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ABSTRACT
This work presents a novel transportation mode detection algorithm that handles
the recognition of kick-scooters. In 2015, 10 minutes of data from a kick-scooter were
considered in a transportation mode detection study, yielding a 56% F1-score. Since
then, kick-scooters were not given much attention. Yet, kick-scooters are now very
present in the urban transportation ecosystem, and their consideration in trans-
portation studies has become a must. To fill this gap, 4 hours of kick-scooter signals
were collected by 18 participants, with a set of 6 different kick-scooters, using 3
body-worn inertial measurement units. Obviously, kick-scooter patterns are classi-
fied in contrast with other modes of transportation. Two classification scenarios are
considered in order to gradually increase the classification model complexity. The
first scenario includes walking, biking, and kick-scooter, while the second considers
public transport (tramway and bus) in addition to the former transportation modes.
Results show that kick-scooters can be detected with an F1-score of 80% in the first
scenario. Walking and public transport samples were still accurately classified in the
second scenario, with an F1-score above 80% for both classes. However, bike and
kick-scooter samples were both classified with lower F1-scores, equal to 59% and 64%
respectively. Therefore, the main focus of future works should be directed towards
the separability of kick-scooters and bikes when public transport is considered. The
findings also suggest to place preferably the sensors in the trouser’s pocket, allowing
for leg motion to be finely captured.

KEYWORDS
Transportation mode detection/classification/identification; convolutional neural
network; kick-scooters; micro-mobility; classification; inertial sensors
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1. Introduction

1.1. The growth of micromobility

In the last few years, light-weight vehicles have become popular among adults
and young people. Bikes B. Wang, Vu, Kim, and Cai (2022), kick-scooters (KS),
monowheels, and segways have nowadays become part of a larger transportation land-
scape designated as micro-mobility systems. KS have shown several advantages over
bikes and other micro-vehicles. For example, KS are generally smaller, lighter, and
can be folded and carried in tramways, buses, and metros. Therefore, they constitute
relevant candidates to solve the first mile last mile (FMLM) issue, i.e. the distance
that separates home or the place of work from the nearest public transport (PT)
station, see McKenzie (2020). In the same vein, the findings of Zuo, Wei, Chen, and
Zhang (2020) suggest that transit accessibility can be significantly increased by the
use of bikes over walking. In fact, the faster the reachability of a station, the more
it is likely to be accessed. The same conclusion was made in Shiv (2018) where the
lack of speedy mobility was found to be a catalyst for the use of private automobile
to travel the FMLM distance. On the other hand, KS are green and health-friendly
vehicles that are rather easy to handle. The PriestmanGood’s kick-scooter for life 1 is
a typical example illustrating the ease of usability of KS by the elderly, which in other
respects allows them to safely maintain physical activity. Furthermore, KS are allowed
to share bike lanes and other public spaces, see Kostrzewska and Macikowski (2017).
Thus, their integration to urban transportation systems is effortless in terms of in-
frastructure, see Oeschger, Carroll, and Caulfield (2020). As a result of the worldwide
success of KS, it appears to us that their inclusion in Transportation Mode Detection
(TMD) solutions is a requirement. Not only this will enhance urban navigation tools,
but it will also improve urban policies and shared micro-mobility systems, see Ashqar,
Elhenawy, Rakha, Almannaa, and House (2022).

1.2. TMD families of methods

1.2.1. Sensors

Even though KS are new to TMD research, multiple TMD methods have been
developed to recognize common transportation modes such as private cars, bikes,
and PT. Recent TMD surveys can be found in Sadeghian, H̊akansson, and Zhao
(2021), Kamalian, Ferreira, and Jul (2022), Ahmed and Diaz (2022). Historically, the
main devices used were first GPS loggers Biancat, Brighenti, and Brighenti (2014),
Roy, Fuller, Nelson, and Kedron (2022) and then smartphones Carpineti, Lomonaco,
Bedogni, Di Felice, and Bononi (2018), Sharma, Singh, Udmale, Singh, and Singh
(2021), Wang, Luo, Zhao, and Qin (2021), Liu (2022), which are still in use at the
present, although a recent study has explored the use of smartwatches to perform
TMD, see Hasan, Irshaid, Alhomaidat, Lee, and Oh (2022). The chosen technologies
used for TMD purposes, regardless of the device, have evolved from the use of
standalone GPS receivers Zheng, Liu, Wang, and Xie (2008), often fused with Geo-
graphical Information Systems (GIS) Gong, Chen, Bialostozky, and Lawson (2012),
Shah, Wan, Lu, and Nachman (2014), in favor of proprioceptive low-cost sensors
due to their energy-efficiency and availability in off-the-shelf devices such as smart-
phones, see Yu, Yu, Wang, Lin, and Chang (2014). However, GPS receivers can
still be used in favorable environments, typically in open-sky conditions, such as
in Hadjidimitriou, Cantelmo, and Antoniou (2022), particularly when real-time
functioning is not a requirement. Otherwise, the commonly used self-contained
sensors are accelerometers, Nham, Siangliulue, and Yeung (2008), gyroscopes,

1https://www.priestmangoode.com/project/scooter-for-life/
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Jahangiri and Rakha (2015), and magnetometers, Fang et al. (2016). Few works have
used barometers Sankaran et al. (2014), microphones, L. Wang and Roggen (2019)
and light sensors Carpineti et al. (2018). More exceptionally, bluetooth devices
have been used in Coroamă, Türk, and Mattern (2019) to recognize transportation
modes. Indoors, in a hospital-specific environment, Wireless Fidelity (WIFI) has
also been used to classify hospital-specific modes of transportation, among which
a KS, although the dataset comprised only 10 minutes of data from KS, see
Prentow, Blunck, Kjærgaard, and Stisen (2015).

1.2.2. Time latency

On a methodological basis, there is a clear boundary in the literature between trip-
based solutions as in Zhou et al. (2017), and near-real-time solutions, with a latency
of recognition equal to the total duration of a trip in the former approaches, while it
roughly varies between 1s to 10s in the latter, as in Wang et al. (2019), Prelipcean,
Gidófalvi, and Susilo (2017). Overall, the choice has been made in favor of low-cost and
energy efficient sensors, together with low-latency solutions, lasting over 5s in average
Wang et al. (2019), in order to meet the requirements of real-time applications such
as navigation apps.

