition algebra CA2(n), the orbit basis element corresponding to
the set-partition {{1, 2}, {1′}, {2′}} is denoted as

and admits the following expansion in the diagram basis of CA2(n):

= − − + 2 − .

On the other hand, the diagram basis element

13



admits the following expansion in the orbit basis:

= + + + + . (19)

We observe that the expansion shown in (19) agrees with the definition of the orbit basis
provided in (1).

To convert the expression Altk ∈ CAk(n) in the orbit basis, our strategy is to use a
bijective approach. If we convert each term in the expansion in (14) in the orbit basis, we
obtain a variety of expressions that cancel with one another, so it is natural to make use of
a sign-reversing involution.

Let d be a partition diagram in Sk∪Rdk[1], being consistent with our notation in (14), and
letting the elements in Sk and Rdk[1] be written as elements in CAk(n). So, by expanding d
in the orbit basis according to (1), we may identify a term od′ resulting from this expansion
with an expression of the form

(d, {B1, B2, . . . , Bm}) , (20)

where
{B1, B2, . . . , Bm}

is the set-partition of the set of blocks of d for some m ∈ N such that the partition diagram
d′ is given by joining the blocks in Bi, within the partition diagram d, for each index i.

Example 3.14. We see that in the expansion of the diagram

(21)

in the orbit basis we obtain the term

= o{{1,2,1′,2′,3′},{3}} ∈ CA3(n). (22)

In the set-partition of {1, 2, 3, 1′, 2′, 3′} illustrated in (21), we join the blocks {1, 1′}, {2, 2′},
and {3′}, so as to obtain {1, 1′, 2, 2′, 3′}, and we leave the singleton set {3} as it is. So, in
this case, the tuple in (20) is as below:(

, {{{1, 1′}, {2, 2′}, {3′}} , {{3}}}

)
.

Example 3.15. In the expansion of

(23)

14



in the orbit basis, we again obtain the orbit basis element

.

In the set-partition of {1, 2, 3, 1′, 2′, 3′} indicated in (23), we join the blocks {1, 2′}, {2, 1′},
and {3′}, so as to form a new block {1, 2, 1′, 2′, 3′}, and we again leave the singleton block
{3} as it is. So, in this case, the tuple in (20) is equal to:(

, {{{1, 2′}, {2, 1′}, {3′}} , {{3}}}

)
.

Examples 3.14 and 3.15 are meant to illustrate that in the orbit basis expansions of
(21) and the negative of (23), there will be a cancellation, given by (22) cancelling with −1
times the same orbit basis element. In our proof of Theorem 3.16 below, we make use of a
sign-reversing involution based on the tuple construction indicated in (20).

Theorem 3.16. The element Altk ∈ CAk(n) is equal to

(n− k)
∑
σ∈Sk

sgn(σ)oσ −
∑

η∈Rdk[1]

sgn(η)oη,

where oσ denotes the orbit basis element of CAk(n) indexed by the permutation diagram σ,
again letting elements of Sk and Rdk[1] be written as partition diagrams.

Proof. Let X = Xk denote the set of all ordered pairs of the form indicated in (20), for all
possible partition diagrams in Sk ∪ Rdk[1]. Explicitly,

Xk = {(d,S ) : d ∈ Sk ∪ Rdk[1],S is a set-partition of the set of blocks of d}.

We impose a linear ordering < on the set {1, 2, . . . , k} ∪ {1′, 2′, . . . , k′} whereby 1 < 2 <
· · · < k < 1′ < 2′ < · · · < k′, and we let nonempty subsets of {1, 2, . . . , k}∪{1′, 2′, . . . , k′} be
ordered lexicographically. We may thus order sets of subsets of {1, 2, . . . , k}∪ {1′, 2′, . . . , k′}
lexicographically, e.g., by treating linearly ordered subsets as words, and then sorting a
family of words using the dictionary ordering, and then applying the same idea to sets of
sets of words.

Define the function ϕ : X → X as follows, letting

x = (d, {B1, B2, . . . , Bm})

denote an element in the domain of ϕ. Suppose that there exists at least one set Bj ∈
{B1, B2, . . . , Bm} that contains at least two 2-blocks. Let {α, α′} and {β, β′} denote the
lexicographically least pair of 2-blocks of this form that are both in a set of the form Bℓ.
In this case, let ϕ map x to the ordered pair obtained by replacing {α, α′} and {β, β′} with
{α, β′} and {β, α′} respectively in both of the entries in x.
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Now, suppose that the preceding condition does not hold, and suppose that there exists
at least one set Bj that contains only one 2-set and at least one singleton set. Let Bℓ denote
the lexicographically smallest set of this form, letting {α, α′} denote the unique 2-set in Bℓ

and letting s denote the lexicographically smallest singleton set in Bℓ, letting s be equal to
either {β} or {β′}. In the former case, let ϕ map x to the pair obtained by changing {α, α′}
to {β, α′} and changing {β} to {α} with respect to both entries in x, and similarly in the
latter case.

