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 gives that

where θ ∈ (0, 1) and 1/p θ = 1 -θ. We complement this result by considering the case l ̸ = r. We prove that, when l ̸ = r,

where σ := (1 -θ) l + θr and 1/q = 1 -θ, if and only if l -r ∈ R\ [1, d]. Also, we prove a similar fact when W l,1 is replaced in ( * ) by a space W s,p where s ̸ = r is a real number and p ∈ (1, ∞). Several other problems like the boundedness of the Riesz transforms on interpolation spaces are also considered. In the case of the complex method, it was proved by M. Milman (1983) that, for any 1 < p < ∞,

where 1/p θ = (1 -θ) + θ/p. We show by simple arguments that ( * * ) fails when p = ∞ and l ≥ 1, answering a question of P. W. Jones (1984). As an immediate consequence of these arguments we show that certain closed subspaces of (C(T d )) N (with N ∈ N * ) that are described by Fourier multipliers are not complemented in (C(T d )) N .

Introduction

In this paper we study interpolation properties of classical function spaces such as the Sobolev spaces W l,p (R d ), where l is a nonnegative integer and p ∈ [1, ∞]. Here, as usual, W l,p (R d ) is the space of all distributions f on R d for which the quantity ∥f ∥ W l,p := ∥f ∥ L p + ∇ l f L p is finite.

We will first consider the real interpolation method (for details see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Chapter 3] or [START_REF] Bennett | Interpolation of Operators[END_REF]Chapter 5]). Recall that for a compatible couple (X 0 , X 1 ) of quasi-normed spaces, given the parameters θ ∈ (0, 1) and q ∈ [1, ∞], we define the interpolation space (X 0 , X 1 ) θ,q as being the quasi-normed space of all the elements f ∈ X 0 + X 1 for which the quantity ∥f ∥ (X 0 ,X 1 ) θ,q := ∞ 0 t -θ K t (f, X 0 , X 1 ) q dt t 1/q is finite, where K t is the K-functional, defined by

K t (f, X 0 , X 1 ) := inf ∥f 0 ∥ X 0 + t ∥f 1 ∥ X 1 | f = f 0 + f 1 ,
for any t > 0.

In [START_REF] De Vore | Interpolation of linear operators on Sobolev spaces[END_REF] (1972) De Vore and Scherer explicitly computed the K-functional that corresponds to the couple (W l,1 , W l,∞ ), where l is a nonnegative integer. This allowed them to interpolate between the Sobolev spaces W l j ,p j in the case where l 0 = l 1 = l. Indeed, by reiteration it suffices to have the interpolation result in the case p 0 = 1, p 1 = ∞:

(W l,1 (R d ), W l,∞ (R d )) θ,q = W l,q (R d ), (1) 
where 1/q = 1 -θ (see also [START_REF] Bennett | Interpolation of Operators[END_REF]Corollary 5.13]). The arguments used by De Vore and Scherer are based on a careful analysis involving combinatorial ideas and spline-functions techniques. For a proof based on the Whitney covering lemma see [START_REF] Bennett | Interpolation of Operators[END_REF]Chapter 5,Section 5]. (For a version of (1) on more general domains see [START_REF] Liu | Lusin properties and interpolation of Sobolev spaces[END_REF]Theorem 9].) Also, Bourgain ([6, Theorem 3]) gave a short elegant proof of (1) using the Calderón-Zygmund decomposition and elementary interpolation theory.

On the other hand, we have the following result that corresponds to the case l 0 ̸ = l 1 , p 0 = p 1 = p ∈ [1, ∞] (see [START_REF] Bennett | Interpolation of Operators[END_REF]Theorem 4.17]):

(W l 0 ,p (R d ), W l 1 ,p (R d )) θ,q = B α,q q (R d ), (2) 
for any q ∈ [1, ∞], where α = (1 -θ) l 0 + θl 1 and B α,q q is a Besov space. The proof of this result is based on A. Marchaud's inequalities [START_REF] Bennett | Interpolation of Operators[END_REF]Theorem 4.4]).

Note that the results (1) and ( 2) do not cover most of the cases where l 0 ̸ = l 1 and p 0 ̸ = p 1 . In the nonlimiting case, i.e., p 0 , p 1 ∈ (1, ∞), one can use the characterisation of the spaces W l j ,p j provided by the Littlewood-Paley theory and prove that for any two different nonnegative integers l 0 , l 1 , (W l 0 ,p 0 (R d ), W l 1 ,p 1 (R d )) θ,q = B α,q q (R d ),

where α = (1 -θ) l 0 + θl 1 and 1/q = (1 -θ) /p 0 + θ/p 1 (see Lemma 14 below). This nonlimiting case is less interesting. More interesting are the limiting cases when at least one of the parameters p 0 or p 1 equals 1 or ∞ (and p 0 ̸ = p 1 ). Here, one cannot use the same arguments as for [START_REF] Aronszajn | Interpolation spaces and interpolation methods[END_REF]. This is due to the fact that one cannot describe efficiently spaces as W l,1 and W l,∞ by means of Littlewood-Paley theory.

The interpolation problem in the limiting cases was partially solved in 2003 by Cohen, Dahmen, Daubechies and De Vore in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]. (In fact some partial results were proved earlier. See for instance [START_REF] Cohen | Non linear approximation and the space BV (R 2 )[END_REF].) They proved that, as long as p ∈ (1, ∞) and s ∈ R\ [1 -1/p ′ , 1], we have (BV (R d ), B s,p p (R d )) θ,q = B σ,q q (R d ), [START_REF] Bennett | Interpolation of Operators[END_REF] where σ = (1 -θ) + θs and 1/q = 1 -θ + θ/p. It is not hard to see that in this result we can replace the spaces BV with the Sobolev space W 1,1 and, since B r,2 2 = W r,2 when r is a nonnegative integer, we obtain (W 1,1 (R d ), W r,2 (R d )) θ,q = B σ,q q (R d ), where σ = (1 -θ) + θr and 1/q = 1 -θ + θ/2 as long as r = 0 or r ≥ 2. With this we have at least one result in the limiting case p 0 = 1 that cannot be covered by [START_REF] Adams | Sobolev Spaces[END_REF] and [START_REF] Adams | BMO and smooth truncation in Sobolev spaces[END_REF]. The interpolation result (4) relies on an "almost" characterisation of the space BV by means of wavelets. Note that unlike the Besov spaces or the Sobolev spaces W r,p , for p ∈ (1, ∞), the space BV does not even have an unconditional basis (see for instance the discussion in the introduction of [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]). Hence, it can not be completely described via wavelets. However, the partial description provided by the authors of [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] is sufficient for establishing the interpolation result in (4).

All the above interpolation results remain true in the case of the corresponding homogeneous spaces.

In what follows we will study the interpolation spaces (X 0 , X 1 ) θ,q where at least one of the spaces X j is of the form W l,1 or W r,∞ where l and r are different integers. As we have seen, the cases where the differential regularity of X 0 coincide with the differential regularity of X 1 are well-studied. Hence, we will consider only the case where X 0 and X 1 are of different differential regularity. We will also consider the homogeneous versions of the function spaces and in some situations, for the sake of simplicity, we provide proofs only for the homogeneous version if the situation for the inhomogenous case is similar.

Note that in all the known situations in which we have an explicit description of the interpolation space, as in (1), ( 2), ( 3) and ( 4) the result of the interpolation is a Triebel-Lizorkin space. For instance the interpolation space in [START_REF] Adams | Sobolev Spaces[END_REF] is the space W l,q = F l,q 2 and in (2), ( 3) and ( 4) we have the space B σ,q q = F σ,q q . For this reason it is natural to compare the spaces obtained by interpolation to Triebel-Lizorkin spaces of the form F σ,q τ , where the parameters σ and q are the "right" ones and τ is any number in the interval [1, ∞]. In the case the interpolation space is not a Triebel-Lizorkin space we will call it pathological. The "pathologies" we find while interpolating function spaces will give rise to some other properties of the classical Sobolev spaces. There are however some situations in which we prove only the homogeneous versions (see for instance Corollary 39).

Throughout the entire paper the dimension d of R d will be always at least 2.

Real interpolation. In the case where both endpoints are in a limiting situation we prove the following:

Theorem 1. Suppose l and r, with l ̸ = r, are some nonnegative integers and fix θ ∈ (0, 1). Let σ := (1 -θ) l + θr and q := 1/ (1 -θ). Let X be the interpolation space

X := (W l,1 (R d ), W r,∞ (R d )) θ,q .
If l ∈ R\[r, r + d], then, X = B σ,q q (R d ). In the case l ∈ (r, r + d] no space F σ,q τ , with τ ∈ [1, ∞], embeds in X. The same result holds for the homogeneous spaces.

Remark 2. Suppose that X and Y are two quasi-normed function spaces. When we say that Y does not embed in X we also mean that we have the noninequality ∥f ∥ X ̸ ≲ ∥f ∥ Y , for f ∈ X ∩ Y . Similar quantitative facts are taken into account when we say X ̸ = Y .

In order to prove the above theorem we will need the following generalisation of (4) where the space BV is replaced by W l,1 , where l is any integer, possible negative. (See subsection 2.1 for a definition of the spaces W l,1 when l is a negative integer.) Proposition 3. Consider some parameters l ∈ Z, s ∈ R with s ̸ = l and p ∈ (1, ∞), t ∈ [1, ∞]. If l ≥ 1 and s ∈ R\ [l -1/p ′ , l], or l ≤ 0 and s ∈ R\ [l -d/p ′ , l], then, for any θ ∈ (0, 1), we have (W l,1 (R d ), F s,p t (R d )) θ,q = B σ,q q (R d ), where σ = (1 -θ) l + θs and 1/q = 1 -θ + θ/p. The same result holds for the homogeneous spaces.

In the situation F s,p t = B s,p p , Proposition 3 has been already proven in the case l = 1 (with BV instead of W 1,1 ) by Cohen, Dahmen, Daubechies, De Vore ( [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]) and in the case l = 0 by Cohen ([10]). We prove Proposition 3 by using the technique introduced in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] and [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF]. We use the "almost" characterisation via wavelets of the space ḂV and L 1 that was given in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] and [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF] respectively in order to give similar "almost" characterisations for the spaces Ẇ l,1 . When l ≥ 1 we simply deduce our characterisation of Ẇ l,1 directly from that of ḂV given in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]. When l = 0 we use instead a result from [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF] and then we easily deduce the characterisation of Ẇ l,1 when l ≤ 0.

We mention that according to [20, (16), [START_REF] Janson | Interpolation of subcouples and quotient couples[END_REF], p. 17] it was proved by N. Kruglyak in [START_REF] Kruglyak | Investigations in the theory of real interpolation[END_REF] (1996) 1 (by different methods) that

(L 1 (R d ), B s,p p (R d )) θ,q = B σ,q q (R d ), (5) 
where s > 0, σ = (1 -θ) + θs and 1/q = 1 -θ + θ/p. This covers the particular case l = 0 in Proposition 3, when t = p and s > 0. An explicit computation of the K-functional for the couples (L p , Ẇ k,q ), with p, q ∈ [1, ∞) and k a nonnegative integer, can be found in [21, Part II, Chapter 9] (see also [START_REF] Kruglyak | Smooth analogues of the Calderón-Zygmund decomposition, quantitative covering theorems and the K-functional for the couple (L q , W k,p )[END_REF]). Using the theory in [START_REF] Kislyakov | Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals[END_REF], [START_REF] Pisier | A simple proof of a theorem of Jean Bourgain[END_REF] and (5) it is possible to prove Proposition 3 in the case l < s, t = p. We do not consider this approach here.

Unfortunately, we do not know whether or not the condition s ∈ R\ [l -d/p ′ , l] in Proposition 3 is sharp, unless we are in the case l ≤ 0 (see Corollary 36). This remains an open question. However, when one of the endpoints is a space of the form W r,∞ and the other one is a Triebel-Lizorkin space we can identify all the pathological cases.

Theorem 4. Consider some parameters s ∈ R, r ∈ N with s ̸ = r and let p, q ∈ (1, ∞), θ ∈ (0, 1),

t ∈ [1, ∞], σ ∈ R be such that 1/q = (1 -θ) /p and σ = (1 -θ) s + θr. Let X be the interpolation space X := (F s,p t (R d ), W r,∞ (R d )) θ,q .
If s ∈ R\(r, r +d/p], then, X = B σ,q q . In the case s ∈ (r, r +d/p] no space Ḟ σ,q τ , with τ ∈ [1, ∞], embeds in X. The same result holds for the homogeneous spaces.

Theorem 1 and Theorem 4 seem to be new even in the nonpathological case. The nonpathological cases of Theorem 1 and Theorem 4 are deduced from Proposition 3 by simple arguments that involve duality and the celebrated theorem of T. Wolff proved in [START_REF] Wolff | A note on interpolation spaces[END_REF] concerning the real interpolation method. The proof of Theorem 1 and Theorem 4 in the pathological cases rests on trace theory and the interpolation theorem of T. Wolff. Roughly speaking, we show that (in the pathological cases) the space obtained by interpolation is "closer" to have a trace on a particular subset Γ ⊂ R d than its corresponding Triebel-Lizorkin space F σ,q τ . For instance, in the case of Theorem 1, when r = 0 and l ∈ (0, d/p], the space (W l,1 , L ∞ ) θ,q has a trace on R d-l ≃ R d-l × {0} l , while F σ,q τ = F l/q,q τ has no trace on R d-l .

It is remarkable that this trace argument covers all the pathological cases in Theorem 1 and, combined with T. Wolff's theorem, all the pathological cases in Theorem 4. The main point of the paper is this power of the simple trace argument rather than the result of Proposition 3 or the nonpathological parts of Theorem 1 and Theorem 4.

Theorem 1, Proposition 3 and Theorem 4 above are the subject of subsections 3.2.1 and 3.2.2.

Sums of spaces.

One particular property of any interpolation space (X 0 , X 1 ) θ,q , where (X 0 , X 1 ) is a given compatible couple, is that it embeds in the sum of the endpoint spaces. In other words,

(X 0 , X 1 ) θ,q → X 0 + X 1 . ( 6 
)
In view of this property one can refine Theorem 4. In the most of the pathological cases, as long as we are dealing with homogeneous spaces, one can prove much more. Namely, we have that, if r, p, q, θ, s, σ are as in Theorem 4 and r < s < r + d/p, then (see Proposition 40),

Ḟ σ,q τ (R d ) ̸ → Ḟ s,p t (R d ) + Ẇ r,∞ (R d ). (7) 
This easily follows from Theorem 4 and some dilation arguments that are possible thanks to the fact that we work with the homogeneous version of the spaces. Of a particular interest is also the inhomogeneous version of this result. Restricting ourselves to the case of the inhomogeneous Sobolev-Slobodeckii spaces one can deduce from [START_REF] Bricchi | Tailored Besov spaces and h-sets[END_REF] the following proposition: Proposition 5. Let r be a nonnegative integer and let p, q ∈ [1, ∞), θ ∈ (0, 1), s, σ ∈ R be some parameters such that 1/q = (1 -θ) /p and σ = (1 -θ) s + θr. If r < s < r + d/p, then

W σ,q (R d ) ̸ → W s,p (R d ) + W r,∞ (R d ).
This is in contrast with the fallowing fact proved by P. Mironescu in [START_REF] Mironescu | Sum-Intersection Property of Sobolev Spaces[END_REF] (see [START_REF] Mironescu | Sum-Intersection Property of Sobolev Spaces[END_REF]Theorem 1.4]). Suppose s 0 , s 1 > 0, with s 0 ̸ = s 1 , 1 ≤ p 0 < p 1 < ∞, and 1/q = (1 -θ) /p 0 + θ/p 1 , σ = (1 -θ) s 0 + θs 1 for some η ∈ (0, 1).Then,

W σ,q (R d ) → W s 0 ,p 0 (R d ) ∩ W σ,q (R d ) + W s 1 ,p 1 (R d ) ∩ W σ,q (R d ).
In particular, we have

W σ,q (R d ) → W s 0 ,p 0 (R d ) + W s 1 ,p 1 (R d ). ( 8 
)
As it was shown in [START_REF] Mironescu | Sum-Intersection Property of Sobolev Spaces[END_REF], if we drop the condition p 1 < ∞, the embedding (8) may fail. The example given in [START_REF] Mironescu | Sum-Intersection Property of Sobolev Spaces[END_REF] is the nonembedding

W 1-θ,1/(1-θ) (R) ̸ → W 1,1 (R) + L ∞ (R) → L ∞ (R).
Proposition 5 above enlarges the number of examples of this kind. In fact, supposing the condition p 1 < ∞ fails, Proposition 5 together with the nonpathological part of Theorem 4 and formula [START_REF] Bourgain | Some consequences of Pisier's approach to interpolation[END_REF], can decide in most of the cases whether or not [START_REF] Caetano | Traces for Besov spaces on fractal h-sets and dichotomy results[END_REF] holds. More precisely, if

p 1 = ∞, s 1 ∈ N, s 0 /
∈ {s 1 , d/p 0 } and σ is not an integer2 , then (8) holds if and only if s 0 ∈ R\(s 1 , s 1 +d/p 0 ). If s 0 = s 1 , then [START_REF] Caetano | Traces for Besov spaces on fractal h-sets and dichotomy results[END_REF] still holds thanks to (1) and ( 6). The case s 0 = d/p remains open.

The Riesz transforms.