1.2.3. Classification models

Part of this work is model selection. Among the algorithms used in the literature,
Random Forest (RF) is one of the most popular machine learning methods used in
TMD problems, see Fang et al. (2016); Carpineti et al. (2018); Lorintiu and Vassilev
(2016); L. Wang, Gjoreskia, Murao, Okita, and Roggen (2018). More recently, deep
learning methods were used for the same purposes, for example feed-forward artificial
neural networks (ANN), see Fang, Fei, Xu, and Tsao (2017), convolutional neural
networks (CNN), see Liang and Wang (2017), and long-short term memory (LSTM)
neural networks, see Asci and Guvensan (2019). These models are generally compared,
especially in recent studies such as Zarei Yazd, Taheri Sarteshnizi, Samimi, and Sarvi
(2022). Let us recall though that the model selection here is performed based on two
particular criteria. First, the chosen models are the most successful in the literature.
Second, it is now well-established that the model selection is best realized based on
cross-validation, see He, Zhao, and Chu (2021), and Zimmer, Lindauer, and Hutter
(2021), which is also the approach followed in this study. Hence, RF, ANN, LSTM,
and CNN were all tested systematically according to a 5-fold cross-validation process
based on 1 separate and randomly selected test subjects for each fold. This way, the
evaluation scenario adopted in this work guarantees enough robustness and is enhanced
with respect to the major part of past TMD studies. In the latter, the train and test
samples used to contain data from all subjects, see Taia Alaoui, Fourati, Kibangou,
Robu, and Vuillerme (2022), resulting in an over-rated classification accuracy.

1.3. TMD datasets

As for publicly available datasets, sorted from most recent to oldest, the main datasets
are the TMD-CAPTIMOVE, see Taia Alaoui et al. (2020), which is the dataset used in
this study, collected by 34 participants and having an amount of 48 hours of data, the
SHL dataset, Wang et al. (2019), collected by 3 participants with a total duration of 703
hours, the US-TMD dataset, see Carpineti et al. (2018), collected by 13 participants
with a total duration of 32 hours, the dataset of Ballı and Sağbaş (2018), collected
by 4 subjects with a total duration of 8 hours, and finally the oldest (2014), and at
the mean time the richest in terms of sample size and amount of data, which is the
HTC dataset, see Yu et al. (2014), collected by 224 participants with a duration of
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8311 hours. With respect to the other publicly available datasets, the current dataset
(i.e. TMD-CAPTIMOVE) is optimized in terms of balance between the number of
participants and the total duration, as shown in Figure 1. The x-axis provides the
total duration of the considered TMD dataset in a log10 basis, the y-axis provides
the number of subjects, also in a log10 basis, while the size of the circles provides
the ratio between sample size (i.e. the number of participants) and the total duration,
also in log10 for a better readability and visualization. Through this ratio, we wanted
to recall the importance of optimizing the balance between the sample size and the
total duration, as cross-subject variability, Taia Alaoui et al. (2022), as well as time-
dependency inside the data, Prentow et al. (2015), were found to be critical in TMD
training problems.

Figure 1.: Public TMD datasets: comparison of the balance between the number of
participants and total duration

In Figure 1, the most optimal dataset is the one on the top right corner and with
the largest circle size, and the least optimal is the one at the bottom left corner and
with the smallest circle size. Thus, the TMD-CAPTIMOVE is the most optimal with
respect to circle size, which is the balance between the number of participants and the
total duration. At the mean time, it is undeniably less optimal than the HTC dataset
in terms of duration and sample size, and so it is as compared with the SHL dataset
in terms of duration. More globally, it is an improved TMD dataset as compared with
the other remaining public datasets. It is also more optimal and more balanced than
many other private datasets, which have lower sample size and duration, Zhao, Hou,
Alrobassy, and Zeng (2019), with 11 participants and 15 hours of data, Delli Priscoli,
Giuseppi, and Lisi (2020), with 18 subjects and 104 hours of data, and Su, Yao, He,
Lu, and Tong (2017), with 12 subjects and 8 hours of data.

On the other hand, it is the first dataset that provides hours of data (between 2 and 4
depending on the class) from KS and from elevators and stair-cases. Thus, it considers
a seamless TMD transition from the indoor to the outdoor and vice-versa. Besides, the
time amount of collected data from these modes of transportation is naturally lower
than the duration of other TMD classes such as PT or walking. In fact, the latter last
longer on a daily basis. Therefore, the fact of systematically balancing the amount of
data for each class, Liang and Wang (2017), most of the time at the cost of losing
information, see Carpineti et al. (2018), seems questionable.
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1.4. KS as a novel class in TMD

In parallel to the technological and methodological challenges tackled by TMD re-
search, the focus of this study is the augmentation of the types of transportation
modes being classified. This augmentation is directly obained through the consider-
ation of KS among other common transportation modes. Indeed, the most popular
TMD classes are tramway, see Byon, Ha, Cho, Kim, and Yeun (2017), bus, see Liang,
Zhang, Wang, and Xu (2020), Catalán, Lobel, and Herrera (2022) and metro (or sub-
ways), see Fang et al. (2017). Bikes and e-bikes were considered in Xiao, Juan, and
Zhang (2015), whereas one study, Prentow et al. (2015), has considered 10 minutes
of KS data, in a specific hospital environment, resulting into a KS-F1-Score of 56%.
The latter was the first contributing study to KS integration to TMD methods. It is
granted for having explicitly emphasized the significance of KS in TMD and for having
provided precise information on their dataset collection scenarios and results.

More globally, due to the lack of studies on KS-dedicated TMD, this work will not
make a thorough revision of the pros and cons of past TMD approaches. Instead, we
investigate the possibility to extend existing TMD approaches to the use of KS. There-
fore, the main issues addressed in this research are questioning the ability for KS to be
accurately detected among other transportation modes. Another important question
is whether the integration of KS impacts the accuracy at which other transportation
modes are detected. These questions are answered based on experimental results ob-
tained according to two scenarios. The first scenario consists in the identification of
KS as a separate transportation mode from 2 other locomotion modes: on-foot and
bike. The second scenario, which is more complex, adds to the first one signals from
bus and tramway, merged together and considered as one class called PT.

1.5. Contributions

The main contributions of this work can be summarized as follows:

• For the first time, KS signal patterns are thoroughly studied. Two major KS
modalities could be distinguished: pushing and cruising. This shows that the
training of KS is more challenging as compared with mono-modal transportation
modes such as walking or driving a car.

