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ABSTRACT

Reducing the latency of electromagnetic imaging is a crucial objective for applications such as security screening,
autonomous driving, and touchless human-machine interaction. In that respect, a fundamental caveat with
conventional compressed sensing techniques is that initially all information is indiscriminately multiplexed across
a diverse set of measurement modes, and only during data processing one begins to select the information that
is relevant to the task (e.g. concealed weapon detection). In order to only acquire relevant information in
the first place, and hence drastically reduce the number of necessary measurements, the “learned sensing”
paradigm suggests to interpret reconfigurable measurement hardware (e.g. a dynamic metasurface aperture) as
a trainable physical layer. The latter can be directly integrated into the machine-learning pipeline used on the
data processing side such that one can jointly optimize physical weights (measurement settings) and digital
weights (processing network). We discuss our recent numerical and experimental investigations of this new
approach to electromagnetic imaging. Our results show that a considerable reduction of the number of scene
illuminations is possible by using learned illumination patterns as opposed to conventional patterns (random,
orthogonal or principal scene components). At the same time, we find that there are no intuitive explanations
for the learned patterns. We also clarify whether the resolution of sub-wavelength features in the scene is limited
by the conventional diffraction limit.

Keywords: Intelligent Imaging, Learned Sensing, Programmable Metasurface Imager, Latency, Compressed
Sensing, Machine Learning

1. INTRODUCTION

Latency currently limits the most promising applications of electromagnetic imaging and sensing, including
security screening, autonomous driving and touchless human-machine interactions. Every imaging pipeline has
two main potential latency bottlenecks: (i) the required number of measurements per imaged scene, and (ii)
the processing burden. Many efforts to reduce latency revolve around the idea of “compressing” sparse scene
information to reduce the number of measurements.1 An underappreciated point of view regarding latency is
that of the flow of information: at what point in the pipeline do we separate relevant and irrelevant information?
The vast majority of current electromagnetic imagers indiscrimantely acquires all information, including large
amounts of irrelevant information, and then attempts to identify relevant pieces of information during processing.
The double disadvantage of this strategy is immediately obvious: more measurements are needed, and it takes
more processing effort to select relevant information. Here, we outline a generic strategy for identifying relevant
information already during the measurement process, and demonstrate its significant latency gains in various
prototypical case studies.

To develop our ideas, without loss of generality we focus in the following on two imaging architectures
based on programmable metasurfaces. Both can be thought of as low-cost alternatives to the use of coherently
controlled antenna arrays for pattern synthesis. While the latter require countless radiofrequency chains (one
per antenna), both metasurface paradigms that we consider operate with a single feed. In one instance, a horn
antenna illuminates a programmable metasurface acting as reconfigurable reflect-array that impresses a desired
pattern on the reflected wavefront. In another instance, the single feed excites a two-dimensional waveguide
which is patterned with metamaterial elements that are programmed to leak energy at desired locations from
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the waveguide to the far field in order to holographically synthesize a desired pattern. While the second instance
is more compact, both have in common the use of in situ programmable meta-atoms to shape the waves that
illuminate the scene. From an imaging perspective, both constitute programmable coded apertures suitable for
multiplexed measurements with configurational diversity.

2. INFORMATION FLOW

To start our analysis of the information flow in electromagnetic imagers, we note that in the vast majority of
cases, creating a visual image of the scene is not the ultimate goal but an intermediate step. The image is then
further analyzed (typically with artificial intelligence tools) to detect concealed weapons (security screening), to
identify vehicles or pedestrians on the road ahead (autonomous driving), or to recognize hand gestures (touchless
human-machine interaction). Often these ultimate processing goals are neglected and studies content themselves
with presenting an uninterpreted visual image of a scene; yet it is the specific interpretation task that determines
which information is relevant, and which information is acquired but useless for the task at hand.

Figure 1. Comparison of the entire imaging pipeline for “traditional” and “compressive” imagers, from the measurement
process all the way to answering a specific task. Both paradigms indiscriminately acquire both relevant (blue) and
irrelevant (red) scene information and only separate the two in the very last step. The compressive imager has an
additional image reconstruction step because it acquires multiplexed measurements.

A traditional imager is schematically depicted in Fig. 1(a). It is based on a one-to-one mapping between
scene and image, and then the image is interpreted to identify the sought-after information. In other words,
the separation of relevant and irrelevant information occurs only at the very last step. A “compressive” imager
is illustrated in Fig. 1(b). Instead of the one-to-one mapping between scene and measurements, spatial scene
information is multiplexed across a diverse set of measurement modes with a coded aperture. A series of
measurements corresponding to different configurations of the coded aperture is taken, and an image of the
scene is reconstructed and then interpreted. Assuming that the scene is sparse, this compressive scheme has the
potential to reduce latency if the speed-up due to the lower number of measurements outweighs the additional



processing burden due to image reconstruction. However, again, relevant information is separated from irrelevant
information only at the very last step.