There is yet another aspect of the pathological situations that deserves attention: the boundedness of some common singular integral operators such as the Riesz transforms on spaces obtained by interpolation. Here, the Riesz transforms R 1 , ..., R d on R d are the operators defined by the equality

R j f (ξ) := iξ j |ξ| f (ξ) ,
for any Schwartz function f on R d and any j ∈ {1, ..., d}. (Here, as usual, f is the Fourier transform of f .) We study the Riesz transforms on the interpolation spaces that appear in the pathological case of Proposition 4, when r = 0 and s < d/p. More precisely, we prove that, as long as s ∈ (0, d/p) none of the Riesz transforms R j is bounded on the space

X := (F s,p t (R d ), L ∞ (R d )) θ,q ,
where the parameters p, t, θ and q are as in the statement of Theorem 4 (see Proposition 41). Even worse, no R j is bounded from (F s,p t , L ∞ ) θ,1 to (F s,p t , L ∞ ) θ,∞ (see Proposition 45). This is in contrast to the fact that the Riesz transforms are bounded on the interpolation space

(F 0,p 2 (R d ), L ∞ (R d )) θ,q = (L p (R d ), L ∞ (R d )) θ,q = L q (R d ).
We prove this nonboundedness result by combining Theorem 4 with the remarkable result of Adams and Frazier obtained in [START_REF] Adams | BMO and smooth truncation in Sobolev spaces[END_REF] (1988) that

BM O ∩ F s,p t = L ∞ ∩ F s,p t + R 1 (L ∞ ∩ F s,p t ) + ... + R d (L ∞ ∩ F s,p t ), (9) 
as long as s > 0 and p, t ∈ (1, ∞). This in turn rests on a celebrated construction of Uchiyama and some ideas of Baernstein (see [START_REF] Adams | BMO and smooth truncation in Sobolev spaces[END_REF] for the references therein), also making use of the atomic decomposition for the spaces F s,p t . It is natural to expect that R j are unbounded on X in the most general pathological situation described by the statement of Theorem 4. However, this problem remains open.

Interpolation functors. Thanks to the extremal properties of the real interpolation method one can easily improve our result concerning the pathological situation of Theorem 4. Proposition 6. Consider the parameters s ∈ R, r ∈ N with s ̸ = r and let p, q ∈ (1, ∞), θ ∈ (0, 1), t ∈ [1, ∞], σ ∈ R as in the statement of Theorem 4. Moreover, suppose that s ∈ (r, r + d/p] and fix some τ ∈ [1, ∞]. Then, F σ,q τ is not an interpolation space of exponent θ with respect to the couple (F s,p t , W r,∞ ). The same result holds for the homogeneous spaces.

Proposition 6 has the following immediate consequence for the homogeneous version of the spaces. With the same notation as in Proposition 6, if s ∈ (r, r + d/p), then there exists a linear operator

T : Ḟ s,p t + Ẇ r,∞ → Ḟ s,p t + Ẇ r,∞ ,
that is bounded on Ḟ s,p t and on Ẇ r,∞ , and not bounded on Ḟ σ,q τ (see Corollary 39).

Complex interpolation.

In section 4 we study some aspects of the complex interpolation of Sobolev type spaces. (See for instance [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Chapter 4] for a description of the complex method.) By means of Littlewood-Paley theory and retraction method it is easy to obtain that, for any θ ∈ (0, 1) and any l ∈ N * , (W l,p 0 , W l,p 1 ) θ = W l,p θ , [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF] as long as p 0 , p 1 ∈ (1, ∞) and 1/p θ = (1 -θ) /p 0 + θ/p 1 (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Chapter 6]). We cannot handle the case p 0 = 1 by Littlewood-Paley theory. However, as it was proved by M. Milman in 1983 ([29, Theorem B]) the equality [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF] continues to hold even in the case p 0 = 1, p 1 ∈ (1, ∞). The main tool used by Milman rests on a result of J. Peetre that makes a connection between the complex and the real interpolation method via the concept of Fourier type of a Banach space. The case where p 1 = ∞ is also of interest. Here, neither the Littlewood-Paley theory or Milman's method can be applied. In 1984 ([18, p. 173]) P. W. Jones asked if [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF] continues to hold when 1 ≤ p 0 < p 1 = ∞. In subsection 4.1 we give a negative answer to this question. The fact that [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF] fails in this extreme case is a consequence of the following slightly more general negative result (see Remark 47 and Corollary 48):

Proposition 7. Let l ≥ 0 be an integer and consider some parameters 1 ≤ p, q < ∞ and s > 1/p. Fix some θ ∈ (0, 1) and define σ := (1 -θ) s + θl, ρ := p/(1 -θ). Then, for any 1 ≤ t < ∞ we have that

F σ,ρ t (R d ) ̸ → (F s,p q (R d ), W l,∞ (R d )) θ . (11) 
As in the case of the real method, we prove Proposition 7 by a simple trace argument. This time, we show that (F s,p q (R d ), W l,∞ (R d )) θ has a trace on R d-1 that is embedded in a space F σ,ρ ρ 1 (R d-1 ) where ρ 1 < ρ, while the trace of

F σ,ρ t (R d ) is the space F σ,ρ ρ R d-1 . It remains to notice that F σ,ρ ρ (R d-1
) is strictly larger than F σ,ρ ρ 1 (R d-1 ).

Noncomplemented subspaces. The trace technique also allows us to easily see that some closed subspaces of C(T d ) N (where N is a positive integer) are not complemented. Recall the following result obtained by G. M. Henkin in [START_REF] Henkin | The nonexistence of a uniform homeomorphism between spaces of smooth functions of one and of n variables ( n ≥ 2)[END_REF] (1967).

Proposition 8. Suppose l ≥ 1 and d ≥ 2 are two integers. Then, the space C l (T d ) is not an isomorphic copy of a complemented subspace of C(S), for any compact space S.

This result was improved by S. V. Kislyakov [START_REF] Kislyakov | Sobolev embedding operators and the nonisomorphism of certain Banach spaces[END_REF] (1975) who showed, using the Grothendieck theorem on absolutely summing operators, that C l (T d ) (l ≥ 1) is not an isomorphic copy of a quotient space of C(S). Note that Proposition 8 implies the fact that the closed subspace G l (C) of (C(T d )) N (here, N = | α ∈ N d | |α| = l |) formed by the l-gradients (elements of the form ∇ l f ) is not complemented in (C(T d )) N . This result was generalized to other differential expressions (than l-gradients) by the authors of [START_REF] Kislyakov | Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension[END_REF] (2015). They used Grothendieck's theorem and some Sobolev type embeddings. We will prove that G l (C) is not complemented in (C(T d )) N using trace theory. In fact we will prove in subsection 4.2 a more general result (see Proposition 50) that involves Fourier multipliers instead of differential expressions. Our result, Proposition 50, has a more restricted range of applications than the main result of [START_REF] Kislyakov | Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension[END_REF]. However, it has a shorter proof and it covers some cases that are not covered by the results in [START_REF] Kislyakov | Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension[END_REF]. We mention that Proposition 50 is not the most general result that can be obtained by our method, however, for simplicity we do not provide here further generalisations.

General remark. Several general observations are in order. The main point of the paper is the study of some of the pathological situations that arise in the interpolation theory of Sobolev type spaces. One of our main tools is trace theory. When we consider traces on subspaces of R d , we are using standard trace theory as presented for instance in [START_REF] Triebel | Theory of function spaces II[END_REF]Chapter 4,Section 4.4]. In some cases we need to consider traces on fractal type subsets of R d . In these cases we use the more recent trace theory developed (between others) by M. Bricchi, A.M. Caetano and D.D. Haroske (see [START_REF] Caetano | Traces for Besov spaces on fractal h-sets and dichotomy results[END_REF] and the reference therein). We will recall in the Appendix several results from the trace theory that will be used in the paper.

Apart from the nontrivial results given in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] and [START_REF] Adams | BMO and smooth truncation in Sobolev spaces[END_REF] (see (4) and ( 9) above), we use standard facts from the interpolation theory as can be found in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] and [START_REF] Bennett | Interpolation of Operators[END_REF]. Also, we use standard facts from the theory of function spaces as can be found for instance in [START_REF] Triebel | Theory of function spaces II[END_REF], [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF]Chapter 3] or [START_REF] Grafakos | Classical Fourier Analysis[END_REF].

Notation. Throughout the paper we use mainly standard notation. For example N = {0, 1, 2, ...} is the set all natural numbers, N * = {1, 2, ...} is the set of the positive natural numbers and Z is the set of integers.

Often, we use the symbols ≲ and ∼. For two nonnegative variable quantities a and b we write a ≲ b if there exists a constant C > 0 such that a ≤ Cb. If a ≲ b and b ≲ a, then we write a ∼ b. Other notation will be introduced when needed. Some notation will be used only in one section. For instance, we will denote by φ and ψ some functions related to the wavelets that appear in subsection 3.1. Outside of section 3.1, φ and ψ will have a different meaning. This re-use of the notation should be clear from the context.

2 Function spaces and interpolation

Homogeneous and inhomogeneous spaces

We quickly recall here the definition of some standard function spaces. We begin by recalling the definition of the Sobolev spaces. As we have already mentioned, when l ≥ 0 is an integer and p ∈ [1, ∞], W l,p (R d ) is the space of all distributions f on R d for which the quantity ∥f ∥ W l,p := ∥f ∥ L p + ∇ l f L p is finite. The homogeneous spaces will be defined here in a slightly nonstandard way 3 . Let S ♯ be space of all Schwartz functions f on R d such that f vanishes in a neighborhood of 0. When 1 ≤ p < ∞ the homogeneous space Ẇ l,p (R d ) is obtained by completion of S ♯ under the norm

∥f ∥ Ẇ l,p := ∇ l f L p .
We can see that we can also define the above homogeneous spaces Ẇ l,p by completing the normed function spaces Ẇ l,p c (R d ). Here, Ẇ l,p c (R d ) is the space of all the compactly supported functions whose Ẇ l,p -norm is finite. The spaces Ẇ l,p as defined here are complete. The main advantage of the above definition of the homogeneous Sobolev spaces is that we have the embedding

Ẇ l 1 ,p 1 (R d ) → Ẇ l 2 ,p 2 (R d ), (12) 
for any In the case where l = -r ≤ 0 and 1 ≤ p < ∞ we define W l,p (R d ) and Ẇ l,p (R d ) by completion of S ♯ under the norms

l 1 , l 2 ∈ N, p 1 , p 2 ∈ (1, ∞) with l 1 > l 2 and l 1 -d/p 1 = l 1 -d/
∥f ∥ W l,p := inf    |α|≤r ∥f α ∥ L p | f = |α|≤r ∇ α f α    , and ∥f ∥ Ẇ l,p := inf    |α|=r ∥f α ∥ L p | f = |α|=r ∇ α f α    ,
respectively. Note that when l ≤ 0 the spaces W l,p and Ẇ l,p are Banach spaces whose elements are distributions. When l ≥ 1 we can also define the space Ẇ l,p (R d ) as being isomorphic to the dual of Ẇ -l,p (R d ) where the isomorphism is chosen such that Ẇ

l,p c (R d ) → Ẇ l,p (R d ). Also, when p ∈ [1, ∞) we have that (W -r,p (R d )) * = W r,p ′ (R d ) and when p ∈ (1, ∞) we have ( Ẇ -r,p (R d )) * = Ẇ r,p ′ (R d ). When l ≥ 1 we define the space Ẇ l,∞ (R d ) as being isomorphic to the dual of Ẇ -l,1 (R d ) and the isomorphism is chosen such that Ẇ l,∞ c (R d ) → Ẇ l,∞ (R d ).
In some situations it will be convenient to use the spaces C l (R d ), C l 0 (R d ) and its homogeneous version Ċl 0 (R d ). We define C l 0 (R d ) as being the closure of the space of Schwartz functions in the W l,∞ -norm. Similarly, we define Ċl 0 (R d ) as being the closure of the space of Schwartz functions in the Ẇ l,∞ -norm.

We continue by briefly recalling the definition of the Triebel-Lizorkin and Besov spaces (see [START_REF] Triebel | Theory of function spaces II[END_REF] for details). Consider a radial function Φ ∈ C ∞ c (R d ) such that supp Φ ⊂ B(0, 2) and Φ ≡ 1 on B(0, 1). For k ∈ Z we define the operators P k , acting on the space of tempered distributions on R d , by the relation

P k f (ξ) := Φ ξ 2 k -Φ ξ 2 k-1 f (ξ) , (13) 
for any Schwartz function f on R d . We will also consider the operator P ≤0 defined by

P ≤0 f (ξ) := Φ (ξ) f (ξ)
for any Schwartz function f on R d . The operators P ≤0 , P k will be called Littlewood-Paley "projections" adapted to R d . For any Schwartz function f we have that

f = k∈Z P k f ,
in the sense of tempered distributions. In some cases it is useful to consider another function Φ ∈ C ∞ c (R d ), similar to Φ, such that supp Φ ⊂ B(0, 4) and Φ ≡ 1 on B(0, 1/2) and, starting from this to consider some Littlewood-Paley projections Pk and P≤0 . We have the useful identities Pk P k = P k and P≤0 P ≤0 = P ≤0 .

The inhomogeneous Triebel-Lizorkin space F s,p q (R d ) (with 1 ≤ p, q < ∞ and s a real number) is the space consisting of those tempered distributions f on R d for which the following norm is finite:

∥f ∥ F s,p q := ∥P ≤0 f ∥ L p + k≥0 2 skq |P k f | q 1/q L p . A remarkable fact is that, if l ≥ 0 is an integer and 1 < p < ∞, then F l,p 2 (R d ) = W l,p (R d
) with equivalent norms (see for instance [START_REF] Triebel | Theory of function spaces II[END_REF]Theorem (iii), p. 29]).

The Besov space B s,p q (R d ) (with 1 ≤ p, q ≤ ∞ and s a real number) is the inhomogeneous Besov space consisting of those tempered distributions f on R d for which the following norm is finite:

∥f ∥ B s,p q := ∥P ≤0 f ∥ L p + k≥0 2 skq ∥P k f ∥ q L p 1/q . If s > 0 is not an integer and 1 < p < ∞, then B s,p p (R d ) = W s,p (R d
) with equivalent norms. Here, W s,p is a Sobolev-Slobodeckii space (see for instance [35, p. 12] for a definition).

The homogeneous space Ḟ s,p q (R d ) (with 1 ≤ p, q < ∞ and s a real number) is obtained by completion of S ♯ under the norm

∥f ∥ Ḟ s,p q := k∈Z 2 skq |P k f | q 1/q L p . When k ≥ 0 is an integer and 1 < p < ∞, then Ḟ k,p 2 (R d ) = Ẇ k,p (R d
) with equivalent norms. The space Ḃs,p q (R d ) (with 1 ≤ p, q ≤ ∞ and s a real number) is obtained by completion of S ♯ under the norm ∥f ∥ Ḃs,p

q := j∈Z 2 skq ∥P k f ∥ q L p 1/q .
In the above definitions of the Triebel-Lizorkin and Besov spaces one can use also the "projections" Pk , P≤0 instead of P k , P ≤0 without changing the spaces we obtain.

If s > 0 is not an integer and 1 < p < ∞, then Ḃs,p p (R d ) = Ẇ s,p (R d ) with equivalent norms (for simplicity we may consider that this is the definition of Ẇ s,p R d ). One can also define Ẇ s,p as being the completion of S ♯ or Ẇ s,p c (R d ) under the Ẇ s,p (R d )-norm. We have that Ḟ 0,1 2 (R d ) can be identified with the Hardy space

H 1 R d (see for instance [15, Remark 6.5.2, p. 70]). The space Ḟ 0,∞ 2 R d is defined as the dual of Ḟ 0,1 2 (R d ) = H 1 (R d ), i.e., Ḟ 0,∞ 2 (R d ) = BM O(R d ).
In the inhomogeneous case, we have that F 0,1 2 can be identified with the local Hardy space h 1 R d (see for instance [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF]Proposition 2.1.2,p. 14]). The space

F 0,∞ 2 (R d ) is defined as the dual of F 0,1 2 (R d ) = h 1 (R d ), i.e., F 0,∞ 2 (R d ) = bmo(R d
), the local bounded mean oscillation space (see for instance [35, p. 13] for a definition). We will use several times the embeddings

L ∞ (R d ) → BM O(R d ) and L ∞ (R d ) → bmo(R d ).
Note that for the homogeneous spaces on R d we have the following dilation properties:

f λ Ḟ s,p q ∼ λ s-d/p ∥f ∥ Ḟ s,p q , ( 14 
)
for any f ∈ Ḟ s,p q (R d ) respectively and any λ > 0, where f λ (•) := f (λ•). A similar equivalence holds for Ḃs,p q instead of Ḟ s,p q . Also,

f λ Ẇ l,1 ∼ λ l-d ∥f ∥ Ẇ l,1 and f λ Ẇ l,∞ ∼ λ l ∥f ∥ Ẇ l,∞ , (15) 
when

f ∈ Ẇ l,1 (R d ) or f ∈ Ẇ l,∞ (R d ) respectively 4 .
Remark 9. The properties of the homogeneous spaces that we define here are in most cases deduced from the properties of their inhomogeneous versions (see for instance [START_REF] Cohen | Non linear approximation and the space BV (R 2 )[END_REF] or the tool provided by Lemma 11 below). Apart from this, we also need some interpolation identities that are similar to those of the standard spaces (see for instance Lemma 14 and its proof ). The standard definition for the Hardy space H 1 coincides with our definition of Ḟ 0,1 2 and we can use the wellknown properties of H 1 in this case. Other easy facts can be checked by standard arguments.

Remark 10. In fact, we could choose to define the homogeneous spaces only as normed spaces endowed with the corresponding norm. This is due to the fact that in order to define a real interpolation space for a compatible couple the completeness of the involved spaces is not required. However, in order to avoid some technical details appearing in the proofs of our results, we prefer the definition given in this subsection.

In a similar way we can define Triebel-Lizorkin and Besov spaces on T d . The properties of the spaces defined on the T d are similar to those of the spaces defined on R d (see [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF]Chapter 3] for details). When working on T d it is sometimes convenient to consider functions whose integral on T d vanishes. In general, if X(T d ) is a function space on T d (in this case all the elements of X T d will be taken to be distributions) we denote by X ♯ (T d ) the subspace of X(T d ) generated by the distributions f ∈ X(T d ) for which f (0) = 0.