• The placement of wearable sensors on the human body is studied as part of the
variables to be optimized. Especially for KS, it is shown that the placement of
sensors should not be random, which contrasts with past studies where TMD
models were built regardless of the placement of the sensors on the body, see
Carpineti et al. (2018).

• We demonstrate that detecting KS with an F1-score above 80% is possible when
considering on-foot activity and biking. However, the accuracy at which KS is
detected decreases significantly when PT is considered. It is shown that on-foot
and PT are not negatively impacted by the inclusion of KS. In contrast, bike
and KS patterns become more challenging once the classification contains PT
data.

• The model validation is performed on data drawn from 5 randomly chosen test
subjects (U1-U5), thus allowing us to evaluate the generalization ability of the
model. Note that this aspect has been generally omitted in the TMD literature,
see Taia Alaoui et al. (2022).
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2. Materials and Methods

2.1. Data collection

The data were recorded by 3 Inertial Measurements Units (IMUs) that include a
tri-axis accelerometer, a tri-axis gyroscope and a barometer each. Their respective
placements were on the foot, on the waist and in the trousers’ pocket. They can be
visualized in Figure 2 in orange. Each participant was equipped with a front camera
for verification purposes, as shown in Figure. 3. The data used in this study were
sub-sampled at a frequency of 32Hz.

(a) (b) (c)

Figure 2.: Position of the wearable sensors on the body: Foot-mounted (a), in the
pocket (b), waist-attached (c)

Figure 3.: Body-worn camera during data collection

The data were collected by 34 participants from young to older ages, 20 men and
14 women aged from 18 to 50 years old, who volunteered to perform the experiments.
They came from different social and professional backgrounds and were healthy sub-
jects. There was no specific selection of participants based on either social, professional,
or health factors. Such selection approach for the human subjects may affect the level
of bias that potentially underpins the sample. The data collection was realized under
different weather conditions from November 2019 to January 2020 during workdays at
different day times, including rush hours (8-9am, 12-2pm, 5-6pm). According to our
recruitment procedure, it is undeniable that the models built to perform the classifi-
cation of TMD in this study are expected to be efficient basically for signals collected
during workdays and rather by healthy and active subjects. Therefore, new data should
be collected to adjust the algorithm for other populations, for example the elderly and
individuals with varying levels of capability, as gait patterns are subject to variation
in those cases, see Osoba, Rao, Agrawal, and Lalwani (2019).

In order to perform the experiments, the participants were equipped in the office.
Then, they were accompanied during the whole experiment by the person in charge
of later labelling the data. For tramways and buses, the itinerary was fixed at the
beginning. For walking, biking, and KS riding, the volunteers were free to choose their
itinerary. The experiments ended again in the office where the participants made a
small report about the trip they made.
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From 18 subjects, we were able to collect data using KS. In this scenario, they
were asked to switch legs while riding the KS in order to balance pushing and resting
phases for each foot. In total, 6 different KS were used. Each participant used one
of the 6 KS to collect data. The other transportation modes involved at least 20
different participants and included walking, biking, and PT (tramway and bus). The
time duration relative to each transportation mode is given in Figure 4. As usual in
classification problems with real data, the classes are not equally distributed. The
choice in this study was to take this imbalance into account at the validation stage
by providing the F1-Score as an accuracy metric instead of only providing the overall
accuracy. Another choice could be to balance classes by removing data, which the
authors of this study think is not optimal as this inevitably results in information loss.

The dataset can be accessed at https://perscido.univ-grenoble-alpes.fr/

datasets/DS310.

Figure 4.: Time duration relative to each transportation mode

2.2. Classified transportation modes

We adopt two different classifications of the transportation modes. They are given in
Figures 5 and 6. The first classification consists of 3 activity states that are: walking
(W), biking (B), and KS riding. This scenario corresponds to body-induced motion.
It is more suitable for short distance trips and for people who use their scooter or bike
as a principal means of transport. The second classification integrates PT, which is
the result of merging tramway and bus data. This scenario has more to do with the
FMLM distance as KS are usually used to reach PT stations.

(a) (b) (c)

Figure 5.: First set of motion modes. (a): walk (b): bike (c): KS

2.3. Signal visualization and analysis

Figures 7, 8, 9, 10, and 11 are examples of the signal patterns relative to each trans-
portation mode. Note that the signals for the three sensor positions are not exactly
synchronized and should be considered independently from one another.
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(a) (b) (c) (d) (e)

Figure 6.: Second set of motion modes. (a): walk (b): bike (c): KS (d): tramway (e):
bus

Over all transportation modes, a systematic difference distinguishes the foot-
mounted sensor from the waist-attached sensor and the one in the trouser’s pocket.
The signal magnitude is much higher in the first case. This difference is however less
important for PT as the subjects generally stay still inside vehicles, which supposes
that their feet are still as well. A slight magnitude difference is though observed be-
tween buses and tramways due to higher vibrations induced by the road topography
as compared with rails for tramways (Figure 10). In this work, both transportation
modes (tram and bus) are considered in the same class, PT.

For biking (Figure 8), the acceleration and angular rate signals show a clear time-
periodicity that reflects cycling. Yet, this cyclic pattern tends to fade in case the
subject cruises for a period of time, for example between 4s and 7s.
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Figure 7.: Walking signal patterns: Acceleration norm in m/s2 and angular rate norm
in ◦/s

For KS, Figure 11 shows a signal frame that consists in two different KS patterns.
The first pattern corresponds to pushing the ground with the foot on which the sensor
is mounted. This motion is reflected by two consecutive signal peaks in both acceler-
ation and angular rate. In fact, the first peak is the motion forward that allows the
subject to gain momentum, while the second is the backward motion of the pushing
foot before it hits the ground. The second pattern corresponds to cruising with both
feet resting on the KS deck. These phases show flatter signals with small variation
induced by ground friction while the scooter keeps moving by inertia.
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Figure 8.: Biking signal patterns: Acceleration norm in m/s2 and angular rate norm
in ◦/s

2.4. Signal pre-processings and segmentation

Signals were preprocessed prior to any segmentation or feature computation. The
whole process of signal segmentation and preprocessing was assisted by videos that
were time-stamped and synchronized with the IMUs. The participants were asked to
behave freely during experiments. For example, they could move inside PT, walk in-
between scooter riding phases, etc. In order to take this freedom into consideration,
a peak detection and deletion process was undertaken in order to remove sporadic
motions that are not related to the transportation modes. For both accelerometer
and gyroscope 3D components, Tukey’s schematic boxplots, see Dawson (2011), were
calculated for multiple 1s long signal frames in order to detect outliers. The latter
were then replaced by the upper and lower limits of the boxplot. Afterwards, the
preprocessed 3D signals were used to compute the norm of acceleration and angular
rate, which solves the problem of sensor orientation while later training the classifier.