Several ideas have been put forward to lower the latency of the compressive imager from Fig. 1(b). A first
set of ideas revolves around reducing the processing burden. One proposal is to limit the image reconstruction
to the most significant principal components of the measurement modes.2 Another idea would be to skip the
image reconstruction alltogether and directly process the “raw” data. A second set of ideas revolves around
the coded aperture configurations. Initially, a series of random configurations was used.3 Subsequent efforts
aimed at achieving such randomness by leveraging complex scattering media, using their spatial,4 spectral5 or
configurational6 diversity, or by fabricating man-made disordered meta-structures to the same effect.7–10 Random
measurement modes are “quasi-orthogonal” but not truly orthogonal because they always have a finite overlap,
resulting in an inevitable acquisition of redundant information in subsequent measurements. Hence, if truly
orthogonal measurement modes could be used, no redundant information would be acquired such that fewer
measurements would be needed. The implementation of truly orthogonal coded aperture configurations has
been achieved by carefully configuring a reflect-array with patterns from the Hadamard basis11 or by judiciously
tuning the scattering properties of a complex medium.12,13

All imagers discussed thus far are completely oblivious to scene, measurement hardware and task. In other
words, they ignore available a priori knowledge such that these imagers are slowed down by the flow of irrelevant
information through their measurement and processing layers. It is important to note that in a typical imaging
scenario, vast amounts of a priori knowledge are available, including the expected scene (e.g. a human in
security screening), the measurement hardware (e.g. a specific programmable-metasurface device) and the task
(e.g. concealed weapon detection in security screening). The more use of this a priori knowledge is made, the
more specific the imaging setup can be, and it is this tailoring that will enable the separation between relevant
and irrelevant information earlier on in the pipeline.

A first notable effort in that spirit was the idea to make use of knowledge about the expected scene by using
principle scene components as illumination patterns.14,15 These studies indeed achieved a reduction of latency
by reducing the number of required measurements. However, they still ignored large portions of the available a
priori knowledge, notably about the task. The measurement process did not discriminate between relevant and
irrelevant information for the task at hand, implying the acquisition of useless (irrelevant) information.

Here, we describe a class of “intelligent” imagers that select task-relevant information already in the mea-
surement process (see Fig. 2), thereby achieving significant latency improvements. The underlying principle
(illustrated in Fig. 3) is to treat the entire pipeline from measurement to answering a specific task in an end-
to-end fashion. Specifically, inspired by recent work on intelligent microscopes,16 we interpret reconfigurable
measurement settings (in our case in situ programmable meta-atoms) as trainable physical weights that can be
optimized in a unique pipeline together with the digital weights of an artificial neural network (ANN) on the
processing side.17

Figure 2. Conventional imagers (a) are task-agnostic, and drag irrelevant information through the entire pipeline until
they discriminate between relevant and irrelevant information at the very last step. An “intelligent” imager (b) is task-
aware, and makes this discrimination already during the measurement process. Moreover, the image reconstruction step
is skipped and instead the raw data is directly interpreted.



Figure 3. An artist’s impression of “Learned Sensing”. Information flows through a hybrid analog-digital ANN containing
both physical and digital weights that are jointly trained. Thereby, the measurement process is aware of the ultimate
task and discriminates between relevant and irrelevant information.

3. LEARNED SENSING

3.1 Setting up the hybrid analog-digital end-to-end pipeline

The first step toward implementing a “learned” sensing pipeline is to obtain a forward model of the physical
measurement process in order to integrate it into the pipeline. In some scenarios, such a forward model can be
of analytical nature. For instance, for the aforementioned planar dynamic metasurface transceivers, an efficient
compact description of the radiating sub-wavelength meta-atoms as dipoles is feasible.17 In other scenarios, an
accurate analytical description of the measurement process may be too cumbersome or impossible. In these cases,
an ANN can be trained to approximate the forward model.18 A hybrid approach is also conceivable, in which
due to fabrication inaccuracies a few parameters of the analytical model are fine-tuned based on experimental
measurements. If an analytical forward model involves mathematical functions that are not easily differentiable,
it may be preferable to resort to an ANN-based approximation of the forward model in light of the subsequent
training phase.

