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Abstract 

We present an experimental prototype of a microwave speech recognizer empowered by 

a programmable metasurface that can recognize voice commands and speaker identities 

remotely even in noisy environments and if the speaker’s mouth is hidden behind a wall 

or face mask. Thereby, we enable voice-commanded human machine interactions in 

many important but to-date inaccessible application scenarios, including smart health care 

and factory scenarios. The programmable metasurface is the pivotal hardware ingredient 

of our system because its large aperture and huge number of degrees of freedom allows 

our system to perform a complex sequence of tasks, orchestrated by artificial-intelligence 

tools. First, the speaker’s mouth is localized by imaging the scene and identifying the 

region of interest. Second, microwaves are efficiently focused on the speaker’s mouth to 

encode information about the vocalized speech in reflected microwave biosignals. The 

efficient focusing on the speaker’s mouth is the origin of our system’s robustness to 

various types of parasitic motion. Third, a dedicated neural network directly retrieves the 

sought-after speech information from the measured microwave biosignals. Relying solely 

on microwave data, our system avoids visual privacy infringements. We expect that the 

presented strategy will unlock new possibilities for future smart homes, ambient-assisted 

health monitoring and care, smart factories, as well as intelligent surveillance and security. 

 

  



Introduction 

Voice commands are arguably the most natural approach to human-machine interfaces 

because speech is the most direct communication method between humans. However, 

the most obvious approach for the machine to capture voice commands, namely the 

acquisition of the acoustic signals that are the primary information carrier, precludes many 

important deployment scenarios. On the one hand, voice commands can be drowned in 

ambient noise under operation in noisy environments such as streets, public transport, or 

restaurants. On the other hand, it is impossible to operate under silent-speech 

requirements1 which may arise to preserve privacy, for use in quiet settings like libraries, 

or through verbally impaired users (e.g., post-laryngectomy). Therefore, a wide variety of 

indirect secondary carriers of information about voice commands has been explored. 

Many of these techniques achieve high accuracy at the price of being highly invasive 

because they rely on placing sensors (e.g., magnetic2, surface electromyographic3, 

infrared4, electropalatographic5, electromagnetic6,7) directly on the human’s body to detect 

subtle vibrations that are correlated with the speech production. Obviously, such contact-

based approaches are oftentimes inconvenient and, moreover, incompatible with large-

scale deployment in our daily lives. Similar limitations apply to contactless radar-like 

approaches based on the emission and reception of acoustic8,9 or electromagnetic10,11 

waves in the very close proximity (a few centimeters) of the speaker’s face. A popular 

contactless technique for speech recognition that can operate remotely uses optical image 

sequences as secondary information carrier to recognize speech by analyzing lip or face 

motion12,13. However, such visual speech-recognition methods fail under unfavorable 

lighting conditions such as darkness as well as when the line of sight from the camera to 

the speaker’s mouth is obstructed by a wall or, more recently, a face mask. In addition, 

the acquisition of camera images risks to infringe the user’s privacy. Bi-modal speech 

recognition approaches, combining, for instance, acoustic and visual inputs14, benefit from 

richer input information but are also unable to tackle, for instance, the recognition of 

speech uttered behind a face mask in a noisy environment. An ideal voice-commanded 

human-machine interface would remotely capture relevant biosignals in a robust, noise-

resilient, and privacy-respecting manner while being cheap, consuming little power, and 

being easy to deploy in our daily lives, even when the speaker’s mouth is hidden behind 

an optically opaque tissue or wall. 



The use of microwaves as remote contactless secondary information carrier of voice 

commands is predestined to meet this formidable challenge. The ability of microwaves as 

remote, non-ionizing sensing technology to penetrate through visually opaque layers is 

well known, for example, from airport security checks15. However, capturing microwave 

biosignals that bear sufficient information about the sought-after voice commands is itself 

very challenging because most signal variations may be due to motion that is not related 

to speech. Therefore, it is of pivotal importance to focus the microwaves on the speaker’s 

mouth, which in turn requires real-time tracking of the mouth as a pre-requisite. By 

focusing on the mouth, the weight of reflections from the region of interest (ROI) in the 

measured signals is drastically increased. Notable results toward that goal were reported 

in Ref.16 through a multiple-input-multiple-output (MIMO) beamforming approach at WiFi 

frequencies in the 2.4 GHz range. However, the underlying multi-channel coherent 

emission is costly and cumbersome because it requires synchronized sources and 

individual IQ modulation on each channel. Moreover, using only a few antennas, the 

setup’s degrees of freedom were quite limited, resulting, for instance, in a focal spot that 

was so large that even winks perturbed the measured signals. A large antenna array 

emitting coherently controlled wavefronts would be necessary to efficiently localize and 

focus on the speaker’s mouth. Yet this hardware is too costly and power hungry for 

widespread deployment in human-machine interaction. 