In order to segment signals, we sought to minimize the segmenting window length
while keeping satisfying classification accuracy, so that the detection time latency is
minimized. To this purpose, many window length values, including 1s, 1.5s, 2s and
3s, were used to train 4 classifiers and validate them on a random test subject. The
optimal window length value is that for which the classification accuracy is maximal.
According to this approach, in the first classification scenario, this length was fixed to
1.5s. Note that it is much lower than the average sliding window length found in the
state-of-the-art, which is about 5s, see Wang et al. (2019). For the second classification
scenario, this value was set to 3s.

2.5. Classification Methods

2.5.1. Input data structure

In the training design, there are M train instances or train samples. In other words,
M is the number of labeled signal patterns used for training. P is the number of signal
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Figure 9.: Tramway signal patterns: Acceleration norm in m/s2 and angular rate norm
in ◦/s

samples in one train instance, equal to the product of the segmenting window length
and the signal sampling frequency (see Eq 1). Q is the number of signal channels
considered for training. For example, if acceleration and angular rate signals are used,
then Q is 2. Q is also the depth of the 3D matrix used to train the CNN and LSTM
models described later in this section. S is the number of computed features based on
the relevant signal channels (see section 2.6.2). The number of classes is N .

P = Segmenting Window Length ∗ Signal Sampling Frequency (1)

In the following sections, the classification algorithms are provided in details. Note that
there are two separate approaches used depending on the classification algorithm. For
RF and ANN, the input data are 2D matrices of size MxS. In fact, these algorithms do
not take into consideration the structure inside each train sample. Hence, computing
descriptive features to train these 2 models results in a lower computational cost and
higher training speed. For CNN and LSTM, the algorithms are intrinsically designed
for structured data sequences. Therefore, no feature computation is performed with
these 2 models. The input data for CNN and LSTM are time sequences, which means
1D vectors of length P . Yet, as Q signal channels are considered, an input train sample
is a Q-dimensional vector of length P . Thus, the global input data of the LSTM and
CNN models is a 3D matrix of size M ∗ P ∗Q.

2.5.2. Random Forest

Random Forest (RF) is an ensemble of decision trees. The final prediction of a RF
algorithm is computed through a majority voting based on the prediction of each
decision tree. RF is known to prevent overfitting thanks to the bootstrap aggregation
strategy that consists in a random selection of features and train samples to build
each decision tree. The algorithm used in this study has 30 trees built upon a subset
of 15 features each. The split criterion is the Gini index. The RF model is shown in
Appendix A, in Figure 1.
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Figure 10.: Bus signal patterns: Acceleration norm in m/s2 and angular rate norm in
◦/s
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Figure 11.: KS signal patterns: Acceleration norm in m/s2 and angular rate norm in
◦/s

2.5.3. Feed-forward Artificial Neural Network

The Feed-forward Artificial Neural Network (ANN) used in this study has two hidden
layers of 50 and 100 neurons respectively. Naturally, the output layer has as many
neurons as trained classes, which is N. The activation function of the input and hidden
layers is Relu. The output layer operates according to a softmax activation function.
Layer 2 and the output layer are optimized under an L2 regularisation with a lambda
coefficient of 0.001. Each layer of the network is followed by a batch normalization

12



operation to stabilize the parameters distribution through the training process. The
optimizer is Adam with an initial learning rate of 0.01 and the cost function is the
categorical cross-entropy. The ANN network architecture is shown in Appendix A, in
Figure 2.

2.5.4. Long Short Term Memory cell

Long Short Term Memory cells (LSTM) are designed for time series in order to learn
memory and sequential structure of data. The LSTM model used in this study has
1 LSTM cell, a hidden layer of 100 neurons under a Relu activation function and
L2 regularizer, and finally, an output layer of N neurons under a softmax activation
function. The loss function is the cross-entropy, and the optimizer is Adam with an
initial learning rate of 0.001. The model architecture is shown in Figure 1 of Appendix
B.

2.5.5. Convolutional Neural Network

The Convolutional Neural Network (CNN) is composed of 3 convolutional layers of
30 filters (kernels) each. The kernels size for each layer are respectively P/8, P/4, and
P/4. A Maximum pooling of 2 was realized to the output of each convolutional layer.
Two fully connected dense layers of 100 and 50 neurons follow the convolutional layers.
The convolutional layers activation function was LeakyRelu with an Alpha value of
0.1. The activation function of the dense layers was ReLu. The output layer has N
neurons and was designed with a softmax activation function. The cost function was
the categorical cross-entropy. The optimizer was Adam, with an initial learning rate
of 0.001. The global architecture of the CNN is shown in Figure 2 of Appendix B.

2.5.6. Computational tools and Transferability

RF was implemented based on Scikit learn library in Python. ANN, CNN, and LSTM
were implemented using Keras library in Python as well. All computations were re-
alized on an Intel Quad-Core i7 CPU of a laptop with a 16 Gb RAM memory. The
operating system was Windows 10. All used libraries are free and can also operate
under Linux and MacOS operating systems. As all the hyper-parameter values are
provided, together with the models architecture, set of input features, and the online
dataset. Therefore, the study is entirely reproducible.

2.6. Test scenarios and evaluation method

2.6.1. Test scenarios

Two main aspects are evaluated. First, we want to select the best suited features and
signal inputs. Second, we want to select the most optimal model given the optimal
input set. It is chosen among the selected algorithms from the literature: RF, ANN,
LSTM, and CNN. For both purposes, cross-validation is used. It consists in training
the models using 70% of the labeled samples, and then testing the stabilized models,
i.e. after the training is done, to predict the labels (or classes) of the remaining 30% of
the labeled samples. As commonly adopted in training problems, we performed a 5-fold
cross-validation process. Indeed, the multiple-fold cross-validation process allows the
evaluation of model stability against small variations in the training set. In this study,
each fold contains data from all subjects except one, randomly chosen and labeled
from U1 to U5. It is used to validate the model.