Let Ω be a Lipschitz bounded domain in R d . Then, F s,p q (Ω) (with 1 ≤ p, q < ∞ and s a real number) is the space consisting of restrictions to Ω of elements from F s,p q (R d ), normed with

∥f ∥ F s,p q (Ω) := inf ∥g∥ F s,p q (R d ) | g ∈ F s,p q (R d ), g = f on Ω .
In a similar way B s,p q (Ω) (with 1 ≤ p, q ≤ ∞ and s a real number) is the space consisting of restrictions to Ω of elements from B s,p q R d , normed with

∥f ∥ B s,p q (Ω) := inf ∥g∥ B s,p q (R d ) | g ∈ B s,p q (R d ), g = f on Ω .
Analogously, we can define the spaces Ḟ s,p q (Ω), Ḃs,p q (Ω), Ẇ l,∞ (Ω) or other similar spaces.

When s > 0 we have that F s,p q = L p ∩ Ḟ s,p q and B s,p q = L p ∩ Ḃs,p q . In what follows we will introduce a tool (possibly well-known) that will enable us to make another connection between the homogeneous spaces and their inhomogeneous counterpart.

Consider the family of open cubes (

Q k ) k∈Z d , where Q k := k + (-1, 1) d for all k ∈ Z d and let χ ∈ C ∞ c (-1, 1) d with χ ≡ 1 on [-3/2, 3/2] d . For each k ∈ Z d we define the function χ k by χ k (x) := χ(x -k) ν∈Z d χ(x -ν) , for any x ∈ R d . We observe that χ k ∈ C ∞ c (Q k ), χ k ∼ 1 on k + [-3/2, 3/2] d and k∈Z d χ k ≡ 1, on R d .
By solving a linear system one can find for each m ∈ N a unique single variable polynomial p m (t) of degree m, such that

1 -1 ∂ j t p m (t)dt = δ jm , (16) 
for any j ∈ N, where δ jm is the Kronecker symbol. For any multiindex α = (α 1 , ..., α d ) ∈ N d we consider the polynomial p α (x) := p α 1 (x 1 )...p α d (x d ). By [START_REF] Henkin | The nonexistence of a uniform homeomorphism between spaces of smooth functions of one and of n variables ( n ≥ 2)[END_REF] we have

Q 0 ∇ β p α (x)dx = δ βα , (17) 
for any β ∈ N d .

Fix now some l ∈ N * . For any Schwartz function f on R d and any k ∈ Z d we define some polynomials p l k (depending on f ) of degree at most l -1 by

p l k (x) := |α|≤l-1 Q k ∇ α f (y)dy p α (x -k).
Thanks to [START_REF] Janson | Interpolation of subcouples and quotient couples[END_REF] we have

Q k ∇ β (f -p l k )(x)dx = 0,
for any β ∈ N d with |β| ≤ l -1 and any k ∈ Z d . Hence, by Poincaré's inequality (see for instance [START_REF] Ziemer | Weakly Differentiable Functions[END_REF]Chapter 4]), for any integers a and j satisfying 0 ≤ a ≤ j ≤ l and any k ∈ Z d , we have that

∇ a (f -p l k )) L p (Q k ) ≲ ∇ j (f -p l k )) L p (Q k ) , (18) 
for any p ∈ [1, ∞].
With this notation we can now introduce the linear operator

L l f := k∈Z d χ k (f -p l k ),
for any Schwartz function f on R d .

Note that, by introducing a second operator L,

Ll f := k∈Z d χ k p l k ,
we obtain the decomposition f = L l f + Ll f. Lemma 11. Let p ∈ (1, ∞), s > 0 be some parameters and let l be the smallest integer with l ≥ s.

(i) The operator L l : Ẇ s,p (R d ) → W s,p (R d ) is bounded. (ii) The operator Ll : Ẇ s,p (R d ) → Ẇ s,p (R d ) ∩ W r,∞ (R d ) is bounded for any r ∈ N.
Proof. First we prove Lemma 11 in the case s ∈ N * . In this case we have l = s. For any Schwartz function f and any integer a with 0 ≤ a ≤ l, we have

∥∇ a L l f ∥ p L p (R d ) ≲ k∈Z d ∇ a (χ k (f -p l k )) p L p (Q k ) ≲ k∈Z d a j=0 ∇ a-j χ k ∇ j (f -p l k ) p L p (Q k ) ≲ a j=0 k∈Z d ∇ j (f -p l k ) p L p (Q k ) ≲ k∈Z d ∇ l f p L p (Q k ) ∼ ∇ l f p L p (R d ) ,
where we have used the Poincaré inequality (see [START_REF] Jones | Complex interpolation between Sobolev spaces[END_REF]). This proves (i) in the case l = s. Let us observe that, in the case 0 ≤ a ≤ l -1, we can also write

∥∇ a L l f ∥ p L p (R d ) ≲ a j=0 k∈Z d ∇ j (f -p l k ) p L p (Q k ) ≲ k∈Z d ∇ l-1 (f -p l k ) p L p (Q k ) ≲ k∈Z d ∇ l-1 f p L p (Q k ) + k∈Z d ∇ l-1 p l k p L p (Q k ) ≲ ∇ l-1 f p L p (R d ) + k∈Z d Q k ∇ l-1 f (x) dx p , (19) 
where, in order to pass to the second "≲" we have used [START_REF] Jones | Complex interpolation between Sobolev spaces[END_REF]. By Jensen's inequality we have

Q k ∇ l-1 f (x) dx p ≲ Q k ∇ l-1 f (x) p dx,
and from [START_REF] Kislyakov | Sobolev embedding operators and the nonisomorphism of certain Banach spaces[END_REF] we obtain

∥∇ a L l f ∥ p L p (R d ) ≲ ∇ l-1 f p L p (R d ) .
We have now that L l is bounded from Ẇ l,p to W l,p and also from Ẇ l-1,p to W l-1,p . By real interpolation one obtain that L l is bounded from Ḃs,p p to B s,p p . In a similar way, using the complex interpolation, we obtain that L l is bounded from Ḟ s,p 2 to F s,p 2 . This proves (i). In order to prove (ii) one observe that Ll = id -L l . This proves that Ll is bounded from Ẇ s,p to Ẇ s,p . On the other hand, we observe that Ll is bounded from Ẇ l,p to W r,∞ for any integer r ≥ 0. Indeed, let us consider for each integer a with 0 ≤ a ≤ l -1, the parameter p a ∈ (1, ∞) defined by the relation 1/p a = 1/p -(l -a)/d. Using Jensen's inequality and the Sobolev embedding Ẇ l,p → Ẇ a,pa (see [START_REF] Cohen | Non linear approximation and the space BV (R 2 )[END_REF]) we can write

∇ j p l k L ∞ (Q k ) ≲ l-1 a=0 Q k |∇ a f (x)| dx ≲ l-1 a=0 Q k |∇ a f (x)| pa dx 1/pa ≤ l-1 a=0 R d |∇ a f (x)| pa dx 1/pa = l-1 a=0 ∥f ∥ Ẇ a,pa (R d ) ≲ ∥f ∥ Ẇ l,p (R d ) ,
for each integer 0 ≤ j ≤ l -1. Since p l k is a polynomial of degree at most l -1 we have ∇ j p l k ≡ 0 for any j ≥ l. Hence, we can write

∇ j p l k L ∞ (Q k ) ≲ ∥f ∥ Ẇ l,p (R d ) ,
for each integer j ≥ 0. Using this we get

∇ r Ll f L ∞ (R d ) ≲ sup k∈Z d r j=0 ∇ r-j χ k ∇ j p l k L ∞ (Q k ) ≲ sup k∈Z d r j=0 ∇ j p l k L ∞ (Q k ) ≲ ∥f ∥ Ẇ l,p (R d ) .
As in the case of (ii) we can now prove by interpolation that Ll is bounded from Ẇ s,p to W r,∞ . This proves Lemma 11. □

Some auxiliary interpolation facts

Note that the trace of L ∞ (R d ) on R d-1 is not well-defined. Since we are going to use trace theory, it is convenient to replace the space L ∞ with C (and W r,∞ with C r ). The following easy lemma ensures us that, when interpolating the couple (F s,p t , W r,∞ ), changing W r,∞ with C r does not affect the result of the interpolation. Lemma 12. Let r be a nonnegative integer and consider the parameters p, t ∈ (1, ∞), s > 0. Then, for any fixed θ ∈ (0, 1),

(F s,p t (R d ), W r,∞ (R d )) θ = (F s,p t (R d ), C r 0 (R d )) θ , (20) 
with equivalence of norms. Also, for any q ∈ [1, ∞],

(F s,p t (R d ), W r,∞ (R d )) θ,q = (F s,p t (R d ), C r 0 (R d )) θ,q , (21) 
with equivalence of norms.

The same fact holds for the homogeneous spaces or for the spaces defined on T d .

Remark 13. Since C r 0 → C r , in the case of the inhomogeneous spaces we have by ( 20) and ( 21)

that (F s,p t (R d ), W r,∞ (R d )) θ = (F s,p t (R d ), C r (R d )) θ , (22) 
and (F s,p t (R d ), W r,∞ (R d )) θ,q = (F s,p t (R d ), C r (R d )) θ,q , (23) 
respectively.

Proof. Since (C 0 ) * = M, where M is the space of the Radon measures on R d , we get that (C r 0 ) * = M -r , where M -r is the space of all distributions f of the form

f = |α|≤r ∇ α µ α ,
where each µ α belongs to M (see for instance [START_REF] Ziemer | Weakly Differentiable Functions[END_REF]Section 4.3]). The norm on M -r is given by

∥f ∥ M -r := inf    |α|≤r ∥µ α ∥ M | f = |α|≤r ∇ α µ α    .
We have now that (see [5, Corollary 4.5.2, p. 98])

(F s,p t , C r 0 ) * θ = ((F s,p t ) * , (C r 0 ) * ) θ = (F -s,p ′ t ′ , M -r ) θ . (24) 
Consider some element g

∈ (F -s,p ′ t ′ , M -r ) θ and some f ∈ F(F -s,p ′ t ′ , M -r ) such that a = f (θ) and ∥f ∥ F (F -s,p ′ t ′ ,M -r ) ≤ 2 ∥g∥ (F -s,p ′ t ′ ,M -r ) θ . ( 25 
)
Consider some φ ∈ C ∞ c (R d ) of integral 1 and for any ε > 0 denote by φ ε the function

φ ε (x) = ε -d φ(ε -1 x). Define the function f ε by f ε (z, x) := f (z) * φ ε (x),
where the convolution is in the variable x. One can see immediately that

f ε ∈ F(F -s,p ′ t ′ , W -r,1 ) and ∥f ε ∥ F (F -s,p ′ t ′ ,W -r,1 ) ≤ ∥f ∥ F (F -s,p ′ t ′
,M -r ) , for any ε > 0. This, together with [START_REF] Kruglyak | Smooth analogues of the Calderón-Zygmund decomposition, quantitative covering theorems and the K-functional for the couple (L q , W k,p )[END_REF] shows that

∥g ε ∥ (F -s,p ′ t ′ ,W -r,1 ) θ ≤ 2 ∥g∥ (F -s,p ′ t ′ ,M -r ) θ , (26) 
for any ε > 0, where

g ε := g * φ ε . Note that, since F -s,p ′ t ′
is reflexive, by Calderón's reflexivity theorem (see [9, Paragraph 12.2, p. 121]) the space (F -s,p ′ t ′ , W -r,1 ) θ is reflexive. One can easily see that (F -s,p ′ t ′ , W -r,1 ) θ is separable (it suffices to see that S ♯ is dense in F -s,p ′ t ′ ∩ W -r,1 ). Consequently, we have that since (F -s,p ′ t ′ , W -r,1 ) * θ is reflexive, and its dual is (

F -s,p ′ t ′ , W -r,1 ) θ , we get that (F -s,p ′ t ′ , W -r,1 ) * θ is separable. 5 The space (F -s,p ′ t ′ , W -r,1 ) * θ is also a predual of (F -s,p ′ t ′
, W -r,1 ) θ . By applying the sequential Banach-Alaoglu theorem, one can find some g ∈ (F -s,p ′ t ′ , W -r,1 ) θ such that g 1/n → g when n → ∞ in the sense of distributions, up to a subsequence. Since g ε → g in the sense of distributions when ε → 0 and g,

g ∈ F -s,p ′ t ′ + W -r,1 , we get g = g ∈ (F -s,p ′ t ′
, W -r,1 ) θ . Also, by [START_REF] Lindenstrauss | Classical Banach Spaces. II, Function Spaces, Ergeb. Math. Grenzgeb[END_REF] one gets

∥g∥ (F -s,p ′ t ′ ,W -r,1 ) θ ≤ lim inf ε→0 ∥g ε ∥ (F -s,p ′ t ′ ,W -r,1 ) θ ≤ 2 ∥g∥ (F -s,p ′ t ′ ,M -r ) θ . With this we have (F -s,p ′ t ′ , M -r ) θ → (F -s,p ′ t ′ , W -r,1 ) θ .
Since we also have the trivial embedding

(F -s,p ′ t ′ , M -r ) θ ← (F -s,p ′ t ′ , W -r,1 ) θ , we get (F -s,p ′ t ′ , M -r ) θ = (F -s,p ′ t ′ , W -r,1 ) θ .
By this and [START_REF] Kruglyak | Investigations in the theory of real interpolation[END_REF] we have

(F s,p t , C r 0 ) * θ = (F -s,p ′ t ′ , W -r,1 ) θ .
Calderón's reflexivity theorem and the duality theorem ([5, Corollary 4.5.2, p. 98]) give now that (F s,p t , C r 0

) θ = (F s,p t , C r 0 ) * * θ = (F -s,p ′ t ′
, W -r,1 ) * θ = (F s,p t , W r,∞ ) θ , which proves [START_REF] Kislyakov | Stability of approximation under singular integrals, and Calderón-Zygmund type decompositions[END_REF].

One can prove equality [START_REF] Kislyakov | Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals[END_REF] directly or one can deduce it from [START_REF] Kislyakov | Stability of approximation under singular integrals, and Calderón-Zygmund type decompositions[END_REF] (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Theorem 4.7.2]):

(F s,p t , W r,∞ ) θ,q = ((F s,p t , W r,∞ ) 1/2 , (F s,p t , W r,∞ ) 3/2 ) η,q = ((F s,p t , C r ) 1/2 , (F s,p t , C r ) 3/2 ) η,q = (F s,p t , C r ) θ,q ,
where η ∈ (0, 1) is such that θ = (1 -η)/2 + 3η/2.

On the same lines we can prove the corresponding equalities in the case of the homogeneous spaces and the spaces on T d . □

We will often need the following result concerning the real interpolation of Triebel-Lizorkin spaces.

Lemma 14. Consider some parameters p 0 , p 1 ∈ [1, ∞), s 0 , s 1 ∈ R and t 0 , t 1 ∈ [1, ∞] such that p 0 ̸ = p 1 and s 0 ̸ = s 1 . Then, for any θ ∈ (0, 1),

( Ḟ s 0 ,p 0 t 0 , Ḟ s 1 ,p 1 t 1 ) θ,p = Ḟ s,p p ,
where s = (1 -θ)s 0 + θs 1 and 1/p = (1 -θ)/p 0 + θ/p 1 . Supposing p 0 ∈ (1, ∞) and s 0 ̸ = 0 we also have

( Ḟ s 0 ,p 0 t 0 , Ḟ 0,∞ 2 ) θ,p = Ḟ (1-θ)s 0 ,p p .
The same result holds for the inhomogeneous version of the Triebel-Lizorkin spaces.

Lemma 14 follows from standard facts in interpolation theory. Since it is hard to localize it in the literature we give a proof below (however, see [32, Chapter 5, Theorem 5] for the case t 0 = t 1 = 2 and [32, Chapter 5, Theorem 6] for the case t 0 = p 0 , t 1 = p 1 ).

Proof. Consider the retraction operator

P : L p 0 ( ls 0 t 0 ) + L p 1 ( ls 1 t 1 ) → Ḟ s 0 ,p 0 t 0 + Ḟ s 1 ,p 1 t 1
, and the extension operator

E : Ḟ s 0 ,p 0 t 0 + Ḟ s 1 ,p 1 t 1 → L p 0 ( ls 0 t 0 ) + L p 1 ( ls 1 t 1 ),
defined formally as

P (f k ) k∈Z := k∈Z Pk f k and Ef := (P k f ) k∈Z ,
where P k and Pk are Littlewood-Paley "projections" such that Pk P k = P k . We can see that

P • E = id on Ḟ s 0 ,p 0 t 0 + Ḟ s 1 ,p 1 t 1
.

By using the retraction method (see [5, Theorem 6.4.2]) for P and E, we see that it suffices to prove that (L p 0 ( ls 0 t 0 ), L p 1 ( ls 1 t 1 )) θ,p = L p ( ls p ).

Indeed, by applying [34, Theorem 5.7, p. 129 (ii)] we have that (L p 0 ( ls 0 t 0 ), L p 1 ( ls 1 t 1 )) θ,p = L p (( ls 0 t 0 , ls 1 t 1 ) θ,p ), [START_REF] Meyer | Wavelets and operators[END_REF] and now, applying [5, Theorem 5.6.1, p. 122],

( ls 0 t 0 , ls 1 t 1 ) θ,p = ls p , which together with [START_REF] Meyer | Wavelets and operators[END_REF] gives [START_REF] Liu | Lusin properties and interpolation of Sobolev spaces[END_REF].