The hybrid analog-digital end-to-end pipeline is then set-up in a suitable programming environment such
as TensorFlow. The first layer is not a standard ANN-layer but a custom layer, namely the forward model
of the measurement process.17 The programmable parameters therein, in our case the configuration of the
programmable meta-atoms, are treated as the trainable variables of this first (physical) layer.17 From the first
layer, the information seamlessly flows into subsequent layers that are conventional ANN-layers (e.g. fully
connected layers), as seen in Fig. 3. Each of these digital layers, of course, also contains numerous trainable
(digital) weights.

An interesting aside is the question what type of digital ANN-layers would be most suitable. Currently,
convolutional architectures are very popular.16 Their popularity originates from their use in computer vision,
where they are applied to “traditional” images as in Fig. 1(a) and excel at identifying relevant local correlations
in the data. However, given that in our case the data is completely scrambled by the multiplexing (and we intend
to skip the image reconstruction step), the sought information is very likely encoded in long-range correlations
within the data such that fully connected layers appear more suitable.19–21

3.2 Jointly training physical and digital weights

Once the hybrid pipeline is set up, the challenge lies in jointly training both physical and digital weights.
Supervised learning requires access to a labelled training data set. Such data can be generated, for instance, based
on binarized optical images of the scene.18 The optimization of the trainable weights is then usually accomplished
via error backpropagation,22 hence the need for differentiable functions in the forward model. In many “learned



sensing” problems, the one-bit programmability of the meta-atoms implies binary (thus discontinuous) physical
weight variables which are in principle incompatible with error backpropagation. However, various tricks such
as the use of a “temperature parameter” can overcome this challenge.23

It is important to note that the outcome of the training process depends to some extent on the random
initialization of the variables. This is not surprising but in fact very common in most inverse problems. There
is no guarantee of identifying the globally optimal set of configurations, but typically different optimization
runs identify distinct sets of locally optimal configurations that perform roughly equally well. An interesting
interpretation of this is to draw an analogy with statistical physics:24 different configurations of the velocity of
the air molecules correspond to the same room temperature, pressure, etc. In our problem, there are different
realizations of the weights that correspond to roughly similar performance in terms of a specific task.

3.3 Performance benchmarking against the state-of-the-art

To evidence the substantial latency improvements with “learned sensing”, we benchmark the performance char-
acteristics against the three previously discussed state-of-the-art scene illumination strategies (random patterns,
orthogonal patterns, principal scene components) in the same imaging/sensing setup. Specifically, we consider in
Fig. 4 the dependence of the achievable accuracy in a prototypical classification task as a function of the number
of utilized scene illuminations. The fewer measurements are needed to achieve a targeted accuracy, the faster
both the measurement and the processing are, resulting in a double advantage in terms of latency.

In Fig. 4(a) we consider a prototypical object recognition task in simulation. The scene contains a metallic
digit that is to be recognized by illuminating the scene with a series of patterns formed by a planar dynamic
metasurface transceiver.17 If very few measurements are allowed, our approach outperforms all three conventional
techniques by up to 15 % in terms of achievable accuracy. Naturally, as more and more measurements are allowed,
the gap gets narrower, and if many measurements are taken, no difference between the schemes is expected.

The results in Fig. 4(a) can also be discussed in terms of the amount of useful information obtained per
measurement. A random set of illuminations yields the worst performance because it makes no attempt at
discriminating between relevant and irrelevant information, and moreover acquires redundant information in
subsequent measurements. Orthogonal patterns perform slightly better because they remove the redundancy
issue but still fail to discriminate between relevant and irrelevant. A more notable improvement is obtained with
principle scene components as illumination patterns because knowledge about the expected scene is used; yet
knowledge about the task is still ignored. If knowledge about the task is deployed via the “learned sensing”
paradigm, a remarkably better performance is achieved.

In Fig. 4(b) we consider a human gesture recognition task in experiments. This time, the scene is illuminate
by waves reflected of a programmable metasurface reflect-array.18 In line with the previous case study, “learned
sensing” enables higher classification accuracies with fewer measurements in comparison to the state-of-the art.