A confusion matrix is provided at the end of each cross-validation. It provides the
prediction results for all samples from the test set. This enables the computation of
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prediction errors and the computation of numerous accuracy metrics. Appendix C
is provided with all confusion matrices. Details on the accuracy metrics used in this
study can be found in section 2.6.4. Once these metrics are calculated, the choice has
been made in this work to keep the model that leads to the best classification accuracy
of KS.

Model selection is realized according to a two-stage scheme. First, we have trained
the models using separate inputs, that is the selection of relevant input signal chan-
nels. Second, we have discarded the irrelevant signal channels, and trained the four
algorithms using the optimal feature set, which allowed us to select the best model
architecture. As the input selection phase is an intermediate step towards the final
model selection, the methodology used to perform this selection is described in the
section 2.6.2. Thus, the results in section 3 only present the performance of the four
classification models used with the optimal set of inputs.

2.6.2. Selection of the optimal input set

Model selection requires first to select the relevant data to be used for training. Here,
multiple signal channels were considered. They are provided in column 1 of Table 1.
While most of the computed features are quite common, the energy might be ques-
tioned. It is defined in the time and frequency domains by equations 2 and 3 respec-
tively.

Energy([t1, t2]) =

∫ t2

t1
s(t)2dt (2)

where t refers to time, and s to the considered signal. t1 is the beginning of the time
interval while t2 is its end.

In the frequency domain, the same formula is used, using frequencies instead of time
intervals:

Energy([f1, f2]) =

∫ f2

f1
s(f)2df (3)

where s is now the signal expressed in the frequency domain. f1 and f2 are respectively
the minimum and maximum limits of the considered frequency interval.

For each signal channel, a classification was realized using LSTM and CNN algo-
rithms. The signal channels with the lowest accuracy were removed while the others
were taken together. The new set of signal channels was used with both algorithms.
Then, each signal channel was iteratively removed. In case this led to a decrease in
classification accuracy, the channel was fed back as an input to the neural network
and another channel was removed to make a new test. In case removing the channel
resulted in equal or higher classification accuracy, the channel was considered either
useless or counter-productive, and therefore was discarded definitively. According to
this analysis, the optimal set of signal channels was found to be composed of the
gradients of acceleration and angular rate in both classification scenarios.

After the signal channels selection, descriptive time-domain and frequency-domain
features were computed in order to be used with RF and ANN. They are provided in
column 2 of Table 1. Note that the same set of descriptive features were computed for
every channel.
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Table 1.: Set of computed signal channels and descriptive features

Signal channels Features computed for all channels

1) Acceleration norm,
2) Gradient of the norm of
acceleration
3) Integral of the norm of
acceleration
4) Angular rate norm
5) Gradient of the norm of angular
rate
6) Integral of the norm of angular
rate

Mean, Energy, Standard deviation, Variance,
Main frequency component,
Power of the main frequency component,
Spectral energy between 0 and 2Hz,
Spectral energy ratio between 0 and 2Hz,
Spectral energy between 2 and 4Hz,
Spectral energy ratio between 2 and 4Hz,
Spectral energy between 4 and 10Hz,
Spectral energy ratio between 4 and 10Hz,
Spectral energy between 10 and 30Hz,
Spectral energy ratio between 10 and 30Hz,
Spectral centroid, Spectral spread,
Entropy, Number of zero crossings

2.6.3. Selection of the best model

The optimal input set, given in the previous section, is used in the four classification
models to be compared. This comparison is based on the chosen accuracy metric,
which is the F1-score relative to KS. In other words, the best performing algorithm is
the one that presents the highest accuracy for KS. For practical reasons, the confusion
matrices, which contain all the details of the classification results, are provided only
for the best model in Appendix C. However, the results in chapter 3 provide the global
accuracy metrics for all classification models to visualize the performance obtained for
each user. According to the test scenarios presented in section 2.6.1, the chosen model
is the one that has the highest accuracy in average, taking into account the prediction
results for 5 different test subjects (U1 to U5).

As a reminder, for each classification scenario, there are 3 confusion matrices in
columns (foot, waist, pocket) ∗ 5 test subjects in row. For example, the first row of
Appendix C consists of 3 confusion matrices obtained when testing the model on user
1 (U1), for the foot, the waist, and the trouser’s pocket. The abbreviation for each class
is: W: Walk, B: Bike, KS: Kick-scooter, PT: Public Transport. The statistics provided
together with the confusion matrices are the OA (Eq. 5) as well as the geometric mean
of the F1-score (Eq. 6). The imbalance of the dataset is taken into account by the F1-
score metrics. The geometric mean of the F1-score provides information on the global
accuracy at which each class has been learnt. In other words, a high geometric mean
of the F1-score indicates that all the classes were accurately learnt. On the contrary,
a weak geometric mean of the F1-score indicates that at least 1 class has been weakly
learnt, giving it the same weight as the other classes in spite of their unequal time
distribution.

2.6.4. Accuracy Metrics

The accuracy metrics are chosen based on the questions that this study addresses.
The first is to know how precise is KS detection among different urban transportation
modes. The second is to know whether the integration of KS in TMD models makes the
recognition of other transportation modes less accurate. Therefore, the classification
accuracy results are given relatively to KS. Indeed, the first question is answered by
the F1-Score, Eq (4), relative to KS. In order to answer the second question, global
accuracy metrics are also provided. They correspond to the overall accuracy (OA),
Eq (7), and the geometric mean of the F1-Score, Eq (8), provided in Tables 1 and
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2. The latter are global metrics that provide the classification accuracy of all classes
taken together. In case the OA and geometric mean of the F1-Score are high enough
(>70%), this means that all classes have been accurately detected. Otherwise, the F1-
Scores of the classes other than KS are additionally analyzed in order to understand
the errors of the classification model.