In this article, we show that a deep-learning-controlled programmable metasurface fully 

reaps the benefits of microwave speech recognition with a drastically simpler hardware. 

Our programmable metasurface17 is an array of 1024 meta-atoms with individually 

controllable reflection properties, fed by a single source. Compared to a conventional 

antenna array comprising a few antennas, we have thus three orders of magnitude more 

degrees of freedom and, moreover, a much larger aperture. Building on recent results 

from intelligent computational meta-imaging18, these advantages allow us to localize and 

focus on the speaker’s mouth with unprecedented efficiency. We use this ability to 

prototype a voice-commanded human-machine interaction scenario in which a speaker 

who is hidden behind a wall commands a mechanical hand. Our system is capable of 

tracking a moving speaker in real time, dynamically generating suitable spatial beams for 

focusing on the speaker’s mouth and interpreting the measured biosignals with a deep-

learning technique. We also demonstrate multi-speaker listening. Moreover, we shed new 

light on the mechanisms through which speech information is encoded in microwave 

biosignals: we demonstrate that, besides the obvious reflection off the mouth, the probing 



microwave signals partially penetrate through the skin and are affected by the tongue and 

other vocal entities. Finally, we evidence that our system can also be utilized as biometric 

identification technology because of the individual manner in which each subject utters 

speech. Our experimental results enable voice-commanded human-machine interaction 

at minimal cost in a plethora of challenging and to-date inaccessible scenarios such as 

health care for assisted living (see Fig. 1a for an example); our results may also be 

valuable in security applications requiring intelligent surveillance. 

 



Figure 1. System design of the metasurface-empowered microwave speech recognizer. a) Conceptual illustration of 

the proposed microwave speech recognizer in a challenging indoor scenario: an elderly person in the sleeping room voice-

commands an appliance (e.g., lights) through a wall and despite loud music and motion in the neighboring guest room. b) 

Photographic image of one out of four panels of our one-bit programmable coding metasurface. The insets show the front 

and back sides of the designed individual meta-atom. c) Schematic drawing of the hardware configuration of our proposed 

microwave speech recognizer. The hardware of our system consists of a large-aperture one-bit reprogrammable 

metasurface, a pair of horn antennas, a vector network analyzer (VNA) and a host computer. d) Experimental 

characterization of the frequency-dependent phase and amplitude response of our designed meta-atoms in their two 

possible configurations (“0”/”ON” and “1”/”OFF”). e) and f) Maps of the spatial distribution of the microwave field magnitude 

(measured via near-field scans) corresponding to the indicated metasurface configurations that are chosen to focus on point 

A (e) or points B and C (f). 

 

Results 

System configuration. We start by elaborating on the system configuration of our 

implemented prototype for our proposed metasurface-empowered microwave speech 

recognizer. On the hardware level, our system comprises a large-aperture one-bit 

reprogrammable metasurface (1024 meta-atoms, 51.2 cm × 51.2 cm aperture), a pair of 

commercial horn antennas, a vector network analyzer (VNA, Agilent E5071C), and a host 

computer – see Fig. 1c. Our programmable-metasurface-empowered system must 

accomplish a series of complex tasks on the fly. First, our system must localize the 

speaker’s mouth. This involves imaging the scene and interpreting the resulting image to 

identify the ROI, that is, the mouth. Second, our system must focus microwaves on the 

mouth and capture the reflected biosignals. Third, our system must interpret the measured 

biosignals to extract the sought-after speech content.  