Finally, if the above conditions do not hold with respect to a given domain element
x ∈ X, let ϕ map x to x.

We see that if ϕ(x) ̸= x, then ϕ switches the sign of x ∈ X. So, we see that the only
expressions remaining after expanding each term in (14) in the orbit basis are of one of the
following forms: n sgn(σ) oσ, or −k sgn(σ)oσ, or −sgn(η)oη.

We can also show that

Altk = n
∑
σ∈Sk

sgn(σ)σ − 1

(k − 1)!

∑
σ,τ∈Sk

sgn(σ τ) σ pk τ (24)

holds, using something of a similar approach relative to our proof of Theorem 3.16.

4 Lifting Young’s construction

Again, we let 2k ≤ n when considering the representation theory of CAk(n), in order to
ensure that CAk(n) will be semisimple as an algebra. In other words, we want there to be a
basis of CAk(n) consisting of of expressions of the form eλi,j, for indices i and j in some set
and for expressions λ in some set, such that the matrix unit multiplication rules are satisfied:
Explicitly, we want eλi1,j1e

µ
i2,j2

to vanish if λ ̸= µ or if j1 ̸= i2, and we want the identity

eλi1,j1e
µ
i2,j2

= eλi1,j2

to be satisfied if λ = µ and j1 = i2. In Alfred Young’s famous construction of matrix units for
symmetric group algebras [9, §1], idempotent elements in CSk were defined using products of
the form E(T ) = N(T )P (T ), where N(T ) and P (T ) are as defined in (6) and (7), referring
to [9, §1] for details. We refer to these idempotents as Young’s γ-elements [9, §1], and these
γ-elements are involved in Young’s matrix unit formula shown in (12), again referring to [9,
§1] for preliminaries. As indicated aboove, we are interested in constructing an analogue of
(12) with set-partition tabelaux used in place of Young tableaux, and with the use of our
evaluation for Altk.

In our recent paper [3], we had constructed and proved an analogue of (12) for all non-
propagating partition algebra submodules, i.e., for all irreducible CAk(n)-submodules of the
regular representation of CAk(n) such that all of the diagram basis elements involved in the
expansions of the elements in these CAk(n)-submodules are of propagation number zero.
In this case, our analogues of Young’s elements of the form E(T ) = N(T )P (T ) were such
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that the tableaux T consisted only of one row [3]. In order to determine an analogue of
Young’s γ-elements using tableaux consisting of more than one row, we consider using the
one-dimensional subrepresentations for CAk(n), including our explicit evaluation for Altk, as
we explore in this Section.

Young’s N -function is such that

N


k
...

2

1

 =
∑
σ∈Sk

sgn(σ)σ, (25)

and for distinct labels s1, s2, . . ., sk in N, we have that

N


sk
...

s2
s1

 =
∑

ρ∈S{s1,s2,...,sk}

sgn(ρ)ρ, (26)

letting ST denote the group of all bijections on a finite set T , with S{1,2,...,k} = Sk. So, if we
compare (25) with (26), and if we let permutations be denoted as permutation diagrams, we
can think of the right-hand side of (26) as being obtained from that of (25) by “replacing”
i with si in a given diagram, for each index i, and similarly for expressions of the following
form:

P
(
s1 s2 · · · sk

)
.

Now, let us consider the problem of finding a suitable way of expressing

N


k
...

2

1

· · ·

 = N


k
...

2

1

 , (27)

adopting the convention whereby the labels of set-partition tableaux may be denoted without
“curly brackets”. The arguments of the N -function indicated in (27) are meant to illustrate
set-partition tableaux, and we adopt the convention whereby empty cells in the first row of
a set-partition tableau may be removed, for the sake of convenience. Since we have deter-
mined explicit evaluations for partition algebra analogues of the alternating representations
of symmetric group algebras, it would be appropriate to let (27) be equal to an element in
the alternating CAk(n)-submodule, and then mimic the “substitution” approach suggested
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in (26), as outlined below. To evaluate an expression of the form

N


Sk
...

S2

S1

 , (28)

where {S1, S2, . . . , Sk} is a set-partition of a finite subset of N, we want to somehow “replace”
each label i in (27) with Si. This has led us to introduce the notion of a “Stretch” operator,
as defined in Section 4.1.

In much the same way that permutations may be denoted in a simplified way us-
ing cycle notation without specifying the order of a given symmetric group, it may be
convenient to denote partition diagrams with labels that do not form a set of the form
{1, 2, . . . , k, 1′, 2′, . . . , k′}. This leads us to Definition 4.1 below, noting that: For a set S of
natural numbers, we may let S ′ denote the set of primed elements in S.