F1-Score = 2 ∗ Precision ∗ Recall

Precision+Recall
(4)

where the Precision is given by

Precision =
True Positive

True Positive+ False Positive
(5)

and the Recall is given by

Recall =
True Positive

True Positive+ False Negative
(6)

OA =
True Positive+ True Negative

True Positive+ True Negative+ False Positive+ False Negative
(7)

Geometric-Mean(F1-Score) = N

√√√√ N∏
k=1

F1-Score(k) (8)

3. Results

3.1. Model selection results

3.1.1. Model selection for scenario 1

In this section, several models are compared based on the F1-Score of KS for the 3
sensor placements. They are shown in Figure 12. The evaluation is made for 5 different
test users (U1 to U5) that are not involved in training. From these figures, several
conclusions can be drawn. They are summarized below:

(1) The highest F1-Score values are obtained using the CNN model with a foot-
mounted sensor. In fact, the F1-Scores of all subjects are higher than 70%.

(2) The sensor placed in the pocket presents high F1-Score values for both the CNN
(>70%) and LSTM (>65%) models. However, this performance varies signifi-
cantly depending on the considered test subject.

(3) The F1-Scores relative to KS are the lowest for the waist-attached sensor. In
fact, a high sparsity is observed over the different test subjects and different
classification models.

(4) ANN has very weak performance over all subjects and all sensor placements. In
fact, this does not necessarily mean that ANN models are less accurate than the
other models. However, this result could be interpreted as a higher need for the
tuning of the ANN hyper-parameters as compared with LSTM and CNN.

Given this analysis, it seems that the CNN model has the best performance in the
first classification scenario.
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(a) Foot-mounted sensor (b) Waist-attached sensor

(c) Sensor placed in the trouser’s pocket

Figure 12.: Model comparison for scenario 1

3.1.2. Model selection for scenario 2

For the second scenario, the F1-Scores of KS are shown in Figure 13. Here, the perfor-
mance is globally much lower as compared with the first classification scenario. One
common observation to the 3 sensor placements is that U5 has very weak F1-Score for
all classification models. Therefore, this result cannot be explained by the choice of
the training algorithms but seems to be rather related to the data. A possible hypoth-
esis is that U5 has atypical signal patterns (ex. patterns that depend on physiological
features). Therefore, as the data from U5 were removed from the training set, the
algorithm did not learn these patterns. Another reason could be that U5 has collected
more data than the other test subjects. When looking at the confusion matrices, this
hypothesis has been confirmed. In fact, U5 has contributed to the collection of PT
samples much more importantly than the other users, i.e. U1 to U4. Therefore, U5
seems to be a crucial subject to the training and should not be removed from the
training dataset. As a consequence, the classification results from U5 should not be
considered in model selection.

Removing U5 from our evaluation, considering only subjects from U1 to U4, the
CNN has again the highest average F1-Score as compared with the other models. The
same optimal sensor placements as for the first classification scenario are found here,
on-foot, and in the trouser’s pocket.

3.2. Performance of the best classification model: CNN

3.2.1. Scenario 1

After the selection of the relevant signal channels to be used for training, and after
selecting the most performing algorithm in both classification scenarios, the present
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(a) Foot-mounted sensor (b) Waist-attached sensor

(c) Sensor placed in the trouser’s pocket

Figure 13.: Comparison of different classification algorithms in the second classification
scenario

section provides more details about the achieved accuracies for KS specifically but also
for the other transportation modes. To this purpose, Figure 14 shows the classification
OA as well as the precise F1-Score values relative to KS for each sensor placement.

For the foot-mounted sensor, the F1-Score of KS varies from 78.02% to 84.03%. Its
standard deviation is 2.61, meaning that the model is robust enough and can handle
data from new subjects. The OA is comprised between 64.39% and 85.86%. In order
to understand the lower OA value of 64.39% for U3, the confusion matrix for the
foot-mounted sensor in Table 1 is analyzed. In fact, U3 has collected data only using
a KS. Among these data, 2410 samples were classified as KS, 1324 were classified as
biking, while 9 samples were classified as walking. In other words, the major errors
here are due to confusing biking data samples with KS samples. More globally, the
same tendency is observed for the other test subjects, however, it is most important
for subject U3.

Surprisingly, even if the sensor placed in the trouser’s pocket did not show strong
signal patterns as compared with the foot-mounted one, it led to considerably high
detection accuracy rates relative to KS, with an F1-Score comprised between 70.56%
and 98.02% with a standard deviation of 11.52%. While U3 has an F1-Score relative
to KS of 98.02% and an OA of 96.12%, the lowest OA is obtained for U5. Analyzing
again the corresponding confusion matrix, it is observed that U5 has an OA of 60.64%
and a geometric mean of the F1-Score of 61.39% for the sensor placed in the trouser’s
pocket. Looking more deeply into the confusion matrix, we can observe that around
1/3 of KS samples have been classified as biking.

Finally, the F1-Scores obtained with the waist-attached sensor are comprised be-
tween 7.69% and 83.13%. Without any further analysis of these results, the waist
seems obviously not to be an optimal place to recognize KS.
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(a) Foot-mounted sensor, CNN (b) Waist-attached sensor, CNN

(c) Sensor placed in the trouser’s pocket, CNN

Figure 14.: CNN classification results for the first scenario

3.2.2. Scenario 2

The results of the second scenario are shown in Figure 15. These results are given
together with the detailed confusion matrices provided in Table 2. In this scenario,
the global performance is lower with respect to the first scenario. As a reminder, U5
is not to be considered to interpret the classification results. However, the detailed
statistics relative to U5 are still provided in order to understand the reasons why the
accuracy is low for U5. More precisely, U5 made long travel periods of time by tramway
and bus. Therefore, data from U5 were crucial to train the algorithm, which explains
the low accuracy obtained when U5 is isolated as a test subject. This point can be
clearly observed in Table 2 for U5.

Based on the results of the left test subjects, the F1-Score relative to KS ranges
from 37.47% to 70.07% for the foot-mounted sensor, with a mean of 58.65% and a
standard deviation of 15.6, which is an average performance that still requires post-
classification improvements. For the sensor placed in the pocket, the F1-Score ranges
from 33.86% to 86.24%. It has a mean of 59.35% and a standard deviation of 21.40%.
The same conclusions as for the foot-mounted sensor are drawn. Finally, the waist-
attached sensor presents weak F1-Score values with an average F1-Score of 25.32 and
a standard deviation of 21.68%.