Our system’s autonomous ROI identification and analysis follows Ref.19: during the first 

step, the scene is imaged with a series of 18 random illuminations, generated through a 

known series of 18 random metasurface configurations. The measured data is processed 

by artificial intelligence (AI) tools to generate a 3D skeleton of the speaker. Details of the 

utilized AI architecture are provided in the Methods and Supplementary Note 4. Based 

on the estimated skeleton, the coordinates of the mouth, our ROI, can be deduced. Using 

a modified Gerchberg-Saxton algorithm, our system then identifies a metasurface 

configuration that focuses microwaves on the speaker’s mouth. A series of probing 

focused microwave signals is emitted with a period of 70 ms, and the reflected signals are 

captured by the receiving horn antenna. Note that the use of directive horn antennas, in 

contrast to omnidirectional antennas, further helps with discriminating ROI signals from 

multipath scattered signals in the room. The measured biosignals are then interpreted by 



an artificial neural network (ANN) that directly maps the acquired microwave data to the 

desired speech content. Such a direct transcription of measured signals with text, without 

intermediate steps involving phonetic representations, is known as “end-to-end” speech 

recognition in the signal-processing literature20. Inspired by Ref.21, we have developed a 

customized microwave-speech transformer for our system and trained it with supervised 

learning. To obtain labeled microwave-speech training data, we conveniently used the 

host computer’s built-in microphone that was synchronized with our proposed microwave 

speech recognizer. Algorithmic details about our microwave-speech transformer are 

provided in the Methods and Supplementary Note 4. 

The first step of our system’s pipeline is a conventional instance of compressive imaging 

by leveraging the configurational diversity of a programmable meta-imager, first reported 

in Ref.22 (see also Sec. II.B in Ref.18 for a balanced review of the field). Nonetheless, our 

system’s pipeline in its entirety qualifies as an instance of “intelligent meta-imaging” 

according to the taxonomy from Ref.18 (see Sec. III.A therein) because AI tools influence 

the choice of task-specific hardware configurations for our metasurface in the second step 

of its complex sequences of tasks. We note that related techniques for autonomous ROI 

identification were put forward in optical ghost imaging based on analytical rather than AI 

tools23–25. However, our AI-driven sensing pipeline is distinct from another class of 

intelligent meta-imagers which integrates the programmable meta-atoms as trainable 

physical weights directly into an end-to-end pipeline comprising both the physical and 

digital layers26,27 (see Sec. III.B-C in Ref.18). The latter could be a future extension for the 

first step of our scheme. 

The pivotal hardware ingredient of our microwave speech recognizer is an inexpensive 

one-bit reprogrammable coding metasurface composed of 32 × 32  electronically 

controllable meta-atoms. A photographic image of a 16 × 16  panel of meta-atoms is 

shown in Fig. 1b. Each meta-atom has dimensions of 16 mm × 16 mm × 1.88 mm and 

consists of a five-layer structure. A PIN diode (MADP-000907-14020x) is embedded on 

the top layer. By controlling the bias voltage of the PIN diode, we can electronically switch 

between two distinct meta-atom reflection properties in the microwave domain: The 0o-

phase (denoted as digit ‘0’) and 180o-phase (denoted as ‘1’) states are achieved when the 

PIN diode is biased with an externally applied DC voltage of 5V (ON) or 0V (OFF), 

respectively. The frequency-dependent magnitude and phase responses of our designed 

meta-atom are measured experimentally and plotted in Fig. 1d. Our designed meta-atom 



can efficiently manipulate the reflected electromagnetic field within the frequency range 

from 7.49 GHz to 8.3 GHz: the reflection phase of the meta-atom shows a roughly 180o 

phase difference when the embedded PIN diode is switched from the ON state to the OFF 

state, while the reflection magnitudes are almost the same and close to unity. Thus, the 

radiation pattern can be flexibly manipulated by suitably biasing the PIN diodes of the 

metasurface through a field-programmable gate array (FPGA). More details about the 

reprogrammable coding metasurface are provided in Methods and Supplementary Note 

1. 

To examine the crucial role of our large-aperture programmable metasurface in 

discriminating between reflections from the mouth and undesired clutter as well as to 

improve the signal-to-noise ratio (SNR), we have conducted a series of preliminary 

experiments which seek to focus the microwave field at one or two desired location(s). 