Definition 4.1. Let π be a set-partition of a set of the form S ∪ S ′ where S is a finite
set of natural numbers. For fixed k ∈ N such that k ≥ max(S), we define the diagram
basis element of order k corresponding to π to be the element in the diagram basis of CAk(n)
corresponding to the set-partition obtained by adding blocks of the form {i, i′} to π for natural
numbers i ̸∈ S, with i ≤ k. We denote this as δk(π).

Example 4.2. If we let π denote the set-partition of {{4, 5′}, {5, 4′}}, then the diagram basis
element of order 5 corresponding to π is none other than

δ5(π) = d{{1,1′},{2,2′},{3,3′},{4,5′},{5,4′}} ∈ CA5(n).

We may denote this diagram basis element as below:

5′

4

4′

5

3′

3

2′

2

1′

1

.

Remark 4.3. Let S1 and S2 be disjoint sets of natural numbers. Let π1 and π2 respectively
denote set-partitions of S1 ∪ S ′

1 and S2 ∪ S ′
2. Let k ≥ max(S1 ∪ S2). Since π1 and π2 are on

disjoint vertex sets, then we must have that δk(π1)δk(π2) = δk(π2)δk(π1), in much the same
way that disjoint cycles commute.

For a given tableau T , we let coli(T ) denote the ith column of T for a given index i, and
we write rowj(T ) in place of the jth row of T , letting j be a suitable index. We let shape(T )
denote the shape of a partition tableau T , i.e., the integer partition λ such that the ith entry
in this partition is the number of cells in the ith row of T .
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4.1 Set-compositions and “Stretch” operators

The concept of a set-composition, as defined below, is, of course, to be often involved in our
work.

Definition 4.4. A set-composition of a set S is a tuple of disjoint nonempty subsets of S
such that the union of the sets in this tuple equals S.

Example 4.5. The ordered 3-tuple ({3}, {1, 4}, {2, 5}) is a set-composition of {1, 2, 3, 4, 5}
that is distinct from the set-composition ({3}, {2, 5}, {1, 4}).

Remark 4.6. As before, with regard to our definition of the term set-partition tableau, we
adopt the convention whereby finite sets of natural numbers are ordered or arranged according
to the relation whereby Si < Sj if and only if max(Si) < max(Sj), for two such sets Si and
Sj.

Given a set-composition α, we let ℓ(α) denote the length of α, i.e., the number of entries in
α, and we write α = (α1, α2, . . . , αℓ(α)), as in with the usual notation for integer compositions.
We henceforward let the entries of set-compositions be finite subsets of N. We also note that
may write

⋃
α in place of α1 ∪ α2 ∪ · · · ∪ αℓ(α).

Definition 4.7. Let α = (α1, α2, . . . , αℓ(α)) be a set-composition of a finite set of natural
numbers, writing m = ℓ(α). Let k ≥ max (

⋃
α). Define

Stretchα,k : CAm(n) → CAk(n) (29)

as follows. Let dπ be an element of the diagram basis of the domain in (29), where π is a
set-partition of {1, 2, . . . ,m} ∪ {1′, 2′, . . . ,m′}, writing π = {π1, π2, . . . , πℓ(π)}. Then

Stretchα,k(dπ) = δk

({ ⋃
i∈πj

i is unprimed

αi ∪
⋃
i′∈πj

α′
i : 1 ≤ j ≤ ℓ(π)

})
.

We extend this definition linearly, so as to obtain a well-defined function on the domain in
(29).

Recall that we may identify a given diagram basis element dπ with a graph denoting π.
Informally, the “Stretch” operator is such that it replaces each vertex in this diagram with
a clique, and in such a way so that the property of being in the same block is preserved.

Example 4.8. From the above definition, we may obtain the following:

Stretch({3,4},{1},{9},{5,7}),10

( )

= Stretch({3,4},{1},{9},{5,7}),10
(
d{{1,2,1′,2′},{3,4},{3′},{4′}}

)
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= δ10 ({{1, 3, 4, 1′, 3′, 4′}, {5, 7, 9}, {5′, 7′}, {9′}})

=

10′

10

9′8′

8

7′5′ 6′

6

4′3′1′

1 3 4

2′

2 5 7 9

∈ CA10(n).

Lemma 4.9. Adopting notation from Definition 4.7, for fixed parameters α and k, the
function

Stretchα,k : CAℓ(α)(n) → CAk(n)

is an algebra homomorphism.

Proof. By definition, we have that the function Stretchα,k is a linear map. Now, let d1 and
d2 be diagrams in the domain of this function. It remains to prove that the equality

Stretchα,k(d1d2) = Stretchα,k(d1)Stretchα,k(d2) (30)

holds.
Suppose that v1 and v2 are in the same block in Stretchα,k(d1d2), where the vertices v1

and v2 may be primed or unprimed.
Let v1 ∈ α

(j1)
i1

and v2 ∈ α
(j2)
i2

, where j1, j2 ∈ {0, 1} indicate a given number of “primes”.