The second assertion follows from the first assertion by duality. Indeed, if t 0 > 1 we have

( Ḟ s 0 ,p 0 t 0 , Ḟ 0,∞ 2 
) θ,p = ( Ḟ -s 0 ,p ′ 0 t ′ 0 , Ḟ 0,1 2 ) * θ,p ′ = ( Ḟ -(1-θ)s 0 ,p ′ p ′ ) * = Ḟ (1-θ)s 0 ,p p . If t 0 = 1 we have ( Ḟ -s 0 ,p ′ 0 (c 0 ) ) * = Ḟ s 0 ,p 0 1 , where Ḟ -s 0 ,p ′ 0 (c 0 )
is defined by replacing the ℓ ∞ space in the definition of Ḟ -s 0 ,p ′ 0 ∞ by the c 0 space. We now interpolate the spaces

Ḟ -s 0 ,p ′ 0 (c 0 ) , Ḟ 0,1 2 
as above by using the method of retraction. We get Theorem 15. Suppose (X 1 , X 4 ) is a compatible couple of quasi-normed spaces. Consider some parameters θ 2 , θ 3 ∈ (0, 1), q 2 , q 3 ∈ [1, ∞] and let X 2 , X 3 be some quasi-normed spaces such that

( Ḟ s 0 ,p 0 1 , Ḟ 0,∞ 2 
) θ,p = ( Ḟ -s 0 ,p ′ 0 (c 0 ) , Ḟ 0,1 2 ) * θ,p ′ = ( Ḟ -(1-θ)s 0 ,p ′ p ′ ) * = Ḟ (1-θ)s 0 ,
X 2 = (X 1 , X 3 ) θ 2 ,q 2 , X 3 = (X 2 , X 4 ) θ 3 ,q 3 .
Then, with equivalence of the quasi-norms we have

X 2 = (X 1 , X 4 ) ϕ 2 ,q 2 , X 3 = (X 1 , X 4 ) ϕ 3 ,q 3 ,
where

ϕ 2 := θ 2 θ 3 1 -θ 2 + θ 2 θ 3 , ϕ 3 := θ 3 1 -θ 2 + θ 2 θ 3 .
3 The real method 3.1 Wavelets and the spaces Ẇ l,1 (R d )

In this section we provide "almost" characterisations via wavelets for Ẇ l,1 (R d ), when l ∈ Z, similar to the ones obtained in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] in the case of ḂV (R d ).

3.1.1 Some notation related to the wavelet system Concerning the wavelet system, we work essentially6 in the same setting as the authors of [11, Section 1] (see also [START_REF] Meyer | Wavelets and operators[END_REF]Chapter 3]). Let us recall here some notation used in [11, ) ψ e (2 j x -k), for any x ∈ R d . We will say that ψ e I are ("mother") wavelets of class N .

Remark 16. Even when we do not mention explicitly, we will always consider wavelets of class N sufficiently large. For instance, when we are describing spaces like W l,p via wavelets, we will consider that the wavelets involved in the description are of class N > |l|.

The family of wavelets (ψ e I ) I∈D,e∈E is a complete orthogonal system in L 2 (R d ). We define also a dual system ( ψe With this notation the corresponding wavelet decomposition of a function f ∈ L 2 (R d ) can be expressed as

I
f = I∈D f I ψ I = e∈E I∈D f e I ψ e I ,
where the convergence is in the sense of distributions.

One can also use "father" wavelets (see the introduction in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]) in order to write the decomposition f =

I∈D + f + I ψ I = e∈E∪{0} I∈D + f +,e I ψ e I , (29) 
where D + is the set of the dyadic cubes of side length at most 1 and

ψ 0 := φ ⊗ ... ⊗ φ, f + I = f I whenever I ∈ D + .
In what follows we restrict to the use of the "mother" wavelets since in this case the proofs are cleaner. Adapted to the case of Ẇ 1,1 (R d ) rather than to ḂV (R d ) the main result in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] (see [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]Theorem 1.3]) reads as follows.

Theorem 17. Suppose γ ∈ R\[1 -1/d, 1]. If f ∈ Ẇ 1,1 (R d ), then the sequence (f I ) I∈D belongs to wℓ γ 1 and (f I ) I∈D wℓ γ 1 ≲ ∥f ∥ Ẇ 1,1 .
Remark 18. The proof of Theorem 17 (with Ḃ V in place Ẇ 1,1 ) given in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] splits in two cases. First, the authors of [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] show that the result holds in the case where γ ∈ R\[0, 1] (see [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]Section 3]). Then, they prove the result in the case where γ ∈ [0, 1 -1/d) which requires a more subtle analysis (see [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]Section 4]).

By slightly adapting the arguments in [11, Section 3] A. Cohen proved the following analogue of Theorem 17 for the space L 1 (see [START_REF] Cohen | Ondelettes, espaces d'interpolation et applications[END_REF]Théorème 2.1]). In the case where the wavelets are BV -normalised this result reads:

Theorem 19. Suppose γ ∈ R\[0, 1]. If f ∈ L 1 (R d ), then the sequence |I| 1/d f I I∈D belongs to wℓ γ 1 and |I| 1/d f I I∈D wℓ γ 1 ≲ ∥f ∥ L 1 .
Remark 20. By constructing counterexamples, the authors of [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] have shown that the range of the parameter γ in Theorem 17 cannot be improved (see [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]Section 6]). As mentioned in [10, Remarque 2.2] the range of γ in Theorem 19 is also optimal.

Fix a nonnegative integer l ∈ N and consider a function g ∈ C c ((0, 1) d ) such that all its moments of order l -1 vanish, i.e.,

R d x α g (x) dx = 0, (30) 
for all α ∈ N d with |α| ≤ l -1. (By convention, when l = 0, we impose no vanishing condition on g.) For any dyadic cube I = 2 -j ((0, 1) d + k) ∈ D, where j ∈ Z and k ∈ Z d , we define the function g I by g I (x) = 2 j g(2 j x -k), for all x ∈ R d .

For any function f ∈ L 1 (R d ) and any dyadic cube I ∈ D we introduce the quantity

c I (f ) := |⟨f, g I ⟩| .
In [START_REF] Cohen | Harmonic analysis of the space BV[END_REF], the analogue of Theorem 17 was derived from the following more general result (see [11, Therem 2.5]):

Lemma 21. Suppose γ ∈ R\[1 -1/d, 1] and let g ∈ C c ((0, 1) d ) be a function with zero integral. If f ∈ Ẇ 1,1 (R d ), then the sequence (c I (f )) I∈D belongs to wℓ γ 1 and (c I (f )) I∈D wℓ γ 1 ≲ ∥f ∥ Ẇ 1,1 . (31) 
We will need a version of this result adapted to the case of the Sobolev spaces Ẇ l,1 (R d ) when l is any positive integer. The following version can be easily deduced from the work in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]. c ((0, 1) d ) be a function such that all its moments of order l -1 are vanishing. If f ∈ Ẇ l,1 (R d ), then the sequence (|I| (1-l)/d c I (f )) I∈D belongs to wℓ γ 1 and

(|I| (1-l)/d c I (f )) I∈D wℓ γ 1 ≲ ∥f ∥ Ẇ l,1 . (32) 
In order to prove Lemma 22 we need the following (well-known) fact:

Lemma 23. Let r ≥ 1 be an integer. Consider some function g ∈ C 1 c ((0, 1) d ) such that all its moments of order r are vanishing. Then, there exists a family of functions G = (G α ) |α|=r , such that, for each α the function G α ∈ C r c ((0, 1) d ) is of integral zero, and

g = ∇ r • G = |α|=r ∇ α G α .
This lemma is a direct consequence of standard techniques in elliptic theory. For instance, we can observe that g belongs to the Hölder space

C 1/2 = B 1/2,∞ ∞
and then, we can apply repeatedly the Bogovskii formula for the divergence operator (see [START_REF] Costabel | On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains[END_REF]Remark 4.12]).

Proof of Lemma 22. One can deduce Lemma 22 directly from Lemma 21. Since the case l = 1 is covered by Lemma 21, it remains to prove the statement in the case l ≥ 2.

By Lemma 23 there exists a family of functions G = (G α ) |α|=l-1 , such that, for each α the function G α ∈ C l-1 c ((0, 2) d ) is of integral zero, and

g = ∇ l-1 • G = |α|=l-1 ∇ α G α .
From this we immediately get

|I| (1-l)/d g I = |α|=l-1 ∇ α (G α ) I . (33) 
Using [START_REF] Mironescu | Traces of weighted Sobolev spaces. Old and new[END_REF] for the functions

∇ α f ∈ Ẇ 1,1 R d , we have ∥(⟨f, ∇ α (G α ) I ⟩) I∈D ∥ wℓ γ 1 = ∥(⟨∇ α f, (G α ) I ⟩) I∈D ∥ wℓ γ 1 ≲ ∥∇∇ α f ∥ L 1 ≤ ∇ l f L 1 ,
for every multiindex α with |α| = l -1. Hence, by adding up and using [START_REF] Pisier | A simple proof of a theorem of Jean Bourgain[END_REF] together with the quasi-norm property of wℓ γ 1 , we get

∥(⟨f, (g) I ⟩) I∈D ∥ wℓ γ 1 ≲ |α|=r-1 ∥(⟨f, ∇ α (G α ) I ⟩) I∈D ∥ wℓ γ 1 ≲ ∇ l f L 1 ,
which proves Lemma 22, when l ≥ 1. □ Theorem 24. Fix some l ∈ Z and let (ψ I ) I∈D be a wavelet system on R d of class at least |l| + 1.

If l ≥ 1 and γ ∈ R\ [1 -1/d, 1], or l ≤ 0 and γ ∈ R\ [0, 1], we have (|I| (1-l)/d f I ) I∈D wℓ γ 1 ≲ ∥f ∥ Ẇ l,1 ≲ (|I| (1-l)/d f I ) I∈D ℓ 1 , (34) 
for all f ∈ Ẇ l,1 (R d ).

Proof. We treat first the case where l ≥ 0. The case l = 0 easily follows from Theorem 19. Suppose l > 0. Consider a positive integer p and some function ζ ∈ C 2 c ((0, 2 p ) d ), such that all its moments of order at most l -1 are vanishing. There exist M := 2 pd+1 open cubes Q 1 , ..., Q M , each of them being a translation of the unit cube (0, 1) d and some functions χ

1 , ..., χ M ∈ C ∞ c (R d ) such that (0, 2 p ) d ⊂ Q 1 ∪ ... ∪ Q M , each χ ν is supported in Q ν , and M ν=1 χ ν = 1 on [0, 2 p ] d .
Since all the moments of order at most l -1 of ζ are vanishing, by Lemma 23, we can find a family

Ψ = (Ψ α ) |α|=l , with Ψ α ∈ C l-1 c ((0, 2 p ) d ) such that ζ = ∇ r • Ψ = |α|=l ∇ α Ψ α .
(When l = 0, we take by convention Ψ = ζ, and the above formula becomes ζ = ∇ 0 • Ψ, where ∇ 0 is by convention the identity operator.)

We decompose ζ as

ζ = ∇ l • M ν=1 Ψχ ν = M ν=1 ∇ l • (Ψχ ν ) = M ν=1 g ν , ( 35 
)
where

g ν := ∇ l • (Ψχ ν ) ∈ L ∞ c (Q ν )
, for all ν ∈ {1, ..., M } (here, Ψχ ν = (Ψ α χ ν ) |α|=r ). Note that each g ν satisfy the vanishing moments condition [START_REF] Mironescu | Sum-Intersection Property of Sobolev Spaces[END_REF]. Since the inequality ( 32) is translation invariant, by applying Lemma 22 we get 

(|I| (1-l)/d c ν I (f )) I∈D wℓ γ 1 ≤ ∥g ν ∥ L ∞ ∇ l f L 1 ≲ ∇ l f L 1 , (36) 
| c I (f )| = |⟨f, ζ I ⟩| ≤ M ν=1 |⟨f, g ν I ⟩| = M ν=1 c ν I (f ) . (37) 
Using ( 37), the quasi-triangle inequality for the wℓ γ 1 -quasi-norm and formula [START_REF] Schmeisser | Topics in Fourier analysis and function spaces[END_REF] we get

|I| (1-l)/d c I (f ) I∈D wℓ γ 1 ≲ M ν=1 |I| (1-l)/d c ν I (f ) I∈D wℓ γ 1 ≲ ∇ l f L 1 . ( 38 
)
Let ( ψ e ) e∈E be the generators of the dual wavelets. Applying [START_REF] Triebel | Theory of function spaces II[END_REF] for ζ = ψ e , for each e ∈ E, and using the quasi-triangle inequality for the wℓ γ 1 -quasi-norm, we obtain

|I| (1-l)/d f I I∈D wℓ γ 1 ≲ e∈E |I| (1-l)/d f e I I∈D wℓ γ 1 ≲ ∇ l f L 1 ,
which proves the first estimate in [START_REF] Pisier | Martingales in Banach Spaces[END_REF] in the case l ≥ 0.

The second estimate in [START_REF] Pisier | Martingales in Banach Spaces[END_REF] follows immediately from the triangle inequality (by a limiting argument 7 )

∥f ∥ Ẇ l,1 ≤ I∈D e∈E |f e I | ψ e I Ẇ l,1
, and the fact that ψ e I Ẇ l,1

∼ |I| (1-l)/d , for all I ∈ D.

Now, we treat the case

l = -r < 0. Let f ∈ Ẇ -r,1 (R d ) ∩ C ∞ c (R d ) and consider a family F = (F α ) |α|=r ∈ L 1 (R d ) such that f = ∇ a • F = |α|=r-1 ∇ α F α , ( 39 
)
in the sense of distributions, and

|α|=r ∥F α ∥ L 1 ≤ 2 ∥f ∥ Ẇ -r,1 . (40) 
By [START_REF] Wolff | A note on interpolation spaces[END_REF] we have

f e I = f, ψ e I = (-1) r |α|=r F α , ∇ α ψ e I = (-1) r |I| -r/d |α|=r F α , ∇ α ψ e I , 7 
We first consider functions f with finite wavelet expansion and then we pass to limit.

and we get

|I| (1+r)/d |f e I | ≤ |α|=r |I| 1/d F α , ∇ α ψ e I . (41) 
Using [START_REF] Triebel | Theory of function spaces II[END_REF] for the function ζ = ∇ α ψ e (in the case l = 0),

|I| 1/d F α , ∇ α ψ e I I∈D wℓ γ 1 ≲ ∥F α ∥ L 1 ,
for each α ∈ N d with |α| = r. This, together with (41), the quasi-triangle inequality and (39) implies that

|I| (1+r)/d f I I∈D wℓ γ 1 ≲ |α|=r e∈E |I| 1/d F α , ∇ α ψ e I I∈D wℓ γ 1 ≲ |α|=r ∥F α ∥ L 1 ≲ ∥f ∥ Ẇ -r,1 ,
which proves the first estimate in [START_REF] Pisier | Martingales in Banach Spaces[END_REF] in the case l = -r < 0.

As in the case l ≥ 0, the second estimate in [START_REF] Pisier | Martingales in Banach Spaces[END_REF] follows immediately from the triangle inequality. Indeed, by a limiting argument we have , we note that, since all the moments of order at most r -1 of ψ e are vanishing, one can use Lemma 23 to write

∥f ∥ Ẇ -r,1 ≤ I∈D e∈E
ψ e = ∇ r • Ψ = |α|=r ∇ α Ψ α ,
for some family Ψ = (Ψ α ) |α|=r ∈ C r c . It follows that

ψ e I = |I| r/d |α|=r ∇ α (Ψ α ) I ,
and

ψ e I Ẇ -r,1 ≤ |I| r/d |α|=r ∥(Ψ α ) I ∥ L 1 = |I| r/d |I| 1/d |α|=r ∥Ψ α ∥ L 1 ≲ |I| (1+r)/d , for all I ∈ D. □ Remark 25.
One can obtain a version of Theorem 24 for the inhomogeneous spaces W l,1 by using essentially the same arguments as above and the decomposition (29) involving the "father" wavelets.

Interpolation results

The nonpathological case

Fix some parameters s ∈ R and p ∈ (1, ∞). According to [28, Chapter 6, Section 10] (see also the discussion in [11, p. 242-243]), we have

∥f ∥ Ḃs,p p (R d ) ∼ (f I ) I∈D ℓ µ p , (42) 
for any Schwartz function f on R d , where µ := 1 + (s -1) p ′ /d. (Here, we suppose that the wavelets involved are of class at least |s| + 1.) We can rewrite the quantity ∥(f I ) I∈D ∥ ℓ µ p using the weights |I| (1-l)/d as follows. For any γ ∈ R and any finitely supported sequence (c I ) I∈D , we have

(|I| (1-l)/d c I ) I∈D ℓ γ p = I∈D d |I| (1-p)γ |I| (1-l)p/d |c I | p 1/p = I∈D d |I| (1-p)µ |c I | p 1/p = (c I ) I∈D ℓ µ p , where µ = γ + (l -1) p ′ /d. Hence, from (42), ∥f ∥ Ḃs,p p (R d ) ∼ |I| (1-l)/d f I I∈D ℓ γ p , (43) 
for any Schwartz function f on R d , where γ := 1 + (s -l) p ′ /d.

Let us introduce the weighted spaces ℓ γ p (D, ω l ) and wℓ γ 1 (D, ω l ) by defining their quasi-norms.

∥(c I ) I∈D ∥ ℓ γ p (ω l ) := (|I| (1-l)/d c I ) I∈D ℓ γ p , and 
∥(c I ) I∈D ∥ wℓ γ 1 (ω k ) := (|I| (1-k)/d c I ) I∈D wℓ γ 1 .
The spaces ℓ γ p (D, ω l ) and wℓ γ 1 (D, ω l ) consist of those sequences (c I ) I∈D of finite ℓ γ p (ω l )-norm or finite wℓ γ 1 (ω k )-quasi-norm respectively. For simplicity we will denote the space wℓ 0 1 by wℓ 1 . Notice that wℓ 1 (D) is the discrete Lorentz space L 1,∞ (D) on the set of the dyadic cubes D endowed with the counting measure.