The spatial distributions of the microwave field are obtained through near-field scans. Two 

representative results are shown in Fig. 1e and Fig. 1f for focusing on a single point A 

(0.12m, 0.14m, 1m) or simultaneously on two points B (-0.05m, 0.14m, 0.65m) and C 

(0.1m, 0.14m, 0.65m), respectively. The corresponding metasurface configurations are 

identified via a modified Gerchberg-Saxton algorithm and also displayed in Fig. 1e and 

Fig. 1f. These results demonstrate the ability of our system to reallocate the microwave 

energy to one or multiple desired spot(s) in a dynamic manner using a suitable 

configuration of our programmable metasurface. The signal level at the desired spots is 

enhanced by a factor of around 20 dB. This focusing on the ROI is crucial in order to 

drastically increase the weight of reflections from the ROI and to suppress the influence 

of undesired clutter, noise and multipath reflections. 

Encoding of speech information in microwave biosignals. Having described our 

system configuration, we now wish to investigate the mechanisms through which speech 

information is encoded in the microwave biosignals that our system acquires. The acoustic 

sounds that constitute a voice originate from air being exhaled by the lungs and causing 

vocal cord vibrations. The sound is additionally shaped through a series of further 

articulatory entities such as tongue position and mouth opening. Clearly, the more the 

acquired signals of a remote sensing technique interact with all of the involved articulatory 

entities, the more speech information is expected to be encoded in the biosignals.  

Contactless visual speech recognition techniques solely rely on mouth motion because 

optical frequencies cannot penetrate through the skin and teeth. Similarly, Ref.16 based 



on a remote contactless microwave approach at 2.4 GHz suggests it relies solely on mouth 

motion. In contrast, Ref.6 reported that interior articulatory entities like the tongue 

decisively impact their contact-based measurements in the microwave regime. In fact, 

Ref.6 observed less microwave interaction with interior articulatory entities when the 

speaker had metallic tooth fillings, a clear indicator that the microwaves penetrated 

through the skin. These findings from Ref.6 are in line with our observations. As displayed 

in Fig. 2a, for our working frequency around 8 GHz, we find in full-wave simulations (CST 

Microwave Studio) that a significant portion of the microwave signal penetrates through 

the skin and teeth and interacts notably with the subject’s articulatory entities such as the 

tongue. In addition, the spatial resolution is decent because the wavelength at 8 GHz is 

3.75 cm in free space and even less inside the biological tissue. These results suggest 

that our technique is remarkably different from existing non-microwave-based strategies 

in that it can efficiently encode speech information not only from the mouth but also from 

interior articulatory entities such as the tongue. 

To test this hypothesis experimentally, we next conduct a series of speech experiments 

with our microwave speech recognizer system. Therein, the subject pronounces 

alternately two syllables, an alveolar |s| and a cacuminal |∫|, and repeats them with a period 

of two seconds for five minutes (see Fig. 2b). The participant is asked to keep the mouth 

as close as possible during the whole pronunciation process so that only tongue motion 

inside the mouth is involved. Thereby, we minimize the encoding of speech information in 

the microwave biosignals through the mouth. If our system is nonetheless capable of 

extracting speech information, this proves that it efficiently probes articulatory entities 

other than the mouth, too. The amplitudes of the acquired microwave biosignals as a 

function of the Doppler frequency are plotted in Fig. 2c; each curve is averaged over 100 

repeated acquisitions, and the experiment was performed for five different distances 

between the speaker and the metasurface (𝑑 = 0.9 m, 1.2 m, 1.5 m, 1.8 m, and 2 m). The 

corresponding sizes of the focal spot on the mouth are estimated to be on the order of 𝑂(𝜆𝑑𝐷 ), where 𝐷 = 51.2 cm is the metasurface aperture, yielding values between 6.6 cm 

and 14.6 cm. As expected, the amplitude responses show the peaks at the Doppler 

frequency of around 0.5 Hz in all five cases. It is evident that the microwave signals can 

capture the hidden vocal vibrations and motions even though the motion of the subject’s 

skin (lip and face) cannot be visually perceived. These microwave signals could be further 

processed to infer the speech content.  



As a last set of preliminary experiments, the speaker is asked to pronounce a larger 

number of syllables and repeat them for five minutes with a frequency of 0.5 Hz per 

syllable. The corresponding microwave responses are collected by the developed 

microwave speech recognizer. Figure 2d shows amplitude and phase of the microwave 

responses corresponding to five different syllables. The corresponding sound signals 

obtained from the built-in microphone of the host computer are also plotted for comparison. 

It can be seen from Fig. 2d that the microwave responses are correlated with the 

corresponding sound signals in the time domain. The frequency spectrum of the 

microwave responses has distinct properties for each syllable. 