From the definition of the “Stretch” operator, it follows that i
(j1)
1 and i

(j2)
2 are in the same

block in d1d2. We recall that the concatenation of two partition diagrams π1 and π2 is
denoted as π1 ∗ π2, and we may deduce that there exists a path joining i

(j1)
1 and i

(j2)
2 in

d1 ∗ d2, which implies that there exists a path joining v1 and v2 in

Stretchα,k(d1) ∗ Stretchα,k(d2), (31)

since the “Stretch” operator preserves the property of being in the same block. So, we have
shown that if two vertices v1 and v2 satisfying the above conditions are in a common block
in Stretchα,k(d1d2), then these same two vertices are in a common block in

Stretchα,k(d1)Stretchα,k(d2),

and a similar argument may be used to prove the converse.
There is a one-to-one correspondence between blocks that are completely contained in

the middle row of d1 ∗d2 and blocks that are completely contained in the middle row of (31),
as is easily seen through a direct application of Definition 4.7.
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4.2 Using the one-dimensional partition algebra subrepresenta-
tions to lift Young’s construction

Recall that we let
Altk = n

∑
σ∈Sk

sgn(σ)dσ −
∑
η

sgn(η)dη, (32)

and that we showed that the one-dimensional space LC{Altk} is a CAk(n)-submodule, under
the action of left-multiplication by elements in CAk(n). Noting that the right-hand side of
(32) is given in the diagram basis, we may write

Altk = n
∑
σ∈Sk

sgn(σ)σ −
∑
η

sgn(η)η,

giving us an interesting analogue of (25). The unique idempotent element in the subrepre-
sentation LC{Altk} is the matrix unit of the form

e(∅,∅,1,1,12,12,...,1k,1k),(∅,∅,1,1,12,12,...,1k,1k). (33)

Since

(Altk)
2 =

(
n
∑
σ∈Sk

sgn(σ)σ −
∑
η

sgn(η)η

)
Altk

= n
∑
σ∈Sk

sgn(σ) (σAltk)

= n
∑
σ∈Sk

sgn(σ) (sgn(σ)Altk)

= k!nAltk,

we can see that the matrix unit in (33) is also equal to 1
k!n

Altk. While it may be more suitable
to define

N


k
...

2

1


to be equal to ∑

σ∈Sk

sgn(σ)σ − 1

n

∑
η

sgn(η)η ∈ LC{Altk}

in consideration as to how this partition algebra element resembles the sum in (25), it is
convenient for our purposes to instead let (27) be equal to the idempotent element in the
alternating representation LC{Altk}, as it is often more convenient to work with partition
algebra matrix units, as opposed to non-normalized scalar multiples of such matrix units.
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We recall the definition of Quasik given in Definition 2.1 [1]. It was proved in [1] that
LC{Quasik} is a CAk(n)-submodule, with:

dQuasik =

{
Quasik if d is a permuting diagram,

0 otherwise.
(34)

The idempotent element in this submodule is equal to the following matrix unit:

e(∅,∅,1,1,2,2,...,k),(∅,∅,1,1,2,2,...,k),

and it can be shown that the above matrix unit is equal to

(−1)k

k!(n− 2k + 2)(k)
Quasik,

following the construction of the CAk(n)-module LC{Quasik} given in [1]. We define

P

(
1 2 · · · k

· · ·

)
(35)

to be the idempotent element in the quasi-trivial representation LC{Quasik}, recalling that
the diagram basis expansion for the same expression was introduced and proved in [1]. We
may also write

P
(

1 2 · · · k
)

in place of (35). We let Quasik denote the scalar multiple of Quasik such that Quasik is
idempotent, and similarly for Altk; we generalize this kind of notation in Definition 4.14
below.

We are now ready to define N(T ) for a single-column set-partition tableau T , as well as
P (U) in the case whereby U is a two-row set-partition tableau without labels in the first
row.

Definition 4.10. Let α = (α1, α2, . . . , αr) be a set-composition such that
⋃
α ⊆ {1, 2, . . . , k}.

Define

Nk


αr
...

α2

α1

 = Nk


αr
...

α2

α1

 = Stretchα,k

(
Altr

)
,

and define

Pk

(
α1 α2 · · · αr

· · ·

)
= Stretchα,k

(
Quasir

)
(36)
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correspondingly. For the sake of convenience, we may also write

Pk

(
α1 α2 · · · αr

)
= Stretchα,k

(
Quasir

)
.

It is often convenient to simply write N and P in place of Nk and Pk, respectively.

We proceed to generalize the above definition so as to define N(T ) and P (T ) for an
arbitrary set-partition tableau T .