Proposition 26. Consider some parameters l ∈ Z, s ∈ R, p ∈ (1, ∞) and define γ := 1 + (s -l) p ′ /d. If l ≥ 1 and γ ∈ R\ [1 -1/d, 1], or l ≤ 0 and γ ∈ R\[0, 1], then, for any θ ∈ (0, 1) we have ( Ẇ l,1 (R d ), Ḃs,p p (R d )) θ,q = Ḃσ,q q (R d ), where σ = (1 -θ) l + θs and 1/q = 1 -θ + θ/p. The same fact holds for the inhomogeneous version of the spaces.

(Here, we suppose that the wavelets involved are of class at least |l| + |s| + 1.) Remark 27. Note that the conditions γ ∈ R\ [1 -1/d, 1] and γ ∈ R\ [0, 1] are equivalent to the conditions s ∈ R\ [l -1/p ′ , l] and s ∈ R\ [l -d/p ′ , l] respectively. In other words, Proposition 26 is a reformulation of Proposition 3, in the particular case t = p, in terms of the parameter γ.

Proof. The proof follows the same argument as in [START_REF] Cohen | Harmonic analysis of the space BV[END_REF]Theorem 1.4]. First, rewriting the estimates of Theorem 24 using the weighted spaces ℓ γ p (D, ω l ) and wℓ γ p (D, ω l ), we have

(f I ) I∈D wℓ γ 1 (ω l ) ≲ ∥f ∥ Ẇ l,1 ≲ (f I ) I∈D ℓ γ 1 (ω l ) , ( 44 
) provided that l ≥ 1 and γ ∈ R\ [1 -1/d, 1], or l ≤ 0 and γ ∈ R\ [0, 1]. Also, from (43), ∥f ∥ Ḃs,p p ∼ (f I ) I∈D ℓ γ p (ω l ) . ( 45 
)
where ϕ = θ/(2 -θ). Using now (47), ( 48) together with T. Wolff's theorem (Theorem 15) we conclude the proof of Proposition 3. □

One can now deduce the nonpathological case of Theorem 4 from Proposition 3. Since ( Ḟ -s,p ′ t ′

) * ̸ = Ḟ s,p t , when t = 1, we start with the particular case t = p and then we obtain the full Theorem 4 by using Lemma 14.

Proposition 28. Let r ∈ N. Suppose p ∈ (1, ∞) and θ ∈ (0, 1). Then, for any s ∈ R\[r, r + d/p], we have ( Ḃs,p p (R d ), Ẇ r,∞ (R d )) θ,q = Ḃσ,q q (R d ), where σ = (1 -θ) s + θr and 1/q = (1 -θ) /p. A similar statement holds for the inhomogeneous spaces.

Proof. This follows by duality from Proposition 3. Indeed, applying Proposition 3 with l = -r ≤ 0 and t = p we get ( Ḃ-s,p

′ p ′ , Ẇ -r,1 ) θ,q ′ = Ḃ-σ,q ′ q ′
, and, since the dual of Ẇ -r,1 is Ẇ r,∞ , we can write

( Ḃs,p p , Ẇ r,∞ ) θ,q = (( Ḃ-s,p ′ p ′ ) * , ( Ẇ -r,1 ) * ) θ,q ′ = ( Ḃ-s,p ′ p ′ , Ẇ -r,1 ) * θ,q ′ = ( Ḃ-σ,q ′ q ′ ) * = Ḃσ,q q ,
and Proposition 28 is proven. □

Proof of the nonpathological case of Theorem 4. It follows by Lemma 14 and Proposition 28 via T. Wolff's interpolation theorem (Theorem 15). (See the proof of Proposition 3.) □

We can now use Proposition 28 in order to prove the following.

Proposition 29. Suppose r and l are some nonnegative integers such that l ∈ R\[r, r + d]. Then, for any θ ∈ (0, 1),

( Ẇ l,1 R d , Ẇ r,∞ R d ) θ,q = Ḃσ,q q R d ,
where σ = (1 -θ) l + θr and 1/q = 1 -θ.

Proof. Suppose l < r, the case l > r + d being similar. Pick some η 1 ∈ (θ, 1). Proposition 26 gives us that ( Ẇ l,1 , Ḃσ,q q ) η 1 ,p = Ḃs,p p ,

where s = (1 -η 1 ) l + η 1 σ and 1/p = 1 -η 1 .

Consider η 2 := (η 1 -θ) / (1 -η 1 ) ∈ (0, 1). Note that 1/q = (1 -η 2 ) /p and σ = (1 -η 2 ) s+η 2 r, hence, by applying Proposition 28 we obtain ( Ḃs,p p , Ẇ r,∞ ) η 2 ,q = Ḃσ,q q . (50) By ( 49), (50) and the T. Wolff interpolation theorem (Theorem 15), we conclude the proof of Proposition 29. □

As we did in the case of Proposition 3 we can deduce the nonpathological case of Theorem 4 from its particular case t = p. which implies

B σ-r,q t R d → W l-r,1 R d + C R d .
However, as we have already seen, this embedding is false.

The last assertion of Proposition 30 follows from Lemma 12 and the intermediate space property:

(W l,1 (R d ), W r,∞ (R d )) θ,q = (W l,1 R d , C r R d ) θ,q → W l,1 R d + C r R d .
Proposition 30 is proved. □

As a corollary of the proof of Proposition 30, one can get a similar conclusion if we replace the Sobolev space W l,1 with the Besov space B l,1

1 . Moreover, using more advanced trace theory one can deal with the spaces B s, 1 1 when the parameter s is allowed to be any real (not necessarily integer) number in the interval (r, r + d].

Proposition 31. Suppose r is an integer and s is a real number such that r < s ≤ r+d. Fix some parameters θ ∈ (0, 1), t ∈ (1, ∞) and let σ and q be some numbers such that σ = (1 -θ) s + θr and 1/q = 1 -θ. Then,

B σ,q t R d ̸ → B s,1 1 R d + C r R d .
In particular,

B σ,q t R d ̸ → (B s,1 1 R d , W r,∞ R d ) θ,q .
Proof. The proof follows essentially the same strategy as the proof of Proposition 30. However, we use traces on more general subsets of R d rather than subspaces. As in the proof of Proposition 30 it suffices to prove Proposition 31 only in the case where r = 0. Assume for contradiction that

B σ,q t R d → B s,1 1 R d + C R d . ( 53 
)
Suppose s ̸ = d, otherwise we can easily obtain the contradiction by mentioning that, since

B s,1 1 R d → C R d , the right hand side of (53) is embedded in C R d . However, B σ,q t R d is not embedded in C R d .
Suppose 0 < s < d. Define the parameter δ := d -s ∈ (0, d) and consider an δ-full subset Γ ⊂ R d (see the Appendix). By (53) and Theorem 52 (i) we have

T r Γ B σ,q t R d → T r Γ B s,1 1 R d + T r Γ C R d → L 1 (Γ) + L ∞ (Γ) ( 54 
)
where the L p spaces on Γ are considered with the respect to the Hausdorff measure H δ . However, since σ = (d -δ)/q, by applying Theorem 52 (ii) the space B σ,q t R d has no trace on Γ. This disproves (54) and we have that (53) cannot hold. □ Proposition 31 can be used to give a partial converse to Proposition 4. First, we are concerned with the inhomogeneous version.

Corollary 32. Let r be a nonnegative integer and let p, q ∈ [1, ∞), θ ∈ (0, 1), s, σ ∈ R be some parameters such that 1/q = (1 -θ) /p and σ = (1 -θ) s + θr. If r < s ≤ r + d/p, then

(B s,p p R d , W r,∞ R d ) θ,q ̸ = B σ,q q R d .
where ϕ = θ/2. Setting ρ ∈ (1, ∞) such that 1/ρ = 1/ (2p) + 1/ (2q) we have (using also Lemma 14),

B σ 1 ,ρ ρ = (F s,p t , F σ,q τ ) 1/2,ρ , and hence, B σ 1 ,ρ ρ → (F s,p t , W r,∞ ) ϕ,ρ , (58) 
where σ 1 = (1 -ϕ)s + ϕr. Notice also that from Lemma 14 we get (since

L ∞ → bmo = F 0,∞ 2 and W r,∞ → F r,∞ 2 ) (F s,p t , W r,∞ ) ϕ,ρ → (F s,p t , F r,∞ 2 ) ϕ,ρ = B σ 1 ,ρ ρ ,
which together with (58) gives us the equality

B σ 1 ,ρ ρ = (F s,p t , W r,∞ ) ϕ,ρ .
Now, using again the reiteration theorem as above, we have

(B σ 1 ,ρ ρ , W r,∞ ) θ 1 ,q = ((F s,p t , W r,∞ ) ϕ,ρ , , W r,∞ ) θ 1 ,q = (F s,p t , W r,∞ ) θ,q = B σ,q q , ( 59 
)
where θ 1 := θ/(2 -θ). We can easily check that r < σ 1 ≤ r + d/ρ. Hence, Corollary 32 shows that (59) cannot hold. By this we contradict (57). □

Let Q be the cube [-1, 1] d . With minor modifications we can prove a version of Proposition 33 for the cube Q (and for C r instead W r,∞ ). More precisely, when the parameters p, q, t, s, σ are as in the statement of Proposition 33 then,

(F s,p t (Q) , C r (Q)) θ,q ̸ = B σ,q q (Q) . (60) 
We can use this fact to prove a similar result that concerns the homogeneous version of the spaces.

Proposition 34. Let r be a nonnegative integer and let p

, q ∈ [1, ∞), θ ∈ (0, 1), t ∈ [1, ∞], s, σ ∈ R be some parameters such that 1/q = (1 -θ) /p and σ = (1 -θ) s + θr. If r < s ≤ r + d/p, then, for any τ ∈ [1, ∞], Ḟ σ,q τ R d ̸ → ( Ḟ s,p t R d , Ẇ r,∞ R d ) θ,q .
Before passing to the proof of Proposition 34 let us recall some facts from the theory of subcouples introduced by G. Pisier in [START_REF] Pisier | A simple proof of a theorem of Jean Bourgain[END_REF] that will be useful in what follows. Let (X 0 , X 1 ) be a compatible couple of Banach spaces and let (Y 0 , Y 1 ) be a subcouple of (X 0 , X 1 ). In other words we have that, for any j = 0, 1, Y j is a (Banach) subspace of X j . According to Pisier ([33]), we say that (Y 0 , Y 1 ) is K-closed in (X 0 , X 1 ) if, for any f ∈ Y 0 + Y 1 we have the equivalence

K t (f, Y 0 , Y 1 ) ∼ K t (f, X 0 , X 1 ),
for any t > 0, where the implicit constants do not depend on t or f . Trivially, we have that

K t (f, Y 0 , Y 1 ) ≥ K t (f, X 0 , X 1 ),
and hence, in order to verify the K-closedness of the subcouple (Y 0 , Y 1 ) it suffices to check the inequality

K t (f, Y 0 , Y 1 ) ≲ K t (f, X 0 , X 1 ).
In other words, it suffices to verify that for any fixed t > 0 and any decomposition

f = f 0 + f 1 (depending on t), where f 0 ∈ X 0 , f 1 ∈ X 1 with ∥f 0 ∥ X 0 + t ∥f 1 ∥ X 1 ≤ 1, there exist g 0 ∈ Y 0 , g 1 ∈ Y 1 (depending on t) such that f = g 0 + g 1 and ∥g 0 ∥ Y 0 + t ∥g 1 ∥ Y 1 ≲ 1,
where the implicit constant does not depend on t or f . The notion of K-closedness was introduced by Pisier in [START_REF] Pisier | A simple proof of a theorem of Jean Bourgain[END_REF] in order to give a short proof of Bourgain's result that the disc algebra has the Grothendieck property. Other authors like Bourgain ( [START_REF] Bourgain | Some consequences of Pisier's approach to interpolation[END_REF]) or Kislyakov and Kruglyak ([21]) further developed the theory of K-closed subcouples deriving interpolation properties for the Hardy and the Sobolev spaces. Here, we only use the notion of K-closedness in a simple situation. We need the following lemma on quotient spaces that follows from the work of G. Pisier and and S. Janson.

Lemma 35. Let (X 0 , X 1 ) be a compatible couple of Banach spaces such that X 0 ∩ X 1 is dense in X 0 and X 1 . Suppose M is a finite dimensional subspace of X 0 ∩ X 1 .

(i) We have that

(X 0 /M ) ∩ (X 1 /M ) = (X 0 ∩ X 1 ) /M .
(ii) For any θ ∈ (0, 1) and any q ∈ (1, ∞) we have

(X 0 /M, X 1 /M ) θ,q = (X 0 , X 1 ) θ,q /M .
Proof. Part (i) follows from the work of Pisier (see for instance [17, Theorem 4.1 (i) and (iv)]) and (ii) is a consequence of Theorem 4.2 in [START_REF] Janson | Interpolation of subcouples and quotient couples[END_REF]. First, let us recall that, since M is finite dimensional, any two norms are equivalent on M . It is easy to see that (M, M ) is a normal subcouple of (X 0 , X 1 ) (see [START_REF] Janson | Interpolation of subcouples and quotient couples[END_REF]Definition,p. 317]). Note that M is a finite dimensional subspace of X 0 + X 1 and consequently, M is complemented in X 0 + X 1 . Therefore, there exists an onto bounded projection P M : X 0 + X 1 → M . We get

∥P M f ∥ M ≲ ∥f ∥ X 0 +X 1 ≤ min(∥f ∥ X 0 , ∥f ∥ X 1 ), for any f ∈ X 0 ∩ X 1 . Since ∥P M f ∥ M ∼ ∥P M f ∥ X 0 ∼ ∥P M f ∥ X 1 ,
the operator P M : X j → X j is bounded for any j = 0, 1.

One can see now that (M, M ) is a K-closed subcouple of (X 0 , X 1 ). Indeed, fix some t > 0. Consider some f ∈ M and a decomposition f

= f 0 + f 1 with f 0 ∈ X 0 , f 1 ∈ X 1 such that ∥f 0 ∥ X 0 + t ∥f 1 ∥ X 1 ≤ 1. (61) 
Observe that

f = P M f = P M f 0 + P M f 1 ,
and by the boundedness of P M on X j together with (61) we get

∥P M f 0 ∥ X 0 + t ∥P M f 1 ∥ X 1 ≤ ∥P M ∥ < ∞.
Now, we can apply [17, Theorem 4.1 (i) and (iv)] and [START_REF] Janson | Interpolation of subcouples and quotient couples[END_REF]Theorem 4.2] to the subcouple (M, M ) in order to obtain (i) and (ii) respectively. □ and hence, by (60), the space (W s,p (Q), C r (Q)) θ,q is strictly smaller that B σ,q q (Q). In other words, re-denoting the spaces as A 1 := B σ,q q (Q) and A 2 := (B s,p p (Q), C r (Q)) θ,q there exists a sequence (f n ) n≥1 of Schwartz functions on R d such that

∥f n ∥ A 2 = 1 and ∥f n ∥ A 1 → 0, (67) 
when n → ∞. Consider the sets

U 1 := (-2, 1/2) × (-2, 2) d-1 , U 2 := (-1/2, 2) × (-2, 2) d-1 that form an open covering of Q.
For these open sets one can find two smooth functions χ j ∈ C ∞ c (U j ), j = 0, 1 with χ 1 + χ 2 = 1 on Q. We can observe that, for any Schwartz function f on R d we have

∥χ j f ∥ A ≲ ∥f ∥ A , (68) 
when A = A 1 or A = A 2 . This is a standard fact when A = A 1 . To obtain the inequality for the case A = A 2 , we observe that (68) holds for A = B s,p p (Q) and A = C r (Q), and then apply the standard real interpolation method. Now we can write

∥f ∥ A j ≤ ∥χ 1 f ∥ A j + ∥χ 2 f ∥ A j ≲ ∥f ∥ A j ,
and combining this with (67),

∥χ 1 f n ∥ A 2 + ∥χ 2 f n ∥ A 2 ∼ 1,
uniformly in n and

∥χ 1 f n ∥ A 1 + ∥χ 2 f n ∥ A 1 → 0,
when n → ∞. Considering a subsequence (which for simplicity will be also denoted by (f n ) n≥1 ) we can suppose without loss of generality that

∥χ 1 f n ∥ A 2 ∼ 1 and ∥χ 1 f n ∥ A 1 → 0,
when n → ∞. In other words, introducing the functions g n := χ 1 f n , we have

∥g n ∥ A 2 ∼ 1 and ∥g n ∥ A 1 → 0, (69) 
when n → ∞. There exist two sequences (p 1 n ) n≥1 , (p 2 n ) n≥1 of polynomials 9 in P k such that, for any j = 1, 2,

g n -p j n A j ∼ ∥g n ∥ A j /P k .
Hence, by (66),

g n -p 2 n A 2 ≲ g n -p 1 n A 1 ≤ ∥g n ∥ A 1 , (70) 
uniformly in n. Consider some ψ ∈ C ∞ c (Ω), not identically 0, where

Ω := [2/3, 1] × [-1, 1] d-1 . As in (68) we get ψp 2 n A 2 = ψ(g n -p 2 n ) A 2 ≲ g n -p 2 n A 2
, where we have used the fact that, since supp g n ⊂ U 1 , the sets supp g n and Ω are disjoint. This inequality implies that all the coefficients of the polynomial p 2 n are uniformly bounded by ∥g n -p 2 n ∥ A 2 . Hence, by (69) and (70), all the coefficients of the polynomial p 2 n are converging to 0 uniformly. Since P k is finite dimensional, any two norms are equivalent on P k and consequently ∥p 2 n ∥ A 2 is equivalent to the sum of the absolute values of the coefficients of p 2 n . By the previous discussion we get ∥p 2 n ∥ A 2 → 0, when n → ∞. By this, (69) and (70) we have

∥g n ∥ A 2 ≤ g n -p 2 n A 2 + p 2 n A 2 ≲ ∥g n ∥ A 1 + p 2 n A 2 → 0,
when n → ∞. However, this contradicts (69). This proves that (62) does not hold. □ By duality, Proposition 33 (or Proposition 34 for the homogeneous case) immediately implies a partial converse to Proposition 3 in the case where l ≤ 0. Namely, Corollary 36. Consider some parameters l ∈ Z, s ∈ R, p, t ∈ (1, ∞). If l ≤ 0 and l -d/p ′ ≤ s < l, then, for any θ ∈ (0, 1), we have

(W l,1 R d , F s,p t R d ) θ,q ̸ = B σ,q q R d ,
where σ = (1 -θ) l + θs and 1/q = 1 -θ + θ/p. Indeed, if for some r = -l ≥ 0 and some s ∈ [-r -d/p ′ , -r) we have (W -r,1 , F s,p t ) θ,q = B σ,q q , then, by duality we get

(W r,∞ , F -s,p ′ t ′ ) θ,q ′ = B -σ,q ′ q ′ . ( 71 
)
However, since r < -s ≤ r + d/p ′ , by Corollary 32 the equality (71) cannot be true.