 

Figure 2. Physical mechanisms of speech encoding in the proposed microwave speech recognizer. a) Full-wave 

simulation of the interaction of the chosen microwave signal with the vocal organs, which is achieved by using a full-wave 

simulator, CST Microwave Studio 2012. In our simulation, the subject (Laura, a model of a 43-year-old female from Ref.28) 

is illuminated with a linearly polarized plane wave. b) The experimental scheme according to which the subject is asked to 

alternately pronounce an alveolar |s| and a cacuminal |∫|, with a period of two second for a duration of five minutes. c) The 

experimental results corresponding to the scheme presented in b: the amplitudes of the microwave biosignals are plotted 

as a function of the Doppler frequency. The results are shown for five separations between the speaker and the 

programmable metasurface (0.9 m, 1.2 m, 1.5 m, 1.8 m, and 2 m). d) Selected microwave responses when the subject is 

asked to pronounce a short sentence, i.e., ‘I am a student’, three times. In addition, the corresponding sound signal acquired 

by the in-built microphone of our host computer is plotted for comparison. 

 



 

Figure 3. Experimental results of the microwave speech recognition in a line-of-sight setting. a) Experimental setting, 

where the subject is wearing or not wearing a face mask and sitting in front of the reprogrammable metasurface. b) The 

training and test behaviors of the microwave speech recognizer as a function of the training epoch. The logarithm of the 

loss function is plotted as blue solid line (left axis), and the test behavior is examined in terms of the recognition accuracy 

(right axis). Here, we consider four test cases with the microwave speech recognizer trained in the quiet environment: the 

simple test with the off-line collected test samples (called off-line test), the in-situ test with a subject in the same quiet 

environment as that for the training (called in-situ test in quiet environment), the in-situ test with a subject disturbed by an 

additional person freely acting in room (called in-situ test with perturbation), the in-situ test with a subject with different body 

motions (called in-situ test with body motion). c) Experimental setting for the investigation of the microwave metasurface 

speech recognizer’s robustness to the disturbances of the ambient environment: an additional person acts freely within the 
region marked by the blue box while subject reads out loud the assigned material. d) Experimental speech recognition 

results for the setting from c. e) Experimental setting for examining the robustness when the speaking subject makes three 



different kinds of body motions (making phone call, typing, rhythmical leg movement) at five different locations A (0.04 m, 

0.1 m, 1.15 m), B (0.04 m, 0 m, 1.0 m), C (0.04 m, -0.1 m, 1.15 m), D (0.04 m, 0 m, 1.3 m), and E (0.08 m, 0 m, 1.15 m), 

while reading out loud. (f) Experimental speech recognition results for the setting from e. 

 

Microwave speech recognition in line-of-sight setting. We begin to examine the 

performance of the developed microwave speech recognizer in a line-of-sight scenario, 

where the subject sits in front of the metasurface, as seen in Fig. 3a. To train our 

metasurface speech recognizer, we have recruited 22 participants (7 graduate students 

and 15 undergraduate students; 5 females and 17 males) and aim at recognizing 100 daily 

used English words. In the experiments, all participants were asked to read out loud the 

designated material five times at a normal speed (half a word per second on average) in 

a quiet environment. As mentioned above, the built-in microphone in our host computer is 

utilized for collecting the labeled voice data for supervised learning. In this way, we have 

acquired a total of 11000 pairs of labeled microwave-voice samples per location, in which 

70% of the samples are randomly selected for training the microwave-voice transformer, 

and the rest are used for testing. Selected samples are provided in Supplementary Note 

2.  

First, we consider the simple case in which a single subject with or without wearing a face 

mask sits at P (0.04 m, 0 m, 1.15 m) in front of the reprogrammable metasurface in a static 

and quiet environment, as shown in Fig. 3a. Figure 3b demonstrates the learning and test 

performances of the developed microwave speech recognizer in terms of how the loss 

function evolves over the course of the training epochs. In addition, the dependence of 

the speech recognition accuracy over the training samples as the epoch index increases 

is plotted in Fig. 3b. We mix cases in which the subject wears a face mask or not because 

the results are almost identical in both cases. Figure 3b shows that the developed speech 

recognizer can be effectively trained to achieve near-perfect speech recognition, and that 

the trained system works very well on the ‘unseen’ test samples, even when the speaker 

wears a mask. In other words, these results indicate that the proposed microwave speech 

recognizer can ‘hear’ what people say without audio and visual clues and ‘see’ the 

speaker’s mouth in a remote sensing manner. 