Definition 4.11. For a set-partition tableau T of content {1, 2, . . . , k}, we define N(T ) as
follows:

N(T ) = Nk(col1(T ))Nk(col2(T )) · · · Nk(col(shape(T ))2(T ))

δk({S1, S
′
1}) δk({S2, S

′
2}) · · · δk({Sv, S

′
v}),

where S1, S2, . . ., Sv are any labels in the initial row of T . Similarly, we let

P (T ) = Pk(row2(T ))Pk(row3(T )) · · · Pk(rowℓ(shape(T ))(T ))

δk({S1, S
′
1}) δk({S2, S

′
2}) · · · δk({Sv, S

′
v}).

Example 4.12. Letting k = 5 and n = 10, we evaluate the expression

P

 23

1 4

5

 (37)

in the diagram basis as follows. From Definition 4.10, and since Quasi1 and Quasi2 have 2
and 15 elements in the respective diagram basis expansions of these expressions, we see that

Pk

(
23
)

and Pk

(
1 4

)
also must have 2 and 15 elements, respectively, in the diagram basis expansions of these
elements. The partition algebra element in (37) may be written as

Pk

(
1 4

)
Pk

(
23
)
δk({{5}, {5′}}) . (38)

We have that (37) must equal the following:

1

(n− 2)(n− 1)n

(
− +

+ −

)
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+
1

2(n− 2)n

(
+

+ +

)

− 1

(n− 2)n

(
+

+ +

)

− 1

2n

(
+

)

+
1

n− 2
+

1

(n− 2)(n− 1)

(
−

− +

)

− 1

2(n− 2)

(
+

+ +

)
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+
1

n− 2

(
+

+ +

)

+
1

2

(
+

)

− n

n− 2
.

Definition 4.13. For a set-partition tableau T , we write ET = E(T ) = N(T )P (T ).

In our mimicking the formulation of Young’s construction given in [9], we want to deter-
mine some suitable analogue of Young’s γ-expressions. So, we are interested in whether or
not partition algebra elements as in Definition 4.13 are idempotent up to a nonzero scalar
multiple. This leads us toward the following definition, which we had also used in [3], recall-
ing our above definitions for Quasik and Altk.

Definition 4.14. Let x ̸= 0 be in a partition algebra. If there is a nonzero scalar α whereby
αx is idempotent, then x = αx [3].

It turns out that E(T ) is not, in general, idempotent-up-to-a-nonzero-scalar. The first
counterexamples are given by the following tableaux, letting k = 3 and n = 6:

3

1 2

2

1 3 . (39)

However, the property whereby E(U) is idempotent-up-to-a-nonzero-scalar for an injec-
tive tableau U , which may be proved using the von Neumann Sandwich Lemma, is very
important in Young’s construction [9, §1]. In Section 4.3 below, we consider a way of deal-
ing with the problem that E(T ) is not, in general, idempotent-up-to-a-nonzero-scalar for a
set-valued tableau T .

4.3 Young-type matrix units for CA2(n) and CA3(n)

If we want to mimic the approach that Young had applied in the construction of symmetric
group algebra matrix units, with reference to [9, §1], then the question arises as to how
we should define a suitable analogue of Young’s First Letter Order that may be applied to
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set-partition tableaux. It turns out that if we follow the steps introduced below for forming
matrix units for CA2(n) and CA3(n), then the ordering on set-valued tableaux that is used
does not matter. So, to begin with, let us adopt some fixed linear ordering on set-partition
tableaux.

The relation that is defined below is inspired by the insertion algorithm on multiset
partitions introduced in [4]. We encourage the interested reader to review the reference [4]
to compare the below definition and the results on diagram algebras introduced in [4].

Definition 4.15. Let T be a set-partition tableau on {1, 2, . . . , k}. The tableau T must have
a label of the form {k} ∪ A, where A may or may not be empty. Let T ′ denote the tableau
obtained from T by removing this label. Define

T ′′ =

{
T ′ with A row-inserted starting above the first row if A ̸= ∅,
T ′ with an empty cell added by extending the first row if A = ∅.

We are making use of RSK row insertion to insert labels into set-partition tableaux, along
with the label ordering noted in Remark 4.6; we refer the interested reader to classic references
as in [23] for exposition on the Robinson–Schensted algorithm.

Now, let T1 and T2 be set-partition tableaux on {1, 2, . . . , k}. Letting the dominance
ordering on integer partitions be denoted with <dom, we have that T1 < T2 if:

1. shape(T1) <dom shape(T2); or

2. shape(T1) = shape(T2) and shape(T ′
1) <dom shape(T ′

2); or

3. shape(T1) = shape(T2) and shape(T ′
1) = shape(T ′

2) and shape(T ′′
1 ) <dom shape(T ′′

2 ).

Otherwise, compare T ′′
1 and T ′′

2 , and repeat this process recursively, if necessary.

We leave it as an exercise to show that the ordering on set-partition tableaux given above
is well-defined and does indeed give us a total ordering.

Example 4.16. Let n = 6 and k = 3. There are 10 set-valued tableaux of shape (5, 1) ⊢ n
and content {1, 2, k = 3}. Using Definition 4.15, we obtain the linear ordering indicated
below on these 10 tableaux.