Remark 37. A direct consequence of Corollary 36 and the proof of Proposition 26 is the fact that the range of the parameter γ in Theorem 24 cannot be improved when l ≤ 0. In other words, for any γ ∈ [0, 1] and any integer l ≤ 0 we have the noninequality

∥(f I ) I ∥ wℓ γ 1 (ω l ) ̸ ≲ ∥f ∥ W l,1
, for Schwartz functions f . This is in contrast with the case l ≥ 1 where a larger range of γ is available (see Remark 20).

Since we have proved the nonpathological case of Theorem 4, Proposition 33 and Proposition 34, we have proved Theorem 4. □ One can observe that Theorem 4 implies via the reiteration theorem the following sharpening of the conclusion in the pathological case.

Proposition 38. Consider the parameters s ∈ R, r ∈ N with s ̸ = r and let p, q ∈ (1, ∞), θ ∈ (0, 1), t ∈ [1, ∞], σ ∈ R as in the statement of Theorem 4. Let X be a space in the class C(θ, F s,p t , C r ). Then, if s ∈ (r, r + d/p], no space F σ,q τ , with τ ∈ [1, ∞], embedds in X. A similar fact holds in the case of the homogeneous spaces.

Proof. Indeed, suppose by contradiction that,

F σ,q τ → X.
Then, as in the proof of Proposition 33, we get by the reiteration theorem (and Lemma 14) that B σ 1 ,ρ ρ = (F s,p t , F σ,q τ ) 1/2,ρ → (F s,p t , X) 1/2,ρ = (F s,p t , W r,∞ ) ϕ,ρ , where ϕ = θ/2, σ 1 = s/2 + σ/2 and 1/ρ = 1/ (2p) + 1/ (2q). However, this contradicts Theorem 4.

□

Proof of Proposition 6. Suppose by contradiction that F σ,q τ is an interpolation space of exponent θ with respect to (F s,p t , W r,∞ ). By a simple regularisation argument we get that F σ,q τ is an interpolation space of exponent θ with respect to (F s,p t , C r ). Then, by the Aronzajn-Gagliardo theorem (see [START_REF] Aronszajn | Interpolation spaces and interpolation methods[END_REF] or [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Exercise 2.8.4,p. 33]) there exists an interpolation method (functor) G θ of exponent θ such that

F σ,q τ = G θ (F s,p t , C r ).
However, since F s,p t ∩ C r is dense in F s,p t and C r , by the extremal property of the real interpolation method ([5, Theorem 3.9.1, p. 58]) we get

(F s,p t , C r ) θ,1 → G θ (F s,p t , C r ) → (F s,p t , C r ) θ,∞ .
In particular, according to [5, Theorem 3.5.2, p. 49], G θ (F s,p t , C r ) is a space of class C(θ, F s,p t , C r ). Hence, by the reiteration theorem (as in the proof of Proposition 33 and Proposition 38),

B σ 1 ,ρ ρ = (F s,p t , F σ,q τ ) 1/2,ρ = (F s,p t , G θ (F s,p t , C r )) 1/2,ρ = (F s,p t , W r,∞ ) ϕ,ρ ,
where ϕ = θ/2, σ 1 = s/2 + σ/2 and 1/ρ = 1/ (2p) + 1/ (2q). This contradicts Theorem 4. □

At least in the case of homogeneous spaces Proposition 6 can be strengthened as follows.

Corollary 39. Consider the parameters s ∈ R, r ∈ N with s ̸ = r and let p, q ∈ (1, ∞), θ ∈ (0, 1), t ∈ [1, ∞], σ ∈ R as in the statement of Theorem 4. Moreover, suppose that s ∈ (r, r + d/p) and fix some τ ∈ [1, ∞]. Then, there exists a linear operator

T : Ḟ s,p t R d + Ẇ r,∞ R d → Ḟ s,p t R d + Ẇ r,∞ R d , such that (i) T is bounded on Ḟ s,p t R d ; (ii) T is bounded on Ẇ r,∞ R d ; (iii) T is not bounded on Ḟ σ,q τ R d .
Proof. Suppose by contradiction that any operator

T : Ḟ s,p t + Ẇ r,∞ → Ḟ s,p t + Ẇ r,∞ ,
that is bounded on Ḟ s,p t and on Ẇ r,∞ , has to be bounded on Ḟ σ,q τ . By [5, Theorem 2.4.2], we have

∥T ∥ Ḟ σ,q τ → Ḟ σ,q τ ≲ ∥T ∥ Ḟ s,p t → Ḟ s,p t + ∥T ∥ Ẇ r,∞ → Ẇ r,∞ , (72) 
where the implicit constant does not depend on T . Fix such an operator T . For any λ > 0 we introduce the new operator T λ formally defined by

T λ f = (T f ) λ , where f λ (•) = f (λ•) (see subsection 2.1, ( 15 
)
). We can easily verify that

T λ Ḟ σ,q τ → Ḟ σ,q τ ∼ λ σ-d/q ∥T ∥ Ḟ σ,q τ → Ḟ σ,q τ ,
and similar relations corresponding to the spaces Ḟ s,p t , Ẇ r,∞ . From (72) we get

∥T ∥ Ḟ σ,q τ → Ḟ σ,q τ ≲ λ θ(s-r-1/p) ∥T ∥ Ḟ s,p t → Ḟ s,p t + λ -(1-θ)(s-r-1/p) ∥T ∥ Ẇ r,∞ → Ẇ r,∞ ,
and, by setting

λ = ∥T ∥ Ẇ r,∞ → Ẇ r,∞ ∥T ∥ Ḟ s,p t → Ḟ s,p t 1/(s-r-1/p) , we get ∥T ∥ Ḟ σ,q τ → Ḟ σ,q τ ≲ ∥T ∥ 1-θ Ḟ s,p t → Ḟ s,p t ∥T ∥ θ Ẇ r,∞ → Ẇ r,∞ .
However, this implies that Ḟ σ,q τ is an interpolation space of exponent η with respect to ( Ḟ s,p t , Ẇ r,∞ ), which by Proposition 6 cannot be true. □

Pathological sums of Sobolev spaces on R d

As we have seen in the previous section the statement of Proposition 31 gives more than the fact that the space B σ,q q is not equal to a space obtained by interpolating B l,1 1 and C r , when l ∈ (r, r + d]. Namely, B σ,q q cannot be even embedded in the sum B l, 1 1 + C r . It is natural to ask if the same phenomenon occurs in the pathological cases described by Proposition 33 or Proposition 34. The homogeneous spaces that appear in the statement of Proposition 34 are in most cases convenient for converting the result of nonequality into a stronger result of nonembeddability into the sum. More precisely, we have the following partial result. Proposition 40. Let r be a nonnegative integer and let p, q ∈ [1, ∞), θ ∈ (0, 1), t, τ ∈ [1, ∞], s, σ ∈ R be some parameters such that 1/q = (1 -θ) /p and σ = (1 -θ) s + θr. If r < s < r

+ d/p, then Ḟ σ,q τ R d ̸ → Ḟ s,p t R d + Ẇ r,∞ R d .
Proof. For simplicity let us denote the spaces as follows: A 0 := Ḟ s,p t , A 1 := Ẇ r,∞ and Y := Ḟ σ,q τ . Suppose for contradiction that we have

Y → A 0 + A 1 .
This implies that, for any f ∈ Y ,

f λ A 0 +A 1 ≲ f λ Y , (73) 
for any λ > 0, where f λ (•) := f (λ•). Introducing the number t := λ r-s+d/p (recall that r-s+d/p ̸ = 0), one can see by a direct computation that (see ( 14))

f λ A 0 +A 1 = λ s-d/p K t (f, A 0 , A 1 ). ( 74 
)
Since, f λ Y ∼ λ σ-d/q ∥f ∥ Y , by ( 73) and (74) we obtain

∥f ∥ Y ≳ λ (s-d/p)-(σ-d/q) K t (f, A 0 , A 1 ) = λ η(s-d/p-r) K t (f, A 0 , A 1 ) = t -θ K t (f, A 0 , A 1 ), which means that Y → (A 0 , A 1 ) θ,∞ . ( 75 
)
Let us consider the spaces X 0 = A 0 and X 1 = (A 0 , A 1 ) θ,∞ . Note that X 0 is in the class C(0,A 0 , A 1 ) and X 1 is in the class C(θ,A 0 , A 1 ) (again see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Definition 3.51,p. 48] and [5, Theorem 3.5.2, p. 49]). We can apply the reiteration theorem (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Theorem 3.5.3,p. 50]) and (74) to conclude that, for any ρ ∈ [1, ∞],

(A 0 , Y ) 1/2,ρ → (X 0 , X 1 ) 1/2,ρ = (A 0 , A 1 ) ϕ,σ , (76) 
where ϕ = θ/2. Fix ρ ∈ (0, 1) such that 1/ρ = 1/(2p) + 1/(2q). We have in this case that, by Lemma 14, (A 0 , Y ) 1/2,ρ = ( Ḟ s,p t , Ḟ σ,q τ ) 1/2,ρ = Ḃβ,ρ ρ , where β := s/2 + σ/2, which together with (76) gives

Ḃβ,ρ ρ → ( Ḟ s,p t , Ẇ r,∞ ) ϕ,ρ .
By the fact that

L ∞ → BM O = Ḟ 0,∞ 2 
, we have

( Ḟ s,p t , Ẇ r,∞ ) ϕ,ρ → ( Ḟ s,p t , Ḟ r,∞ 2 ) ϕ,ρ = ( Ḟ -s,p ′ t ′ , Ḟ -r,1 2 ) * ϕ,ρ ′ = ( Ḃ-β,ρ ′ ρ ′ ) * ϕ,ρ ′ = Ḃβ,ρ ρ , (77) 
where we also have used Lemma 14. Hence,

Ḃβ,ρ ρ = ( Ḟ s,p t , Ẇ r,∞ ) ϕ,ρ . (78) 
As we can easily check, β = (1 -ϕ)s + ϕρ and 1/ρ = ϕ/p. This shows, via Proposition 33 that (78) do not hold. □

Proof of Proposition 5. Suppose by contradiction that

W σ,q → W s,p + W r,∞ .
Since, s > 0 we get from this that W σ,q → Ẇ s,p + Ẇ r,∞ .

Combining this with Lemma 11 (i) we get the estimate

∥L l f ∥ Ẇ s,p + Ẇ r,∞ ≲ ∥L l f ∥ W σ,q ≲ ∥f ∥ Ẇ σ,q , (79) 
for any Schwartz function f , where l is the smalest integer with l ≥ σ. By Lemma 11 (ii) we also have Ll f

Ẇ s,p Ẇ r,∞ ≲ Ll f W r,∞ ≲ ∥f ∥ Ẇ σ,q . (80) 
Now, by the triangle inequality, (79) and (80) imply

∥f ∥ Ẇ s,p + Ẇ r,∞ ≤ ∥L l f ∥ Ẇ s,p + Ẇ r,∞ + Ll f Ẇ s,p + Ẇ r,∞ ≲ ∥f ∥ Ẇ σ,q ,
for any Schwartz function f . However, this imply the embedding Ẇ σ,q → Ẇ s,p + Ẇ r,∞ , which, by Proposition 40 cannot hold. □

Note that we deduced Proposition 5 from Proposition 40 which is a result of a global nature. It will be interesting to see if the conclusion of Proposition 5 remains true for spaces defined on compact domains. This can be compared with the situation when the parameters s, r, p are in the nonpathological case. More precisely, suppose Q is the cube [-1, 1] d and the parameters s > 0, r ∈ N, p ∈ (1, ∞) satisfy s / ∈ [r, r + d/p] (recall that we always consider s ̸ = r). Then,

W σ,q (Q) → W s,p (Q) + W r,∞ (Q) ,
where the parameters σ, q are as in the statement of Proposition 5. In fact, we have the more general embedding

F σ,q τ (Q) → F s,p t (Q) + W r,∞ (Q) , where t, τ ∈ [1, ∞). Indeed, if s < r then we can write σ - d q -s - d p = θ (r + d/p -s) > 0.
We also have that σ = (1 -θ) s + θr > s (since s > r) and we get from the classical embedding [35, Theorem 1 (3), p. 82], that

F σ,q τ (Q) → F s,p t (Q) → F s,p t (Q) + W r,∞ (Q) . If s > r + d/p, then, σ -r - d q = (1 -θ) (s -r -d/p) > 0,
and this implies (using the classical embedding

F σ-r,q τ → L ∞ , when σ > r + d/q), F σ,q τ (Q) → W r,∞ (Q) → F s,p t (Q) + W r,∞ (Q) .

The unboundedness of the Riesz transforms

Let us turn the attention to the behaviour of some operators given by singular integrals that act on some "pathological" interpolation spaces. Here, we restrict ourselves to a class of pathologies that are subject of Proposition 34. Let us recall that when θ ∈ (0, 1),

p ∈ (1, ∞), t ∈ [1, ∞],
s ∈ R are some parameters such that 0 < s ≤ d/p, by Proposition 34 (setting r = 0) we have

( Ḟ s,p t R d , L ∞ R d ) θ,q ̸ = Ḃσ,q q R d , (81) 
where σ = (1 -θ) s and 1/q = (1 -θ) /p. It turns out that much more is true. Namely, at least when s ̸ = d/p, none of the Riesz transforms is bounded on the space defined by the left hand side of (81). This can be deduced from (81) and the following result.

Proposition 41. Consider the function space

X := ( Ḟ s,p t (R d ), L ∞ (R d )) θ,q ,
where θ ∈ (0, 1), p ∈ (1, ∞), t ∈ [1, ∞), 1/q = (1 -θ) /p and s > 0 with s ̸ = d/p. If X ̸ = Ḃσ,q q , then, none of the Riesz transforms is bounded on X. The same fact holds for the inhomogeneous spaces.

Remark 42. Let us note that by Proposition 41 one can construct in a natural way function spaces with some special properties. Suppose that X is the space defined in Proposition 41 above and 0 < s < d/p. Suppose also that t ∈ (1, ∞). Then, Ḟ s,p t is uniformly convex and, by a theorem of Beauzamy (see for instance [26, Theorem 2.g.21, p. 229]), the space X is uniformly convex. One can immediately check that X is translation and rotation invariant. Now, by Proposition 41 and (81), the space X is a uniformly convex function space on R d , translation and rotation invariant, and no R j is bounded on X. The same observation applies in the inhomogeneous case.

Remark 43. Proposition 41 implies in particular that X is never a Besov space. Otherwise, we would get that X = B σ,q τ for some τ ∈ [1, ∞]. However, the Riesz transforms are bounded on B σ,q τ and not on X.

In order to prove Proposition 41 we need the following homogeneous variant of a result of Adams and Frazier ([2, Theorem 2]) 10 .