Next, we evaluate the robustness of our speech recognition procedure in a dynamically 

changing environment. Body motion or a changing environment can lead to parasitic 

variations of the acquired microwave signals that deteriorate the speech recognition 



performance. We conducted a set of experiments in which a second person, referred to 

as the perturbation person, acts freely within the indicated region in Fig. 3c while the 

subject reads out loud the designated material. To interpret the microwave signals we use 

the ANN previously trained in a quiet environment without any disturbances. The results 

in this dynamically changing environment are shown in Fig. 3d and demonstrate the 

robustness of our approach. This robustness can be attributed to the efficiency with which 

our programmable metasurface focuses the microwave beam on the subject’s mouth such 

that reflections off the perturbation person are very weak and hence their disturbing impact 

is efficiently suppressed. 

We also examined the robustness with respect to body motion of the speaking subject. 

Here, we consider a realistic scenario in which the subject walks around freely while 

speaking. This implies that the distance and orientation of the subject’s mouth relative to 

the programmable metasurface are varying. Specifically, the subject spoke at the five 

different locations around the point P, indicated in Fig. 3e while performing three different 

kinds of body motion (making a phone call, typing, rhythmical leg movements). The 

achieved recognition accuracies, again based on the microwave-voice transformer 

network trained in the quiet environment, are reported in Fig. 3f. These results indicate 

that the speech recognition performance is almost unchanged when the subject makes 

phone calls or types while reading the designated text. Again, this robustness can be 

attributed to our efficient programmable-metasurface system that tracks the subject’s 

mouth and ensures that the microwave focal spot follows the subject’s motion. These 

characteristics are very encouraging with regard to real-life convenient and robust speech 

sensing, irrespective of the speaker’s distance and orientation. 

Microwave speech recognition in through-a-wall setting. Furthermore, we tackle 

microwave multi-speaker speech recognition in a more challenging through-a-wall 

scenario where two subjects sit behind a 5 cm-thick wooden wall and talk with each other. 

The wall has a higher dielectric constant than air and possibly an additional microstructure, 

which previously motivated the conception of special wall-compensation algorithms to 

mitigate artefacts due to reflections and wavefront distortions in through-a-wall 

computational meta-imaging29. The multi-speaker problem now requires that the 

metasurface is configured such that it simultaneously focuses microwave energy on both 

speakers’ mouths – like the example from Fig. 1f. To train the microwave metasurface 

speech recognizer, 22 participants read the assigned English reading material five times 



behind the 5 cm-thick wooden wall. As before, 70% of the samples are randomly selected 

for training the microwave-voice transformer, and the rest are used for testing. The 

corresponding experimental results are reported in Supplementary Note 3. The 

recognition accuracies of above 80% from Supplementary Fig. 3 confirm that our system 

performs well also for the very challenging multi-speaker through-a-wall speech 

recognition task, even if a third person acts freely in the room while the two subjects talk 

to each other. 

 



Figure 4. Voice-commanded through-a-wall human-machine interaction based on our metasurface-empowered 

microwave speech recognizer. a) Experimental setting. Details about the mechanical hand are provided in the inserted 

figure. Further details can be found in Supplementary Video 1. b) Classification confusion matrix for the five different 

speech commands: ‘one’, ‘two’, ’three’, ‘four’, and ‘five’. c) Results of the dependence of the recognition accuracy on the 

speech length for the different number of speakers. d) Classification confusion matrices corresponding to the four red points 

marked in c.  

Voice-commanded human-machine interaction. Besides recognizing the content 

of voice commands which is the problem we have studied so far, ideally, a voice-

commanded human-machine interface should additionally be able to recognize the 

speaker’s identity. Voice is well-established as acoustic “fingerprint” of a user’s identity 

because unique vocal features are encoded by unique properties of the individual’s lung, 

vocal cords, vocal tract, and other articulatory entities. Therefore, even though multiple 

people pronounce the same words, the uttered sounds include distinctive features for each 

person. We now explore whether user identification is also possible with our acquired 

microwave biosignals. Interestingly, this variation across different users can be interpreted 

as a form of noise with respect to speech recognition whereas it is the salient feature for 

user identification. This double-sided-sword nature of signal variations as being either 

noise or the crucial feature is reminiscent of microwave-based complex localization 

problems30. 