2

13
<

1

23
<

1

2 3
<

12

3
<

2

1 3
<

13

2
<

123

<
23

1
<

3

12
<

3

1 2
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The ordering defined above may be regarded as a natural analogue of Young’s First Letter
Ordering, in a variety of ways. In particular, the “last” Young tableau of a given partition
shape according to the YFLO relation is always the standard “row-reading” tableau whereby
the labels therein are consecutive as “read” from left to right, row by row, and we see that the
same kind of phenomenon holds for the last set-partition tableau of a given shape according
to Definition 4.15.

Example 4.17. According to Definition 4.15, the last tableau of shape (6, 2) ⊢ 8 and content
{1, 2, 3, 4} is

3 4

1 2

and the last tableau of shape (6, 2, 2) ⊢ 10 and content {1, 2, . . . , 5} is as below.

4 5

2 3

1

Recall that the first counterexamples to E(T ) being idempotent-up-to-a-nonzero scalar
are as given in (39). Even when E(T ) is well-defined, such expressions do not, in general,
form triangular multiplication tables, for T ranging over all possible standard set-partition
tableaux of a given shape, no matter what ordering is to be imposed. However, Young’s
γ-expressions do satisfy a triangular multiplication rule, e.g., subject to the YFLO relation,
and this forms an important aspect about Young’s construction [9]. So, this leads us to
consider how we may construct “triangularized” variants of elements of the form E(T ).

Example 4.18. Consider the following evaluations:

E
(

12
)
=

1

n
,

E
(

1 2
)
=

1

n2
.

We can see that the above E(T )-expressions do not form a triangular multiplication table.

In our denoting set-partition tableaux ordered according to Definition 4.15, the notation
given in the below definition will be useful for our purposes.

Definition 4.19. Let λ be an integer partition of order n, and let 2k ≤ n. We let gλ,k

denote the number of set-partition tableaux of shape λ ⊢ n and of content {1, 2, . . . , k}.

Example 4.20. Recalling Example 4.16, we see that g(5,1),3 = 10. Recalling Example 4.18,
we see that g(4),2 = 2.
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We note that it is important that we specify both λ and k in the superscript of gλ,k, as
in Definition 4.19, since we may have that gλ,ℓ1 ̸= gλ,ℓ2 for distinct values ℓ1 and ℓ2.

Example 4.21. We have that g(6),2 = 2 and g(6),3 = 5.

Much of our research in this article is inspired by and based upon the identity whereby

B2k =
∑
λ⊢n

(
gλ,k
)2

for 2k ≤ n, which gives us such a direct analogue of the famous Frobenius–Young identity
whereby

k! =
∑
λ⊢k

(fλ)2.

Since the semisimplicity of algebras of the form CAk(n) is so central to our research, it
is convenient for our purposes to always let 2k ≤ n if we are letting n be integral, as this
guarantees the semisimplicity of CAk(n). However, in our research on the representation
theory of CAk(n), we may also let n be an arbitrary element in C apart from from certain
integer values less than 2k. So, although we can think of n as being a complex indeterminate
subject to the restriction that n cannot be equal to certain integer values, in practical
situations, it is convenient to let n be equal to some fixed integer that is sufficiently large,
e.g., to illustrate set-partition tableaux. This leads us to the following.

If we assign a fixed value to λ so that λ is of even order, we may write gλ in place of
gλ,

1
2
|λ|, for the sake of convenience. For example, we may write

g = 3

and

g = 10

using this notational simplification, according to which we may also let

T λ
1 < T λ

2 < · · · < T λ
gλ

denote the set-partition tableaux of fixed shape λ on {1, 2, . . . , 1
2
|λ|}, ordered according to

Definition 4.15. For example, we may write

T1 < T2 < T3

since there are 3 set-partition tableaux of shape (3, 1) and content {1, 2}.
If we want to consider set-partition tableaux of a given shape λ defined using the pa-

rameter n without specifying a value for n, in our investigating the semisimple structure of
CAk(n), we always let λ ⊢ n, and we let it be understood that we are letting 2k ≤ n, where k
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denotes the order of the partition algebra under consideration, and that the tableaux under
consideration are of content {1, 2, . . . , k}. So, for an integer partition λ of a fixed shape
denoted with the parameter n, we may let

T λ,k
1 < T λ,k

2 < · · · < T λ,k
gλ,k

denote the set-partition tableaux of shape λ and content {1, 2, . . . , k} ordered as above, but,
for the sake of convenience, if we are fixing a value of λ and writing λ using the parameter
n, we may instead write

T λ
1 < T λ

2 < · · · < T λ
gλ (40)

under the understanding that we are letting 2k ≤ n, and T λ
i = T λ,k

i for each index i and
gλ = gλ,k. For example, we may rewrite

T
(n),k
1 < T

(n),k
2 < · · · < T

(n),k

g(n),k

as
T

(n)
1 < T

(n)
2 < · · · < T

(n)

g(n) ,

as it seems tacit that we may simply let n be sufficiently large compared to the order k of
the partition algebra under consideration.