Lemma 44. Suppose s > 0 and p ∈ (1, ∞). For any f ∈ Ẇ s,p ∩ BM O there exist f

0 , f 1 , ..., f d ∈ Ẇ s,p ∩ L ∞ such that f = f 0 + R 1 f 1 + ... + R d f d , and d j=0 ∥f j ∥ Ẇ s,p ∩L ∞ ≲ ∥f ∥ Ẇ s,p ∩BM O .
Proof. Let l be the smallest integer with l ≥ s and fix some f ∈ Ẇ s,p ∩ BM O. By Lemma 11 (i) we have

∥L l f ∥ W s,p ≲ ∥f ∥ Ẇ s,p ≲ ∥f ∥ Ẇ s,p ∩BM O ,
and, by Lemma 11 (ii),

∥L l f ∥ BM O ≲ ∥f ∥ BM O + Ll f BM O ≲ ∥f ∥ BM O + Ll f L ∞ ≲ ∥f ∥ Ẇ s,p ∩BM O .
Hence, we can write

∥L l f ∥ W s,p ∩BM O ≲ ∥f ∥ Ẇ s,p ∩BM O . (82) 
Using the Adams-Frazier theorem ([2, Theorem 2]), we have a decomposition of the form

L l f = f ′ 0 + R 1 f ′ 1 + ... + R d f ′ d , such that d j=0 f ′ j Ẇ s,p ∩L ∞ ≲ d j=0 f ′ j W s,p ∩L ∞ ≲ ∥L l f ∥ W s,p ∩BM O . (83) 
Now we can set f 0 := f ′ 0 + Ll f and f j := f ′ j , for any 1 ≤ j ≤ d. Thanks to the decomposition

f = L l f + Ll f, we have f = f 0 + R 1 f 1 + ... + R d f d .
Also, by (82) and (83),

d j=1 ∥f j ∥ Ẇ s,p ∩L ∞ ≲ ∥f ∥ Ẇ s,p ∩BM O , and 
∥f ′ 0 ∥ Ẇ s,p ∩L ∞ ≲ ∥f ∥ Ẇ s,p ∩BM O .
We combine this with the estimate Ll f

Ẇ s,p ∩L ∞ ≲ ∥f ∥ Ẇ s,p ≲ ∥f ∥ Ẇ s,p ∩BM O ,
(see Lemma 11 (ii)) and we get 

∥f 0 ∥ Ẇ s,p ∩L ∞ ≤ ∥f ′ 0 ∥ Ẇ s,p ∩L ∞ + Ll f Ẇ s,p ∩L ∞ ≲ ∥f ∥ Ẇ s,p ∩BM O ,
Using the decomposition (84) for this g, and the estimate (85) we get

⟨f, g⟩ = ⟨f, g 0 ⟩ + ⟨R 1 f, g 1 ⟩ + ... + ⟨R d f, g d ⟩ ≲ ∥f ∥ L 1 + Ẇ -s,p ′ + ∥R 1 f ∥ L 1 + Ẇ -s,p ′ + .... + ∥R d f ∥ L 1 + Ẇ -s,p ′ , which together with (86) gives ∥f ∥ Ẇ -s,p ′ +H 1 ≲ Rf Ẇ -s,p ′ +L 1
, where Rf := (f, R 1 f, ..., R d f ). Thanks to the fact that the Riesz transforms are bounded from

H 1 to L 1 (and hence from Ẇ -s,p ′ + H 1 to Ẇ -s,p ′ + L 1 ), we have ∥f ∥ Ẇ -s,p ′ +H 1 ∼ Rf Ẇ -s,p ′ +L 1 . ( 87 
)
Now consider some λ > 0 and define f λ (•) := f (λ•). It is easy to see that for t := λ -s+d/p (see [START_REF] De Vore | Interpolation of linear operators on Sobolev spaces[END_REF])

f λ Ẇ -s,p ′ +H 1 = λ -d K t (f, Ẇ -s,p ′ , H 1 
), and in a similar way

Rf λ Ẇ -s,p ′ +L 1 = Rf λ Ẇ -s,p ′ +L 1 = λ -d K t ( Rf, Ẇ -s,p ′ , L 1 
). Now, we get from (87) that

K t (f, Ẇ -s,p ′ , H 1 ) ∼ K t ( Rf, Ẇ -s,p ′ , L 1 ),
for any t > 0 and consequently,

∥f ∥ ( Ẇ -s,p ′ ,H 1 ) θ,q ′ ∼ Rf ( Ẇ -s,p ′ ,L 1 ) θ,q ′ . ( 88 
)
Notice that the dual of the closed subspace

V := Rf | f ∈ ( Ẇ -s,p ′ , L 1 ) θ,q ′ ,
of (( Ẇ -s,p ′ , L 1 ) θ,q ′ ) 1+d is the space of all functions g that can be decomposed as in (84) with the norm given by

∥g∥ V * = inf d j=0 ∥g j ∥ X ,
where the infimum is taken over all decompositions of the form given in (84). Schematically we can write this as

V * = X + R 1 X + .... + R d X. (89) 
The dual of ( Ẇ -s,p ′ , H 1 ) θ,q ′ is (see for instance (77))

( Ẇ s,p , BM O) θ,q = ( Ẇ s,p , Ḟ 0,∞ 2 
) θ,q = Ḃσ,q q . (90) By ( 88), ( 89) and (90) we get that

Ḃσ,q q =X + R 1 X + .... + R d X. (91) 
Observe that X → Ḃσ,q q . If all the Riesz transforms are bounded on X, then by (91) we obtain X = Ḃσ,q q , which is not the case. Hence, at least one of the Riesz transforms, suppose R 1 , is not bounded on X. Any R j can be obtained from R 1 by a rotation of the coordinates and we can immediately see that X is invariant to rotations. It follows that any R j is unbounded on X. We have proved Proposition 41 in the homogeneous case. 

P k f (ξ) = Φ(ξ/2 k ) -Φ(ξ/2 k-1 ) f (ξ).
We get

-n≤k≤n P k f (ξ) = (Φ(ξ/2 n ) -Φ(ξ/2 -n-1 )) f (ξ).
Hence, we have T n λ f := (f * ς n ) λ , where

ς n := Φ 2 -n -Φ 2 n+1 . (Here, ( Φ) λ (•) = λ -d Φ(λ•).)
Using the Littlewood-Paley square function theorem for L p , it is easy to see that

∥T n λ f ∥ F s,p t = λ -d/p ∥f * ς n ∥ L p + λ s-d/p ∥f * ς n ∥ Ḟ s,p t ≲ λ -d/p C n ∥f ∥ Ḟ s,p t + λ s-d/p ∥f * ς n ∥ Ḟ s,p t ≲ λ s-d/p 1 + λ -s C n ∥f ∥ Ḟ s,p t , (92) 
where C n is a constant depending on n, s, p and t. We also have the estimate

∥T n λ f ∥ L ∞ = ∥f * ς n ∥ L ∞ ≤ ∥ς n ∥ L 1 ∥f ∥ L ∞ ≤ 2 Φ L 1 ∥f ∥ L ∞ . (93) 
From ( 92), (93) we get by interpolation that

∥T n λ f ∥ (F s,p t ,L ∞ )η,q ≲ 1 + λ -s C n 1-η λ σ-d/q ∥f ∥ ( Ḟ s,p t ,L ∞ )η,q , (94) 
for any Schwartz function f , where the implicit constant do not depend on n or λ. Suppose now that R j : (F s,p t , L ∞ ) θ,q → (F s,p t , L ∞ ) θ,q , is bounded. Since (F s,p t , L ∞ ) θ,q → ( Ḟ s,p t , L ∞ ) θ,q , we get λ -σ+d/q ∥R j T n λ f ∥ ( Ḟ s,p t ,L ∞ ) θ,q ≲ λ -σ+d/q ∥T n λ f ∥ (F s,p t ,L ∞ ) θ,q ,

for any Schwartz function f . It is easy to verify that, λ -σ+d/q ∥R j T n λ f ∥ ( Ḟ s,p t ,L ∞ ) θ,q ∼ ∥R j T n 1 f ∥ ( Ḟ s,p t ,L ∞ ) θ,q .

Also, by (94) when λ → ∞ we have lim inf λ→∞ λ -σ+d/q ∥T n λ f ∥ (F s,p t ,L ∞ ) θ,q ≲ ∥f ∥ ( Ḟ s,p t ,L ∞ ) θ,q , and now (95) implies ∥R j T n 1 f ∥ ( Ḟ s,p t ,L ∞ ) θ,q ≲ ∥f ∥ ( Ḟ s,p t ,L ∞ ) θ,q ,

where the implicit constant do not depend on n. It remains to observe that, since R j T n 1 f → R j f , in the sense of distributions (when n → ∞), we have

∥R j f ∥ ( Ḟ s,p t ,L ∞ ) θ,q ≤ lim inf n→∞ ∥R j T n 1 f ∥ ( Ḟ s,p t ,L ∞ ) θ,q ,
and by (96) we have reduced the boundedness of R j on (F s,p t , L ∞ ) θ,q to the boundedness on ( Ḟ s,p t , L ∞ ) θ,q . Now, we can apply the homogeneous case of Proposition 41 in order to complete the proof.

□

Recall that we have the embeddings

(F s,p t , L ∞ ) θ,1 → (F s,p t , L ∞ ) θ,q → (F s,p t , L ∞ ) θ,1 ,
where all the parameters are as in the statement of Proposition 41 above. In view of this embedding we can strengthen Proposition 41 by observing that R j is not bounded from (F s,p t , L ∞ ) θ,1 to (F s,p t , L ∞ ) θ,∞ . Indeed, if R j : (F s,p t , L ∞ ) θ,1 → (F s,p t , L ∞ ) θ,∞ , would be bounded, then, since R j : F s,p t , → F s,p t , is bounded, we would get by interpolation that R j : (F s,p t , (F s,p t , L ∞ ) θ,1 ) 1/2,ρ → (F s,p t , (F s,p t , L ∞ ) θ,∞ ) 1/2,ρ ,

Remark 46. Since as long as 1 < p < ∞ the spaces W s,p and W σ,ρ are Triebel-Lizorkin spaces, Proposition 7 gives in particular that

(W s,p R d , W l,∞ R d ) θ ̸ = W σ,ρ R d .
Remark 47. Note that we get a similar statement if we consider the corresponding spaces on T d . Namely, as long as l ≥ 0 is an integer and 1 < p, q < ∞, if s > 1/p, then (keeping the notation from the statement of Proposition 7)

F σ,r t T d ̸ → (F s,p q T d , W l,∞ T d ) θ .
In particular, we have (W s,p T d , W l,∞ T d ) θ ̸ = W σ,ρ T d , which easily implies that

(W s,p ♯ T d , W l,∞ ♯ T d ) θ ̸ = W σ,ρ ♯ T d .
Corollary 48. Let l ≥ 1 be an integer. Fix some θ ∈ (0, 1) and define p := 1/ (1 -θ). We have

(W l,1 R d , W l,∞ R d ) θ ̸ = W l,p R d .
Proof. Suppose by contradiction that

W l,1 , W l,∞ θ = W l,p . ( 101 
)
Since 1 < p < ∞, by Milman's result (see [29, Theorem B]) we have

W l,1 , W l,p η = W l,p 1 , (102) 
for some η ∈ (0, 1), where 1/p 1 := 1 -η + η/p. By (101) and reiteration one can rewrite (102) as W l,1 , W l,∞ η 1 = (W l,1 , (W l,1 , W l,∞ ) θ ) η = W l,p 1 , (

where η 1 := (1 -θ) η + θ. Using now (103) and the reiteration theorem (see [5, Theorem 4.6.1, p. 101]) we have

W l,p 1 , W l,∞ η 2 = ( W l,1 , W l,∞ η 1 , W l,∞ ) η 2 = W l,1 , W l,∞ θ = W l,p , (104) 
where η 1 := θ/η 1 . However, since 1 < p 1 < ∞, according to Proposition 7 (see Remark 46) we cannot have (104). This concludes the proof of Corollary 48. Note that property (i) implies

W m L ρ T d = F s,ρ 2 T d , (105) 
for any ρ ∈ (1, ∞). Also, by (ii) we can see that

bmo m ♭ (T d ♭ ) = F s,∞ 2 (T d ♭ ). ( 106 
)
Lemma 49. For m as above, and θ ∈ (0, 1) we have

(C m T d , W m L p T d ) θ ̸ = W m L q T d ,
for any p ∈ (d ♭ /s, ∞) and 1/q = θ/p. We also have

(C m ♯ T d , W m L p ♯ T d ) θ ̸ = W m L q ♯ T d .
Proof. The argument is similar to the one used in the proof of Proposition 7. Suppose by contradiction that we have

W m L ρ T d = (C m T d , W m L p T d ) θ . ( 107 
)
Since s > d ♭ /p > d ♭ /q, we can write (using (105)), As in the proof of Proposition 7 we conclude that this embedding is false, hence, (107) must be false. The first nonequality of Lemma 49 is proved. The second nonequality follows immediately from the first one or by slightly modifying the proof of the first nonequality.

□

Using this we can prove the following. Now, one can observe that by (108) the projection P is invariant to translations and hence, it is a Fourier multiplier. In other words, for each n ∈ Z d , there exists a matrix M (n) = (M ij (n)) i,j=1,...,N such that

P f (n) = M (n) f (n),
for all n. Thanks to the boundedness of P on (C(T d )) N one gets

n∈Z d M (n) f (n)e 2πi⟨n,•⟩ L ∞ ≲ ∥f ∥ L ∞ , (109) 
for any f ∈ C T d N . Let h ∈ C(T d ) and fix some indices i, j ∈ {1, ..., N }. By setting f = (0, ..., 0, h, 0, ..., 0), with h on the j-th position, the bound (109) implies

n∈Z d M ij (n) h(n)e 2πi⟨n,•⟩ L ∞ ≤ N k=1 n∈Z d M kj (n) h(n)e 2πi⟨n,•⟩ L ∞ = n∈Z d M (n) f (n)e 2πi⟨n,•⟩ L ∞ ≲ ∥f ∥ L ∞ = ∥h∥ L ∞ .

p p ,

 p which proves the second identity in Lemma 14. □Another useful tool will be the following celebrated theorem of T. H. Wolff proved in [39,Theorem 1]. Below we give the version that appears in[START_REF] Bennett | Interpolation of Operators[END_REF] Theorem 2.11, p. 317].

  Section 1]. Consider some N ∈ N * . Let φ ∈ C N c (R) be a scaling function associated with the orthogonal wavelet ψ ∈ C ∞ c (R). Consider also the set E := {0, 1} d \{(0, ..., 0)} and for each e = (e 1 , ..., e d ) ∈ E define the function ψ e ∈ C N c (R d ) by ψ e (x) := ψ e 1 (x 1 )...ψ e d (x d ), for any x ∈ R d , where ψ 0 := φ and ψ 1 := ψ. We assume that R d x α ψ e (x)dx = 0, for any multiindex α ∈ N d with |α| ≤ N . Let D be the set of all dyadic cubes in R d . We can now define the BV -normalized wavelets as follows. For each e ∈ E and each dyadic cube I = 2 -j ((k + [0, 1] d ) (where j ∈ Z and k ∈ Z d ) we define the function ψ e I (x) := 2 j(d-1

  ) I∈D,e∈E ; each ψe I differs to ψ e I by a scaling factor, i.e., keeping the same notation as above, ψe I (x) := 2 j ψ e (2 j x -k), for any x ∈ R d . We have that ψ e I , ψe ′ I ′ = δ e,e ′ δ I,I ′ , for any e, e ′ ∈ E and any I, I ′ ∈ D, where δ is the Kronecker symbol. As in [11, Section 1], in order to simplify the notation we use the vector valued functions ψ I := (ψ e I ) e∈E and ψI := ( ψe I ) e∈E . The wavelets coefficients of a distribution f on R d are defined by f e I := f, ψe I for each e ∈ E and each dyadic cube I. In a more contracted way we would write f I := f, ψI = (f e I ) e∈E .

3. 1 . 2 1 := sup λ>0 λ 1 I + c 2 I I∈D wℓ γ 1 ≤ 2 c 1 I I∈D wℓ γ 1 + 2 c 2 I I∈D wℓ γ 1 ,

 121λ>01211121 Description of Ẇ l,1 (R d ) via wavelets In [11, Definition 1.2] the authors introduced the spaces ℓ γ p (D) and wℓ γ 1 (D) by defining the norm (c I ) I∈D ℓ γ p := I∈D |I| (1-p)γ |c I | p 1/p , and the quasi-norm (c I ) I∈D wℓ γ |c I |>λ|I| γ |I| γ . The spaces ℓ γ p (D) and wℓ γ 1 (D) consist of those sequences (c I ) I∈D that have finite ℓ γ p -norm or wℓ γ 1 -quasi-norm respectively. Note that, in the case of wℓ γ 1 (D), we have the quasi-triangle inequality c for any two sequences (c 1 I ) I∈D and (c 2 I ) I∈D .

Lemma 22 .

 22 Suppose l ≥ 1 and γ ∈ R\ [1 -1/d, 1]. Consider some r ∈ N and let g ∈ C 1

  for any ν ∈ {1, ..., N }, where c ν I (f ) := |⟨f, g ν I ⟩|. Let ζ I be the functions given by ζ I (x) := 2 j ζ 2 j x -k , for each dyadic cube I = 2 -j ((0, 1) d + k). For c I (f ) := ⟨f, ζ I ⟩, thanks to (35) and the triangle inequality,

1 , 1 ≲

 11 and it remains to see that ψ e I Ẇ -a,|I| (1+r)/d , for all I ∈ D. In order to estimate ψ e I Ẇ l,1

  Now, let us prove Proposition 41 in the case of the inhomogeneous spaces. Consider some parameters λ > 0, n ∈ N * and the operator T n λ defined by T n λ f := -n≤k≤n P k f λ for any Schwartz function f , where P k f (k ∈ Z) are the Littlewood-Paley pieces of f . Let Φ ∈ C ∞ c (B(0, 2)), with Φ ≡ 1 on B(0, 1) be the function such that (see subsection 2.1)

  □

4. 2 2 N 1 / 2 .

 2212 Some noncomplemented subspaces of (C T d ) N Consider some function m = (m 1 , ..., m N ) : Z d → R N and let us denote by |m| the function |m| := m 2 1 + ... + m By m (∇) we mean the Fourier multiplier whose symbol is m. In other words, for any trigonometric polynomial f we have m (∇) f := (m 1 (∇) f, ..., m N (∇) f ) , where m j (∇) (e 2πi⟨n,•⟩ )(x) = m j (n) e 2πi⟨n,x⟩ , for any n ∈ Z d and any 1 ≤ j ≤ N .Fix some s > 0. We say that m is s-admissible if:(i) for any ρ ∈ (1, ∞) and any trigonometric polynomial f on T d we have∥m (∇) f ∥ L ρ (T d ) ∼ ρ ∥|∇| s f ∥ L ρ (T d ) ;(ii) there exists N ♭ < N such that m ♭ := (m 1 , ..., m N ♭ ) depends only on the first d ♭ coordinates (n 1 , ..., n d ♭ ) for some d ♭ < d and, for any trigonometric polynomial f onT d ♭ , ∥m (∇) f ∥ bmo(T d ♭ ) ∼ ∥|∇| s f ∥ bmo(T d ♭ ) .Given a vector space X of distributions on T d , we denote by G m (X) the vector spaceG m (X) := m (∇) g | g ∈ D ′ T d such that m (∇) g ∈ X N ⊆ X N .When X is a Banach function space, we endow G m (X) with the norm induced by X N .The spaces C m (T d ), W m L ρ (T d ) and bmo m ♭ (T d ♭ ) are spaces of distributions f on T d (or T d ♭ ), for which the following norms are finite:∥f ∥ C m (T d ) := ∥f ∥ C(T d ) + ∥m (∇) f ∥ C(T d ) , ∥f ∥ W m L ρ (T d ) := ∥f ∥ L ρ (T d ) + ∥m (∇) f ∥ L ρ (T d ) ,and ∥f ∥ bmo m ♭ (T d ♭ ) := ∥f ∥ bmo(T d ♭ ) + ∥m (∇) f ∥ bmo(T d ♭ ) , respectively.