We consider the through-a-wall microwave speech data of seven subjects, labelled with 

classes from 1 to 7 according to which subject they correspond to. The data processing 

problem is now a multivariate classification problem for which we have developed a deep 

convolutional neural network (see Supplementary Note 4 for more details). We explore 

two factors that we expect to have a major influence on the identification performance: the 

speech sample length and the number of subjects to be distinguished. Indeed, the results 

plotted in Fig. 4c-g demonstrate that as more subjects must be distinguished, acceptable 

classification accuracy can be achieved by analyzing longer speech samples. Using only 

six-second-long speech samples, we can distinguish between all seven individuals based 

on the microwave biosignals, without any vocal and visual clues. 

Finally, we now discuss our demonstration of a voice-commanded human-machine 

interface in which a mechanical hand is controlled based on through-a-wall vocal speech 

that is recognized by our microwave speech recognizer. The corresponding experimental 

setup is depicted in Fig. 4a. The system now recognizes the speech content and 

subsequently sends out the recognized speech commands to a mechanical hand in order 



to control the motion of the latter in real time. The mechanical hand is integrated into a 

mobile vehicle and each finger is fitted with an anti-blocking joint servo (LFD-01) for the 

finger retraction control. An on-board Wi-Fi module (nRF24L01) is used to wirelessly 

receive control commands from the host computer based on the recognized vocal 

commands. The vehicle is equipped with an STM32 controller to process the received 

control commands into the control quantities for the corresponding finger servos (see 

Supplementary Note 5 for details). Five different speech commands are involved in this 

experiment: ‘one’, ‘two’, ‘three’, ‘four’, and ‘five’. We have evenly collected 1000 pairs of 

microwave and acoustic samples for the five commands, and utilized 70% and 30% of 

samples to train and test the microwave speech recognizer, respectively. We report the 

classification confusion matrix in Fig. 4b, showing that near-perfect speech recognition of 

the five commands can be achieved by using our microwave speech recognizer. More 

details have been recorded in Supplementary Video 1. These primary experimental 

results demonstrate the important potential of our microwave speech recognizer for 

microwave-based contactless voice-commanded human-machine interfaces. 

 

Conclusions 

To summarize, we have proposed and experimentally prototyped the concept of a 

microwave speech recognizer empowered by a programmable metasurface, including a 

demonstration of a voice-commanded human-machine interface. Our system answers two 

fundamental questions in speech recognition – “what is being said?” and “who is 

speaking?” – based on voice-modulated microwave biosignals. The unique advantages of 

a large-aperture programmable metasurface enable us to implement microwave-based 

speech recognition with unprecedented accuracy because we can dynamically track the 

speaker’s mouth and focus microwaves on it with high efficiency. Our work is particularly 

timely in the current pandemic context: people always wear masks in public places such 

that their lip movements cannot be seen, and neither can their voice be heard given loud 

ambient noise sources. The demonstrated ability to implement contactless voice-

commanded human-machine interfaces without reliance on optical or acoustic cues will 

enable numerous important but to-date inaccessible applications of human-machine 

interfaces such as in smart health care or industrial settings, as well as intelligent 

surveillance and security. 



 

Methods 

Design of the one-bit reprogrammable coding metasurface. The reprogrammable 

coding metasurface is an ultrathin planar array of meta-atoms that are individually 

reconfigurable via electronic commands17,31,32. Thanks to its unique capabilities to 

manipulate electromagnetic wavefields in a reprogrammable manner, it has elicited many 

exciting physical phenomena (e.g., nonreciprocal reflection effects33) and versatile 

functional devices, including computational imagers18,22,26,19,27,34–40, dynamic holography41, 

wireless communications42–49, analog wave-based computing50–52, and dynamic cloaks53.  