The study of the F1-Scores of KS for the second scenario shows that KS is detected
with a weak accuracy when PT is included to the classification, namely tramways and
buses. A deeper analysis of the errors in scenario 2 is realized in the discussion section.
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(a) Foot-mounted sensor (b) Waist-attached sensor

(c) Sensor placed in the trouser’s pocket

Figure 15.: CNN classification results for the second scenario

4. Discussion

4.1. Classification model selection

In this work, 4 different algorithms were compared with the objective of providing
a system that recognizes KS with enough accuracy. The tested algorithms were se-
lected from the literature as mentioned in the introduction, with RF, ANN, CNN and
LSTM. Selecting the relevant signal channels was crucial in this work. In this regard,
the process of building several classifiers based only on one signal channel each has re-
sulted in optimal performance. The validation of each algorithm was performed using
a leave-one-subject out 5-fold cross-validation approach, meaning we have repeated
the operation 5 times with 5 different test subjects. Therefore, the model validated in
this study is robust enough to deal with data from unknown subjects. Note that we
could isolate more subjects for testing, however, the dataset should be more significant
in that case, especially as all subjects did not equally participate to data collection.

Based on these considerations, CNN was found to be the most optimal algorithm,
with high classification accuracy rates and low standard deviations, which is an indi-
cator of robustness.

4.2. Accuracy of KS detection

4.2.1. First classification scenario

The results show that it is possible to detect accurately KS out of walking and biking
patterns using a sensor that is either foot-mounted or placed in the trouser’s pocket,
which is the answer to the first question of this study. For the foot-mounted sensor, the
average F1-Score relative to KS is 79.36%, with a standard deviation of only 2.61%.
For the sensor placed in the trouser’s pocket, the F1-Score average relative to KS
is 80.15% and its standard deviation is 11.52%. In this case, the increase in the F1-
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Score is insignificant, while the standard deviation is 5 times higher than the standard
deviation of the foot-mounted sensor.

In order to address the second question of this study, which is about the impact
of KS on the detection of other transportation modes, the geometric means of the
F1-Score given in Table 1 and noted ”F1-Score” for simplicity, are analyzed. For the
most optimal sensor placement, which is on-foot, the average geometric mean of the
F1-Score (which is averaged over all 5 subjects U1 to U5) is 82.56% and its standard
deviation is 3.37. In fact, this is a significantly high value that means all transportation
modes are accurately classified regardless of their distribution. Hence, introducing KS
with walking and biking does not result in a weakened detection accuracy of these
classes. As a final conclusion, these results suggest that KS can be detected accurately
and therefore distinguished from walking and biking patterns, while keeping a highly
satisfying detection accuracy of the latter.

4.2.2. Second classification scenario

In the second classification scenario, as PT is included to the classification, the F1-
Score relative to KS decreases sharply. The mean F1-Score relative to KS is 58.65%
for the foot-mounted sensor, 25.32% for the waist-attached sensor, and 59.35% for the
sensor placed in the trouser’s pocket. In other words, the detection accuracy of KS in
the second scenario is rather low as compared with the first scenario.

The geometric mean of the F1-Score for the foot is 68.28% with a standard deviation
of 20.56, while the geometric mean of the F1-Score for the pocket is 70.35% with a
standard deviation of 14.11. In fact, the global classification accuracy is much higher
than the F1-Scores relative to KS. In other words, transportation modes other than
KS have been satisfyingly classified. In order to confirm this suggestion, the F1-Scores
of all considered classes are analyzed. They are shown in Tables 2, 3, and 4.

Table 2.: F1-Scores of each class of the second scenario for the foot

Foot KS PT W B
Average F1-Score 58.65 91.59 89.67 67.21
Std F1-Score 15.06 1.21 9.83 3.8

Table 3.: F1-Scores of each class of the second scenario for the waist

Waist KS PT W B
Average F1-Score 25.32 83.02 78.97 46.76
Std F1-Score 21.68 10.09 27.51 20.92

Table 4.: F1-Scores of each class of the second scenario for the trouser’s pocket

Pocket KS PT W B
Average F1-Score 59.35 85.26 81.4 64.37
Std F1-Score 21.4 7.55 15.93 11.24

From these tables, it is observed that PT samples were overall accurately classified,
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whilst the main classification errors consisted in classifying KS samples as biking, or
biking samples as PT. In both cases, this is about confusing weak activity phases for
biking and scooter riding with being inside PT. In fact, these are phases where the
subjects are more likely to be cruising with both feet resting on the KS deck or on
the bicycle, which may be confused with being inside PT with a low-energy profile. In
fact, in both cases, acceleration and angular rate magnitudes are weak. Besides, it is
important to note that the data were labelled as bicycling and KS riding even when
the participants were in a static mode on their bike or KS, for example while wait-
ing at a street light, which enhances these confusions. As a global conclusion about
the detection performance in the second scenario, the introduction of PT results in a
decreased detection accuracy of both biking and KS. In this case, it is not the intro-
duction of KS that has a negative impact on other classes, but rather the introduction
of PT that makes the classification of bike and KS less accurate.

4.3. Optimal sensor placement

This section recapitulates the classification results in both scenarios and for all sensor
placements and all test users. The mean and standard deviation of the F1-Scores
relative to KS are provided in Figure 16. As this is obviously observed in the figure,
the foot is the placement that offers the best trade-off between F1-Score value and
standard deviation. Note that the latter is supposed to be minimized while the F1-
Score is sought to be maximized. Therefore, even if the pocket has a higher mean
F1-Score relative to KS, it has much higher standard deviation, which reflects much
higher values for the F1-Score for some test subjects, but also much lower values,
which is to be avoided for real life applications. As a result, a foot-mounted sensor is
recommended in studies that seek to optimize the robustness of KS detection.