3.4 Can we understand why the learned patterns are optimal?

Having observed the superior performance of the learned patterns, one question remains: can we gain an intuitive
understanding of them? To shed light on this question, we return to our case study from Fig. 4(a). Specifically,
we compare the four illumination techniques in terms of the patterns’ overlap in Fig. 5(a) and the patterns’
resemblance to principle scene components in Fig. 5(b).17

First, we note in Fig. 5(a) that the overlap of the orthogonal patterns is close to zero, confirming that
they were properly synthesized. The overlap of the learned patterns is similar to that of the random patterns,
indicating that redundancy considerations do not play a major role. We further observe that the PCA patterns
overlap only slightly less than the random patterns even though ideal PCA patterns are orthogonal by definition
– hinting at the difficulty to properly synthesize PCA patterns under the given hardware constraints. This is
also evidenced in Fig. 5(b) which reveals that the overlap of the PCA-based patterns with the principal scene
components is high but far from unity. The learned patterns have slightly more overlap with the principle
scene components than random or orthogonal patterns which are both scene-agnostic. This explains why solely
making use of knowledge about the expected scene as in Refs.14,15 only offers limited latency gains well below
those achievable with “learned sensing”: the optimized learned patterns only mildly take into account the scene



Figure 4. Two implementations of learned sensing with programmable metasurface hardware. (a) Numerical study
considering planar dynamic metasurface transceivers as hardware for object (metallic digit) recognition.17 The dependence
of the object classification accuracy on the number of utilized scene illuminations is plotted (“LISP”) and compared
to three state-of-the-art approaches (random, orthogonal, principal scene components). (b) Experiment based on a
programmable metasurface reflect-array as hardware for human gesture recognition.18 The dependence of the gesture
classification accuracy on the number of utilized scene illuminations is plotted and compared against the use of random
scene illuminations.

knowledge. Overall, Fig. 5 demonstrates that the learned patterns are not easily explained in terms of overlap
or principal scene components because they take into account the specific task; they are hence not intuitive and
can only be obtained through the end-to-end hybrid analog-digital pipeline discussed above.

4. CONCLUSION AND OUTLOOK

In summary, we have discussed the evolution from “compressed” to “learned” sensing from an information flow
perspective. Given the quest to reduce the latency of electromagnetic imagers as much as possible, we showed
that discriminating between relevant and irrelevant information already during the measurement process rather
than at the very last processing step is crucial. We outlined a general recipe to that effect which consists
of a hybrid analog-digital pipeline containing trainable physical and digital weights, encompassing both the
programmable measurement process as well as the data processing. Jointly optimizing physical and digital
weights allows the measurement process to be task-aware by selecting relevant information. Thereby, more
useful information is obtained per measurement such that overall latency is drastically improved. We illustrated
this for two prototypical recognition tasks with two distinct examples of single-feed programmable-metasurface
hardware.



Figure 5. Analysis of the learned illumination patterns from Fig. 3(a) in terms of their overlap (a) and their resemblance
to principle scene components (b).

While this paper has focused on latency, it is worthwhile noting that limiting the number of necessary
measurements is also favorable with respect to numerous further metrics, including power consumption, radi-
ation exposure, required computational resources and cost. Moreover, although the considered programmable
metasurface devices appear advantageous in comparison to traditional antenna arrays in terms of the hardware
complexity, the “learned sensing” paradigm is equally applicable to antenna array architectures such as phased
arrays. The trainable physical parameters in that case could be the phase and/or amplitude settings of each
antenna.

Looking forward, the information flow perspective may offer further opportunities for reducing latency in
electromagnetic imaging. Specifically, a dynamic (rather than static) sequence of coded aperture configurations
that in addition takes into account information from preceding measurements is an enticing avenue for future
investigations,25 akin to the recurrent visual attention of humans.26 Within the context of metasurface-based
hardware, such a step may provide the programmable meta-atoms with a “cognitive” feature.

A second topic for future research is the application of the “learned sensing” paradigm to a special type
of coded aperture: the “reverberation coded aperture” (RCA).27 RCAs are coded apertures based on complex
media for which the scene is within rather than outside the complex medium. This difference means that
waves interact with the scene not once but countless times, hence developing a much stronger sensitivity to
sub-wavelength scene details. There is a direct link between the waves’ dwell time in the complex medium, their
sensitivity to sub-wavelength details and the achievable resolution.27 Without any manipulation of the scene’s
near field, RCAs enable the recovery of deeply sub-wavelength details – a fact that does not violate the diffraction
limit because this limit ignores available a priori knowledge, the signal-to-noise ratio and the fact that coded
aperture imagers are not even based on focusing. By optimizing an RCA’s scattering properties in a “learned
sensing” framework, further resolution improvements appear to be achievable. The practical relevance of RCAs
lies in the fact that many electromagnetic imaging scenarios naturally involve a scene enclosed by a scattering
enclosure, for instance, imaging and sensing in an indoor environment, a metro station or an airplane.
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