Keeping in mind the notational convention indicated in (40), we “tentatively” define
analogues of Young’s γ-elements as below, noting that the recursive process indicated in
Definition 4.22 is “tentative” in the sense that: In general, proving that an expression of the
form

E
(
T λ
i

) (
1− γλ1

) (
1− γλ2

)
· · ·
(
1− γλi−1

)
is normalizable is difficult, as we shall see.

We employed a version of Definition 4.22 below in [3], but only for flat-shaped tableaux,
in the construction of non-propagating matrix units.

Definition 4.22. We let the expressions γλ1 , γ
λ
2 , . . ., γ

λ
gλ

be defined as below, if it is possible
to normalize the below expressions according to Definition 4.14:

γλ1 = E
(
T λ
1

)
,

γλ2 = E
(
T λ
2

) (
1− γλ1

)
,

γλ3 = E
(
T λ
3

) (
1− γλ1

) (
1− γλ2

)
,

etc.

We intend to use the above definition, along with a suitable analogue of Young’s σ-
function whereby Yi = σλ

ijYj, for λ-shaped Young tableaux Yi and Yj in Young’s First Letter
Order. This leads us to the following definition, which we had also used in [3] for flat
set-partition tableaux.
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Definition 4.23. We set T λ
i and T λ

j to be set-partition tableaux on {1, 2, . . . , k} as in (40).
We define τλij as the partition diagram in CAk(n) given as follows. Let L1 and L2 be labels
in T λ

i and T λ
j , respectively, such that L1 and L2 are not both empty and are in the same

position. Then L1 ∪ L′
2 is a block in τλij [3].

Example 4.24. The second entry in the sequence of tableaux in Example 4.16 is

1

23

and the next such entry is

1

2 3

.

Let us compute τ
(5,1)
2,3 . We have that ∅ and {2} are labels in T

(5,1)
2 and T

(5,1)
3 , respectively, such

that these labels are in the same position and are not both equal to ∅. So, from Definition
4.23, we have that ∅ ∪ {2}′ is a block in the τ -diagram under consideration. Also, we have
that {2, 3} ∪ {3}′ and {1} ∪ {1}′ must be blocks in this diagram, as below:

τ2,3 = .

Example 4.25. Looking back over Example 4.16, the fourth entry in this sequence is

12

3

and the eighth entry in the sequence in Example 4.16 is

23

1
.

We find that:

τ4,8 = .

We are now ready to offer a truly remarkable analogue of Young’s fundamental formula
for symmetric group algebra matrix units. Letting the expression gλ be as in (40), and
letting 1 ≤ i, j ≤ gλ, let us write

eλi,j = τλi,jγ
λ
j

(
1− γλj+1

) (
1− γλj+2

)
· · ·
(
1− γλgλ

)
. (41)
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Partition algebra elements of the form indicated in (41) exhibit some very unexpected prop-
erties, and computational experiments suggest that these elements often give us a very nice
and surprisingly close analogue of Young’s matrix units. We should recall that our con-
struction in Definition 4.22 is “tentative” in the sense that it is unclear as to when it would
be possible to normalize the required expressions, according to Definition 4.14, in order to
define γλi . How can we show that partition algebra elements given by the product on the
right-hand side of (41) are non-vanishing? For the time being, let us consider the elements
that (41) gives us in CA2(n) and CA3(n).

We use the symbol ∼ to denote the equivalence relation given by equality up to a nonzero
scalar multiple. Observe that 0 ∼ 0, according to this definition. Using a SageMath imple-
mentation of (41), we have verified that in the case whereby k = 2, (41) is always nonzero,
and, amazingly, the following matrix unit multiplcation formula holds:

eλi1,i2e
µ
i3,i4

∼


0 if λ ̸= µ

0 if i2 ̸= i3

eλi1,i4 if λ = µ and i2 = i3

. (42)

That is, (41) gives us a complete family of Young-type matrix units for CA2(n) indexed by
pairs of set-partition tableaux, as well as explicit matrix unit decompositions of all of the
irreducible subrepresentations of CA2(n). We encourage the reader to consider how strikingly
different (41) is compared to the “basic construction” recursion used by Halverson and Ram
[15]. In consideration of the many intricate definitions and constructions that we had used
to arrive at (41), it is quite remarkable that the elements in (41) are so well-behaved, with
regard to the elegant matrix unit multiplication formula in (42).

Now, let us again consider the counterexamples given in (39) to E(T ) being idempotent-
up-to-a-nonzero-scalar-multiple. The first counterexamples to the identity in (42) holding
are also given by the shapes in (39). For example,

e1,1 e1,1 ̸∼ e1,1 ,

e2,2 e2,2 ̸∼ e2,2 .

