Extending Janus lectins architecture: Characterization and application to protocells - Archive ouverte HAL
Article Dans Une Revue Computational and Structural Biotechnology Journal Année : 2022

Extending Janus lectins architecture: Characterization and application to protocells

Résumé

Synthetic biology is a rapidly growing field with applications in biotechnology and biomedicine. Through various approaches, remarkable achievements, such as cell and tissue engineering, have been already accomplished. In synthetic glycobiology, the engineering of glycan binding proteins is being exploited for producing tools with precise topology and specificity. We developed the concept of engineered chimeric lectins, i.e., Janus lectin, with increased valency, and additional specificity. The novel engineered lectin, assembled as a fusion protein between the b-propeller domain from Ralstonia solanacearum and the b-trefoil domain from fungus Marasmius oreades, is specific for fucose and a-galactose and its unique protein architecture allows to bind these ligands simultaneously. The protein activity was tested with glycosylated giant unilamellar vesicles, resulting in the formation of proto-tissue-like structures through cross-linking of such protocells. The engineered protein recognizes and binds H1299 human lung epithelial cancer cells by its two domains. The biophysical properties of this new construct were compared with the two already existing Janus lectins, RSL-CBM40 and RSL-CBM77 Rf. Denaturation profiles of the proteins indicate that the fold of each has a significant role in protein stability and should be considered during protein engineering.

Domaines

Chimie
Fichier principal
Vignette du fichier
372_CSBJ_22.pdf (3.07 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03850106 , version 1 (12-11-2022)

Identifiants

Citer

Simona Notova, Lina Siukstaite, Francesca Rosato, Federica Vena, Aymeric Audfray, et al.. Extending Janus lectins architecture: Characterization and application to protocells. Computational and Structural Biotechnology Journal, 2022, 20, pp.6108-6119. ⟨10.1016/j.csbj.2022.11.005⟩. ⟨hal-03850106⟩
44 Consultations
70 Téléchargements

Altmetric

Partager

More