(a) Model comparison scenario 1 (b) Model comparison scenario 2

Figure 16.: Classification results for the 3 sensor placements

5. Conclusion

This work was a first contribution to the detection of KS among other urban trans-
portation modes with a new improved and publicly released TMD dataset. Our first
focus was about the choice of the relevant signal channels, and classification algo-
rithm, which came out to be the gradient of acceleration and angular rate used with
an Adam-gradient descent CNN algorithm. In the first classification scenario, we were
able to classify KS samples with a mean F1-Score of 80.18% for the sensor located
in the trouser’s pocket and 79.36% for the foot-mounted sensor. Moreover, these val-
ues were computed based on a 5-fold subject-based cross-validation method, which
takes into account the model reliability with regard to handling data from various test
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subjects that were not involved in the training. Yet, once PT patterns were included,
the detection accuracy decreased. In this case, an improving perspective could be to
consider a pushing mode and a cruising mode for KS, as well as a cycling mode and
a cruising mode for bikes, in order to decrease the intra-class variance, which is also a
variable to be minimized while building robust classifiers. In summary, this study has
been fulfilled in that it provided answers to the aforementioned questions. We proved
that detecting KS is feasible, although it gets more challenging when PT is considered.
Besides, results have shown that despite the difficulty to detect KS while including PT,
PT were still accurately classified, meaning that KS inclusion in TMD does not result
in a decrease of the detection accuracy of other transportation modes. An additional
recommendation is to place the sensors in the trouser’s pocket, or on the foot, in order
to capture leg movements during KS riding. Finally, future contributions should also
consider extending the sample distribution to include more varying signal patterns:
healthy elderly, disabled, as well as signals collected during the weekends and holi-
days in order to study the time dependencies that may require necessary algorithmic
adjustments.
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Appendix A. Model design: Random Forest (RF) and Feed-forward Neural
Network (ANN)

Training dataset = 2Matrix of size:
M train instances x S descriptive features

Feature
Subset 1

Tree 1 Tree 2 Tree 30
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Figure 1.: Random Forest
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Figure 2.: ANN architecture
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Appendix B. Model design: Long-Short Term Memory (LSTM) network
and Convolutional Neural Network (CNN)

Training dataset = 3D Matrix of size:
M train instances x P signal samples x Q signal channels
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Figure 1.: LSTM architecture
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Appendix C. Confusion matrices for the first and second scenario

Table 1.: Confusion matrices for the first scenario

Foot W B KS

U1
W 1934 35 121
B 0 1012 147
KS 121 250 1147

Overall Accuracy 85.86%
F1-Score 84.41%

Waist W B KS
W 1811 89 66
B 28 266 0
KS 186 1020 53

60.53%
28.13%

Pocket W B KS
W 1603 0 26
B 35 0 464
KS 342 0 1989

80.56%
85.71%

Foot W B KS

U2
W 1542 0 25
B 0 1286 956
KS 14 402 2480

Overall Accuracy 79.16%
F1-Score 79.59%

Waist W B KS
W 3361 75 22
B 2 450 392
KS 33 1144 3112

80.58%
65.40%

Pocket W B KS
W 3489 32 2
B 0 1099 285
KS 71 2231 3103

74.58%
68.54%

Foot W B KS

U3
W 0 0 9
B 0 0 1324
KS 0 0 2410

Overall Accuracy 64.39%
F1-Score 78.34%

Waist W B KS
W 0 0 243
B 0 0 701
KS 0 0 2326

71.13%
83.13%

Pocket W B KS
W 0 0 42
B 0 0 98
KS 0 0 3464

96.12%
98.02%

Foot W B KS

U4
W 1934 35 121
B 0 1012 147
KS 121 250 1147

Overall Accuracy 85.86%
F1-Score 84.41%

Waist W B KS

U5
W 2085 16 341
B 38 1426 1828
KS 28 191 1877

68.81%
68.49%

Pocket W B KS
W 2186 0 58
B 7 1424 514
KS 111 262 1883

85.23%
84.47%

Foot W B KS

U5
W 482 0 0
B 0 1219 535
KS 22 173 1920

Overall Accuracy 83.22%
F1-Score 86.03%

Waist W B KS
W 6215 0 4
B 765 169 787
KS 8290 1252 1408

41.25%
23.71%

Pocket W B KS
W 231 40 67
B 0 1099 1378
KS 2 1728 3623

60.64%
61.39%
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Table 2.: Confusion matrices of the second scenario

Foot W B PT KS

U1

W 1339 0 0 12
B 0 837 1 205
PT 397 326 4311 147
KS 319 134 31 1024

Overall Accuracy 82.45%
F1-Score 77.63%

Waist W B PT KS
W 626 0 0 6
B 192 279 12 18
PT 13 424 4242 8
KS 1189 672 71 87

66.77%
44.81%

Pocket W B PT KS
W 930 0 0 40
B 344 0 158 821
PT 23 0 4093 290
KS 683 0 81 1328

72.24%
53.71%

Foot W B PT KS

U2

W 1481 0 6 1
B 1 1506 16 1370
PT 27 100 4406 602
KS 42 81 29 1488

Overall Accuracy 79.61%
F1-Score 78.36%

Waist W B PT KS
W 3095 10 34 0
B 0 453 5 113
PT 7 307 4718 2714
KS 289 900 173 699

66.32%
58.67%

Pocket W B PT KS
W 3021 5 16 0
B 0 1375 16 121
PT 167 234 47502214
KS 367 1748 63 1155

67.54%
64.92%

Foot W B PT KS

U3

W 0 0 0 4
B 0 0 0 2837
PT 0 0 0 39
KS 0 0 0 863

Overall Accuracy 23.06%
F1-Score 37.47%

Waist W B PT KS
W 0 0 0 5
B 0 0 0 1412
PT 0 0 0 807
KS 0 0 0 1046

31.99%
48.47%

Pocket W B PT KS
W 0 0 0 0
B 0 0 0 696
PT 0 0 0 176
KS 0 0 0 2732

75.80%
86.24%

Foot W B PT KS

U4

W 1027 0 0 23
B 1 1725 16 1566
PT 44 285 3801 259
KS 89 43 0 2174

Overall Accuracy 78.96%
F1-Score 79.65%

Waist W B PT KS
W 1946 0 0 12
B 26 1228 14 603
PT 54 314 45031757
KS 124 90 47 1674

75.46%
75.32%

Pocket W B PT KS
W 1886 0 0 20
B 41 1273 40 481
PT 40 336 3369 735
KS 338 77 31 1220

78.36%
76.54%
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Foot W B PT KS

U5

W 501 1 30510 0
B 0 559 391654 2
PT 0 0 628957 0
KS 2 832 102790 2453

Overall Accuracy 54.61%
F1-Score 19.63%

Waist W B PT KS
W 12139 14 4098 176
B 825 1206 157093 1248
PT 188 20 716323 3
KS 2111 180 154584 772

69.50%
40.25%

Pocket W B PT KS
W 228 150 17777 611
B 0 778 187677 700
PT 0 0 519417 2
KS 5 1940 329722 3756
Overall Accuracy 49.32%
F1-Score 17.85%
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