So, we intend to figure out some way of “working around” these kinds of counterexamples.
We are inspired to make use of Halverson and Ram’s formula

eλP,Q =

id−
∑
µ∈Âℓ

|µ|≤ℓ−1

∑
P∈Âµ

ℓ

eµP,P

ψ
(
sλP,Q

)
, (43)

where P and Q denote vacillating tableaux that correspond to standard Young tableaux,
i.e., vacillating tableaux that end at level ℓ in the Bratteli diagram for partition algebras
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and that are such that the final entry is of order strictly greater than ℓ− 1; it should also be
noted that the matrix units on the right-hand side of (43) are understood to be defined using
Halverson and Ram’s construction [15]. Informally, the left-hand factor on the right-hand
side of the equation (43) comes from the property whereby the sum of idempotent matrix
units in a finite-dimensional semisimple algebra must equal the identity, and we want to use
this kind of idea to deal with the counterexamples given by the shapes in (39).

Again with n = 6 and k = 3, define

z =
∑
λ1 ̸=3

eλi,i.

More specifically, we are taking the sum of all expressions of the form (41), apart from the
cases whereby the superscript λ is such that λ1 is not equal to 3. Now, let us consider the
variant of the recursion in Definition 4.22 suggested below:

y1 =

(
1− z

)
E

(
T1

)
,

y2 =

(
1− z

)
E

(
T2

)(
1− y1

)
.

For an integer partition λ ⊢ n = 6 other than (3, 2, 1), write yλ
i to denote γλi . Now, let us

consider the following variant of (41), noting the distinction between our notation for eλi,j
and eλi,j:

eλi,j = τλi,jy
λ
j

(
1− yλ

j+1

) (
1− yλ

j+2

)
· · ·
(
1− yλ

gλ

)
. (44)

Again, we obtain a full family of matrix units, satisfying the desired multiplicative properties
indicated in (42).

It is remarkable that the way in which we have defined N(T ) and P (T ) for set-partition
tableaux T provides us with such a close analogue of Young’s fundamental matrix unit
formula. How can we generalize the Young-type orthogonal forms that we have determined
for CA2(n) and CA3(n)?

5 A conjecturally universal formula for Young-type ma-

trix units for partition algebras

We define the graded-lexicographic ordering on integer partitions so that for integer partitions
λ and µ, λ <GrLex µ if |λ| < |µ| or if |λ| = |µ| and λ is strictly less than µ lexicographically.
In particular, we have that

() <GrLex (1) <GrLex (1, 1) <GrLex (2) <GrLex (1, 1, 1) <GrLex (2, 1) <GrLex (3) <GrLex · · · ,
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by definition. We also define the graded-and-larger-lexicographic order relation so that for
integer partitions λ and µ, λ <GrLar µ if |λ| < |µ| or if |λ| = |µ| and λ is strictly greater
than µ lexicographically. So, we find that:

() <GrLar (1) <GrLar (2) <GrLar (1, 1) <GrLar (3) <GrLar (2, 1) <GrLar (1, 1, 1) <GrLar · · · .
We also recall that we let λ denote the integer partition obtained by removing the initial
entry of λ.

We have verified computationally that the formula

eλi,j = τλi,jγ
λ
j

(
1− γλj+1

) (
1− γλj+2

)
· · ·
(
1− γλgλ

)
. (45)

gives us full families of Young-type matrix units for both CA2(n) and CA3(n) according to
the universal recursion for γ-elements defined below, as opposed to the “ad hoc” approach
that we had previously used.

Proposition 5.1. Letting k and n be fixed members of N, with 2k ≤ n, we let

γ
(n)
i = P

(
T

(n)
i

)(
1− γ

(n)
1

)(
1− γ

(n)
2

)
· · ·
(
1− γ

(n)
i−1

)
,

and for λ ⊢ n such that λ is the shape of a non-flat set-partition tableau of content {1, 2, . . . , k},
we redefine γλi so that:

γλi = (1− zλ)P
(
T λ
i

) (
1− γλ1

) (
1− γλ2

)
· · ·
(
1− γλi−1

)
,

where the Halverson–Ram-inspired operator (1− zλ) is such that

zλ =
∑

µ<GrLarλ

eµi,i (46)

according to the fundamental formula in (45). According to this construction, for each of
the algebras CA2(n) and CA3(n), each member of the family {eλi,j} is nonzero and these
elements are such that each of the matrix unit multiplication formulas is satisfied up to a
nonzero scalar.

One might wonder why the <GrLar is being used in (46). Interestingly, if we were to
replace <GrLar with <GrLex in the above proposition, this construction would fail, i.e., the
desired matrix unit formulas would not hold up to a nonzero scalar. We leave it as an open
problem to prove that our apparently universal formula for partition algebra matrix units,
as above, holds in full generality.
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