We have designed a one-bit reprogrammable metasurface that is composed of 32×32 

meta-atoms. The meta-atom is a five-layer structure as shown in Fig. 1b and 

Supplementary Note 1. The top layer is a square copper patch with dimensions of  11 mm × 11 mm, which contains a PIN diode to control the reflection phase of the meta-

atom. The second layer has a thickness of 1.58 mm and is made of Taconic TLX-8 which 

has a relative permittivity of 2.55. The fourth layer has a thickness of 0.3 mm and is made 

of FR-4 with a dielectric constant of 4.3. The third and fifth layers are ground planes made 

of copper, and a via hole is introduced on the third layer to isolate the bias voltage coming 

from the fifth layer. For the sake of easy fabrication, the entire reprogrammable coding 

metasurface is designed to be composed of 2×2 metasurface panels, and each panel 

consists of 16×16 electronically controllable digital meta-atoms. One such panel is 

depicted in Fig. 1b. Each metasurface panel is equipped with eight 8-bit shift registers 

(SN74LV595APW), and eight PIN diodes are sequentially controlled. The adopted clock 

rate is 50 MHz, and the ideal switching time of the PIN diodes is 10 μs.  

Algorithmic overview. The first step of our microwave speech recognizer is to localize 

the ROI in the scene, i.e., the speaker’s mouth. To this end, the scene is illuminated with 

18 random patterns generated by a known series of random metasurface configurations. 

The acquired data is directly mapped to a 3D skeleton of the speaker using a deep ANN 

(see details in Supplementary Note 4).54 Based on the 3D skeleton, it is then 

straightforward to localize the speaker’s mouth. These ROI coordinates are needed to 

identify a metasurface configuration that efficiently focuses microwaves on the speaker’s 

mouth. A suitable metasurface configuration for this focusing task is identified with a 

modified Gerchberg-Saxton algorithm based on the ROI coordinates. This is the basis for 



capturing clutter-resiliant microwave biosignals from which speech information can be 

extracted. The autonomous ROI identification here differs from that in Ref.19 in that the 

acquired data from the first step is mapped to a 3D skeleton as opposed to a full image.  

Microwave-speech transformer. The microwave-speech transformer is a deep artificial 

neural network which directly converts the sequence of microwave signals to the 

sequence of recognized speech information in an end-to-end fashion. The architecture is 

inspired by Ref.21 and detailed in Supplementary Note 4. The network adopts the typical 

Transformer structure and uses an encoder-decoder module structure, which is mainly 

composed of multi-head attention layer, feed-forward layer, residual connection and layer 

normalization. The network training is performed using the Adam optimization method55 

with a mini-batch size of 64, an epoch setting of 50, and a learning rate of 3×10−4. The 

complex-valued weights are initialized randomly with a zero-mean Gaussian distribution 

of standard deviation 10−3. The training is performed on a workstation with an Intel Xeon 

E5-1620v2 central processing unit, NVIDIA GeForce GTX 2080Ti, and 128 GB access 

memory. The machine learning platform TensorFlow is used to define and train the 

networks. 

Speaker identity recognition. The network for recognizing the speaker’s identification 

from the microwave biosignals is based on a simple CNN structure as detailed in 

Supplementary Note 4. It consists of convolutional layers, pooling layers, fully connected 

layers, and Softmax activations. The network maps the acquired biosignals directly to the 

user identity class. 

Configuration of proof-of-concept system. The experimental setup, as shown in Fig. 

1b, consists of a transmitting (TX) horn antenna, a receiving (RX) horn antenna, a large-

aperture reprogrammable metasurface, and a vector network analyzer. The two horn 

antennas are connected to two ports of the VNA via two 4m-long 50-Ω coaxial cables, and 

the VNA is used to acquire the response data by measuring transmission coefficients (S21). 

In addition, an in-build sound microphone in the host computer has been integrated into 

our system for acquiring labeled training data. The computer controls the VNA and 

microphone to acquire the microwave data and voice signal, respectively, using the 

Python 3.1 software. These two procedures of data acquisition share the same starting 

time and ending time, but with different sampling intervals, 70 ms for the microwave data 

from the VNA and 
122050 s for the acoustic data from the microphone. Note that the sound 



signals are solely used to assist in labeling the microwave data with corresponding text to 

obtain labeled training data, since our primary goal is to infer the speech information from 

the microwave data. To that end, we cut the acoustic signal corresponding to a specific 

text by listening and writing down the start and end times. Since the microwave speech 

data and the acoustic data are acquired at the same start time, we can easily align each 

sampling interval. Finally, we can label the microwave speech data with the corresponding 

text. We input these microwave biosignals into the neural network and train the latter so 

that it outputs the corresponding speech. 
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