B 2 T 2 T 2 T 2 (

 2222 s-(d-d ♭ )/p,p p (T d ′ ) = T r d ♭ F s,p d = T r d ♭ W m L p T d and similarly B s-(d-d ♭ )/q,q q (T d ♭ ) = T r d ♭ W m L q T d .Also, we see directly thatT r d ♭ C m T d → C m ♭ (T d ♭ ).Using these considerations and (107), (106),B s-(d-d ♭ )/q,q p T d ♭ = T r d ♭ (C m T d , F s,p d ) θ → (T r d ♭ C m T d , T r d ♭ F s,p d ) θ → (C m ♭ (T d ♭ ), F s-(d-d ♭ )/p,p p (T d ♭ )) θ → (bmo m ♭ (T d ♭ ), F s-(d-d ♭ )/p,p p (T d ♭ )) θ = (F s,∞ T d ♭ ), F s-(d-d ♭ )/p,p p (T d ♭ )) θ = F s-(d-d ♭ )/q,q t (T d ♭ ),where 1/t = (1 -θ) /2 + θ/p > 1/q.

Theorem 50 .

 50 Suppose m = (m 1 , ..., m N ) is s-admissible for some s > 0. Then, the space G m (C)is not complemented in (C(T d )) N .Proof. Suppose by contradiction that there exists a bounded onto projection P :(C(T d )) N → G m (C). Define P : (C(T d )) N → (C(T d )) N by P f := T d τ -y P τ y f dy,(108)for any f ∈ (C(T d )) N , where τ y is the translation operator of vector y (τ y f (x) = f (x + y), for any x ∈ T d ) and dy is the normalized Haar measure on T d . It is easy to verify that P is indeed bounded on (C(T d )) N . One can also verify that P : (C(T d )) N → G m (C) is an onto projection. Indeed, if f ∈ G m (C) then, τ y f ∈ G m (C) and hence P τ y f = τ y f , for all y ∈ T d . This and (108) gives that P f = f , for every f ∈ G m (C). Conversely, if f ∈ (C(T d )) N , using the boundedness of P we have P f ∈ G m (C).

  Proof of Proposition 41. It suffices to prove Proposition 41 in the case t = p or t = 2. One can then prove the general case by reiteration as in the proof of Proposition 33. By Lemma 44, for any g ∈ Ẇ s,p ∩ BM O there exist g 0 , g 1 , ..., g d ∈ Ẇ s,p ∩ L ∞ such thatg = g 0 + R 1 g 1 + ... + R d g d , Ẇ s,p ∩L ∞ ≲ ∥g∥ Ẇ s,p ∩BM O .(85)Let f ∈ Ẇ -s,p ′ + H 1 and consider some g ∈ Ẇ s,p ∩ BM O with ∥g∥ Ẇ s,p ∩BM O = 1 and such that ∥f ∥ Ẇ -s,p ′ +H 1 ≤ 2 ⟨f, g⟩ .

		(84)
	and	d
		∥g j ∥
		j=0

concluding the proof of Lemma 44. □

It seems that this is the first apparition of (5) in the literature. See also[START_REF] Kruglyak | Smooth analogues of the Calderón-Zygmund decomposition, quantitative covering theorems and the K-functional for the couple (L q , W k,p )[END_REF].

Presumably the assertion remains true when σ is an integer.

Usually the elements of a homogeneous Sobolev space are defined as distributions (factorized to polynomials) whose homogeneous Sobolev seminorms are finite. See also[START_REF] Grafakos | Classical Fourier Analysis[END_REF] Chapter 6]. However, most of the standard properties (as interpolation or duality) translates to our case without difficulties.

In the case of Ẇ l,∞ the linear operator f → f λ is defined by duality.

We use here the fact that if the dual X * of a Banach space X is separable, then, X is separable (see for instance[START_REF] Kreyszig | Introductory Functional Analysis with Applications[END_REF] 245].

We will mainly consider here only the "homogeneous" wavelet systems. In other words, for simplicity, we give more attention to the "mother" wavelets.

These polynomials are not the same as the polynomials p l k introduced in subsection 2.1.

Lemma 44 (that follows) can be proven on the same lines as Theorem 2 in[START_REF] Adams | BMO and smooth truncation in Sobolev spaces[END_REF]. However, since the proof in [2,Theorem 2] is too involved to be outlined here, we prefer to deduce Lemma 44 from [2,Theorem 2].
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Let P : ℓ γ 1 (ω l ) + ℓ γ p (ω l ) → Ẇ l,1 + Ḃs,p p , and E : Ẇ l,1 + Ḃs,p p → wℓ γ 1 (ω l ) + ℓ γ p (ω l ) be defined formally as (Recall (44) and (45) in order to see that P and E are well-defined.)

We have P • E = id on Ẇ l,1 + Ḃs,p p . By the retraction method (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Theorem 6.4.2]) for P and E, we observe that it suffices to prove that wℓ γ 1 (ω l ) , ℓ γ p (ω l ) θ,q = ℓ γ 1 (ω l ) , ℓ γ p (ω l ) θ,q = ℓ γ q (ω l ) .

Indeed, from (44) and (45) we have the boundedness of the operators P : ℓ γ 1 (ω l ) → Ẇ l,1 , P : ℓ γ p (ω l ) → Ḃs,p p and E : Ẇ l,1 → wℓ γ 1 (ω l ), E : Ḃs,p p → ℓ γ p (ω l ). Consequently, P : ℓ γ 1 (ω l ) , ℓ γ p (ω l ) θ,q = ℓ γ q (ω l ) → ( Ẇ l,1 , Ḃs,p p ) θ,q , and E : ( Ẇ l,1 , Ḃs,p p ) θ,q → ℓ γ 1 (ω l ) , ℓ γ p (ω l ) θ,q = ℓ γ q (ω l ) , are bounded operators. This shows that ∥f ∥ ( Ẇ l,1 , Ḃs,p p ) θ,q = ∥P (Ef )∥ ( Ẇ l,1 , Ḃs,p p ) θ,q ≲ (f I ) I∈D ℓ γ q (ω l ) , and (f I ) I∈D ℓ γ q (ω l ) = ∥Ef ∥ ℓ γ q (ω l ) ≲ ∥f ∥ ( Ẇ l,1 , Ḃs,p p ) θ,q , i.e., by (43), ∥f ∥ ( Ẇ l,1 , Ḃs,p p ) θ,q ∼ (f I ) I∈D ℓ γ q (ω l ) ∼ ∥f ∥ Ḃs,p p , for any f ∈ S ♯ .

Let us see now that (46) holds. Note that, in all the sequence spaces we consider, we have the same weights involved. Hence, (46) is equivalent (by the retraction method) to the equality (wℓ 1 , ℓ p ) θ,q = (ℓ 1 , ℓ p ) θ,q = ℓ q , which is known to hold (see for instance [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Theorem 5.3.1]).

□

Using Lemma 14 one can prove now Proposition 3 in full generality.

Proof of Proposition 3. It follows from Lemma 14 and Proposition 26 (see also Remark 27) via an application of T. Wolff's theorem (Theorem 15). Indeed, with the notation used in the statement of Proposition 3, by Proposition 26 we get

where σ 1 = l/2 + σ/2 and 1/q 1 = 1/2 + 1/(2q). By Lemma 14 we also have

, Ḟ s,p t ) ϕ,q = Ḃσ,q q , (48)

The pathological case

In this section we deal with the pathological case of Theorem 1 and Theorem 4. Our first result in this direction relies on classical trace theory (see the Appendix).

Proposition 30. Suppose r and l are some integers such that r < l ≤ r +d. Fix some parameters θ ∈ (0, 1), t ∈ (1, ∞), and let σ and q be some numbers such that σ = (1 -θ) l+θr and 1/q = 1-θ. Then,

In particular,

Proof. We first consider the case where r = 0. In this case we have 1 ≤ l ≤ d and σ = (1 -θ) l = l/q. We argue by contradiction. Suppose

However, it is known that there exist functions f ∈ B d/q,q t (R d ) that are not bounded. This 8 disproves (51) in the case l = d.

Suppose now that l < d. Let T r d-l be the trace operator on the subspace

boundedly. Indeed, when l = 1 this is clear. When l ≥ 2, by Uspenskii's result (see [40] or [START_REF] Mironescu | Traces of weighted Sobolev spaces. Old and new[END_REF]) we have that T r d-l+1 :

and then we use the fact that T r :

boundedly, and together with (51) we obtain

However, this is contradicted by Proposition 51 and consequently (51) cannot hold.

Suppose now that r > 0 and that

Introduce the operator

where id is the identity operator.

By means of Calderón-Zygmund theory, for any Schwartz function f one can find a family

r f , where the operator D(id -△) -1 acts component-wise. Noticing that D r : W l,1 → W l-r,1 and D r : C r → C, we can write:

This argument is based on the example given in [30, p. 2] related to the irregular triples.

Proof. The case where p = 1 is already covered by Proposition 31, hence, we may take p ∈ (1, ∞).

Suppose by contradiction that we have (B s,p p , W r,∞ ) θ,q = B σ,q q . (55)

Note that 1/q = (1 -θ) /p < 1/p, hence, there exists a unique number η 1 ∈ (0, 1), such that 1/p = 1 -η 1 + η 1 /q. Define the real number

which is positive thanks to the fact that s > σ (this follows from the inequality s > r and the formula σ

which together with (55) implies, via T. Wolff's theorem (Theorem 15), that

where

One can check that 1/p = 1-η 2 and s = (1 -η 2 ) s 0 +η 2 r. From this, as long as r < s ≤ r+d/p, we have

However, it follows from Proposition 31 that (56) cannot hold for this range of the parameter s 0 . □

We can generalize Corollary 32 as follows.

Proposition 33. Let r be a nonnegative integer and let

Proof. Suppose by contradiction that

Introducing the spaces X 0 := F s,p t and X 1 := (F s,p t , W r,∞ ) θ,q = F σ,q τ we observe that X 0 is in the class C(0,F s,p t , W r,∞ ) and X 1 is in the class C(θ,F s,p t , W r,∞ ) (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Definition 3.51,p. 48] and [5, Theorem 3.5.2, p. 49]) and we can apply the reiteration theorem (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Theorem 3.5.3,p. 50]). Therefore, for any ρ ∈ [1, ∞],

Proof of Proposition 34. It suffices to prove Proposition 34 in the case t = p ∈ (1, ∞) (or t = 2), τ = q, with nonequality instead of nonembedding. One can then prove the general case as we deduced Proposition 33 from Corollary 32. Suppose by contradiction that

Using Lemma 12 this is equivalent to

Let l be the smallest integer with l ≥ s and consider k := max{l, r}. By the Poincaré inequality (see for instance [START_REF] Jones | Complex interpolation between Sobolev spaces[END_REF]

for any Schwartz function f , where P l is the space of polynomials of degree at most l -1. Now, using this and the trivial inequality

together with Lemma 35 (i) (for M = P l ) and the fact that W s,p = L p ∩ Ẇ s,p , we get

for any Schwartz function f . Hence, since k ≥ l,

for any Schwartz function f . By (64), the restriction operator

Q)/P k . Also, by using the mean value theorem (see also [START_REF] Jones | Complex interpolation between Sobolev spaces[END_REF]), R Q is bounded from Ċr

Using (63) we can rewrite this as

For any element of B σ,q q (Q)/P k there exists a representative f ∈ B σ,q q (Q) and there exists an

and combining this with (65) we get

Using this and Lemma 35 (ii) (for M = P k ) we get

Now, by using Lemma 14 (and by a standard application of the retraction method) we have

This combined with (96) gives the boundedness of the operator

,ρ , which, as Proposition 41 shows, cannot hold.

To summarize, we have obtained the following result.

4 The complex method

A nonembedding property

We give now a proof of Proposition 7 based on standard trace theory and basic embedding properties of Triebel-Lizorkin spaces.

Proof of Proposition 7. By Lemma 12 (see [START_REF] Kislyakov | Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension[END_REF]) it suffices to prove that

Suppose by contradiction that

By standard trace theory we have

Also, since the trace operator T r :

Thanks to the fact that

and from (99) one gets

where 1/ρ 1 = (1 -θ)/p + θ/2.

However, since ρ 1 < ρ, the embedding (100) is false (see for instance [37, Theorem 3.1.

(i)]). □

Consequently each operator M ij (∇) is bounded on C(T d ), and by duality on L 1 (T d ). Hence, by interpolation, each operator M ij (∇) is bounded on L p (T d ) for any p ∈ (1, ∞). For such p, this gives that P is bounded on (L p (T d )) N . Using some standard density arguments it is also easy to verify that P :

Note that each f ∈ G m (D) can be written as f = ∇ r g for some g ∈ D(T d ). Consider the operator Ψ : G m (D) → D(T d ) defined by Ψ (m(∇)g) = g -g(0).

Using this, by the retraction method we get that, for any θ ∈ (0, 1),

where 1/q = θ/p.

Note that, by complex interpolation, P is bounded on

and E is bounded from W m L q ♯ (T d ) to (L q (T d )) N . Also, as above, one can verify that P : (L q (T d )) N → G m (L q ) is onto. From this we get that P Ψ(L q (T d )) N = W m L q ♯ (T d ), which combined with (109) gives

However, by Lemma 49 (since s > 1/p) this identity is false. □

Appendix

We give below some results concerning the existence and the nonexistence of traces of Besov spaces on some particular subsets of R d . All the results we give below are known. We only state them here in a form that is convenient for us. Before proceeding to these results we make some conventions in order to simplify the presentation.

Let Γ ⊂ R d be a Borel set and denote by T r Γ the corresponding trace operator. Let V (R d ) be a Banach function space on R d and let V 1 (R d ) be the normed space of all smooth compactly supported functions that are in V (R d ). The norm on V 1 (R d ) is induced by the norm of V (R d ). We say that V (R d ) has no trace on Γ if for any Banach function space Y (Γ) on Γ, the trace operator

In the case where Γ = R l ×{0} d-l ≃ R l we write T r l instead of T r Γ and even T r when l = d-1.

We are now interested in some critical situations. Proposition 51 below is essentially known (see for instance [START_REF] Triebel | Theory of function spaces II[END_REF]Section 4.4.3,p. 220]). In our applications one can use instead Theorem 52, however the proof we give below of Proposition 51 is much easier and in some applications Proposition 51 suffices (see for instance the proof of Theorem 1).

Proposition 51. Let 1 < p, q < ∞ be some parameters and let l be an integer with 0 < l < d. Then, the space B l/p,p q (R d ) has no trace on R d-l .

Proof. Note that if l ≥ 2, by the standard theory of traces we have that

Hence, it suffices to prove Proposition 51 in the case l = d -1.

As long as 0 < s < 1, we have the following equivalent of the norm of B s,p q (R d ) (see for instance [START_REF] Adams | Sobolev Spaces[END_REF]Theorem 7.47,p. 242]): Consider some Banach function space Y (R d-1 ) and let

In order to prove (112), we apply (111) for s = 1/p. We have

Also, since

the triangle inequality allows us to bound the term

Since

we have

where B ′ (0, 1) is the open unit ball in R d-1 .

In a similar way, using the fact that

we obtain

From ( 114), ( 115) and (116) we get

which together with (113), gives (112). Now suppose that the trace operator is bounded from

Using (112) and the fact that ∥F ∥ Y > 0 (note that F is not trivial), we get

, where the implicit constant does not depend on ψ. However, by a translation argument, this implies the false embedding B 1/p,p q (R) → C(R). □

Consider some Borel set Γ ⊂ R d and some number δ ∈ (0, d). We say that Γ is δ-full if it is of Hausdorff dimension δ and there exist two constants c 1 , c 2 > 0 such that

for any x ∈ R d and any R > 0, where H δ is the δ-Hausdorff measure. It is easy to see that for any δ ∈ (0, d) there exist full Borel subsets of R d of Hausdorff dimension δ.

For such subsets we have the following result borrowed from [7, Theorem 3.3.1 (ii)] and [8, Proposition 2.9].

Theorem 52. Let Γ ⊂ R d be a Borel set that is δ-full for some δ ∈ (0, d). Then, (i) For any 0 < p < ∞ and 0 < q ≤ min(p, 1) we have that

where L p (Γ) is considered with respect to the δ-Hausdorff measure.

(ii) If 0 < p < ∞ and 1 < q < ∞, then C ∞ c (R d \Γ) is dense in B (d-δ)/p,p q (R d ). It follows that B (d-δ)/p,p q (R d ) has no trace on Γ.

Let us justify the last assertion of (ii). Suppose Y (Γ) is Banach space of functions on Γ and pick some F ∈ C ∞ c (R d ) such that T r Γ F ∈ Y (Γ) and T r Γ F is not identically 0. Then, we have that the operator T r Γ cannot be bounded from B for any n ≥ 1, and by (117) we get that T r Γ F ≡ 0, which contradicts the choice of F .

The part (i) of Theorem 52 is a direct consequence of [START_REF] Bricchi | Tailored Besov spaces and h-sets[END_REF]Theorem 5.9]. The part (ii) of Theorem 52 is a direct consequence of [START_REF] Caetano | Traces for Besov spaces on fractal h-sets and dichotomy results[END_REF]Proposition 3.16]. We mention that both parts (i) and (ii) hold in a more general context, namely when Γ is assumed to be a h-set satisfying the porosity condition (see for instance [START_REF] Caetano | Traces for Besov spaces on fractal h-sets and dichotomy results[END_REF]Definition 2.8] for a definition of porosity and [8, Proposition 2.9] for a characterisation that shows in particular that any δ-full Borel set with δ ∈ (0, d) satisfy the porosity condition).