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Abstract—We present a framework for operating a self-
adaptive RIS inside a fading rich-scattering wireless environment.
We model the rich-scattering wireless channel as being double-
parametrized by (i) the RIS, and (ii) dynamic perturbers (moving
objects, etc.). Within each coherence time, first, the self-adaptive
RIS estimates the status of the dynamic perturbers (e.g., the
perturbers’ orientations and locations) based on measurements
with an auxiliary wireless channel. Then, second, using a learned
surrogate forward model of the mapping from RIS configuration
and perturber status to wireless channel, an optimized RIS
configuration to achieve a desired functionality is obtained.
We demonstrate our technique using a physics-based end-to-
end model of RIS-parametrized communication with adjustable
fading (PhysFad) for the example objective of maximizing the
received signal strength indicator. Our results present a route
toward convergence of RIS-empowered localization and sensing
with RIS-empowered channel shaping beyond the simple case of
operation in free space without fading.

Index Terms—reconfigurable intelligent surface, localization,
sensing, channel estimation, fading channels, rich scattering,
integrated sensing and communication

I. INTRODUCTION

We introduce an artificial intelligence (AI) empowered
approach to converging channel estimation and shaping
enabled by reconfigurable intelligent surfaces (RISs) in fading
rich-scattering wireless environments. The ability of RISs to
shape wireless channels within the emerging “smart radio
environment” paradigm pivotally relies on channel state
knowledge. Most algorithmic explorations of RISs assume that
the channels are known, but gaining this channel knowledge
once per coherence time in practice will involve significant
overhead [1], a realization that has even given rise to ideas for
how to use RIS without deterministic channel information [2]–
[4].

If the receiver is cooperative, the channels can be measured
via pilot signals, as recently studied for RISs in free space [5]–
[7]. Alternatively, and this is the case we focus on, the RIS
can be equipped with a sensing functionality to determine
itself the channel state information. First efforts to integrate
sensing functionalities for channel estimation into RISs have
been reported for operation in free space where the problem
of channel estimation is comparatively simple, requiring,
for instance, only a direction-of-arrival estimation [8]–[12].

Corresponding Author: Philipp del Hougne.

But realistic propagation environments often involve complex
fading effects significantly beyond the validity of a simple
free-space approximation. Deployment scenarios of RISs
inside metallic enclosures such as vessels, planes, trains
or busses will give rise to channels with strong multipath
characteristics; at low frequencies (< 6 GHz), even office
rooms present substantial amounts of reverberation [13], [14].
In such rich-scattering scenarios, the wireless channels are the
superposition of many reflected waves arriving from seemingly
arbitrary angles such that common free-space intuition and
approaches cannot be applied [15]. The complexity of the
problem calls for data-driven AI approaches.

In our approach, we consider a double-parametrization of
the fading rich-scattering wireless channels:

1) the desired RIS-parametrization.
2) the undesired channel dependence on some dynamic

channel-perturbing parameters such as the location of the
receiver, the location of moving objects, the orientation
of rotating objects, etc.

We will thus proceed in three steps:
1) Learn a surrogate forward model to predict the channel as

a function of RIS parameters and perturbing parameters.
2) Estimate the perturbing parameters.
3) Optimize the RIS parameters, given the perturbing

parameters, to achieve the desired shaping of the wireless
channel.

While step 1 is a one-off calibration step for a given scenario,
steps 2 and 3 are repeated once within every channel coherence
time.

The first step of learning a parametrized forward model of
complex fading channels cannot be approached analytically in
our rich-scattering setting (unlike its free-space counterpart).

The second step can build on existing literature for RIS-
assisted sensing in rich-scattering environments. Specifically,
a fixed series of random RIS configurations can offer
sufficient configurational diversity to estimate the location of
a non-cooperative object based on transmission measurements
between a single pair of nodes [16], even deeply sub-
wavelength precision with intensity-only measurements
is attainable [17]. This is essentially an instance of
compressed sensing, where the rich-scattering environment
acts as RIS-parametrized coded aperture. Importantly, the
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Fig. 1. Algorithmic summary. First, the pertuber status θ is determined using S-ANN based on measurements of the transmitted spectrum between the
transmitter (TX) and an auxiliary receiver (AR) for a fixed series of random RIS configurations. Second, a simple iterative algorithm (Algorithm 1) is used
to optimize a RIS configuration for RSSI boosting. At every iteration, the cost function evaluation is based on the prediction by CE-ANN of the transmitted
spectrum between TX and receiver RX. CE-ANN takes the estimated perturber status from S-ANN and the RIS configuration to be evaluated from Algorithm
1 as input. C and C denote RIS configuration and cost function, respectively.

nodes can be positioned at any fixed but arbitrary
point within the environment. This wave-fingerprinting-based
localization technique can be implemented robustly in dynamic
environments [18] and it may be possible to learn a shorter
task-specific fixed series of RIS configurations to improve
latency through “learned sensing” [19]. The related sensing
task of object recognition (instead of localization) inside
a rich scattering environment has also been implemented
with compressed sensing using spectral diversity (broadband
measurements) [20].

The third step of optimizing the RIS parameters cannot
be conveniently implemented by running the forward model
from step 1 in reverse with fixed weights and trainable inputs.
The reason is the 1-bit (or few-bit) programmability of the
RIS elements and the fact that the learned forward model is
not guaranteed to interpolate in a physically meaningful way
between the discretized inputs from the training data.

Directly learning an inverse (instead of forward) model
that outputs a suitable RIS configuration as a function of
the desired wireless channel and perturber status does not
present itself as viable alternative to following steps 1 and
3 because (i) the forward model is a many-to-one mapping
(within reasonable precision limits), and (ii) determining
desired wireless channel characteristics in accordance with the
laws of physics is nontrivial.

In the remainder of this paper, we detail our preliminary
implementation of the above approach to realizing a self-
adaptive RIS for channel sounding and shaping beyond the
simple free-space case. To work with the substantially more
challenging case of fading rich-scattering channels, we use an

end-to-end model for RIS-parametrized fading channels that
fully complies with wave physics [21].

II. OPERATION PRINCIPLE

The fading rich-scattering wireless channel between
transmitter TX and receiver RX, HRX−TX , is parametrized
by (i) the RIS configuration, C, and (ii) the status of the
dynamic perturber, θ. C is a 1 × NRIS vector, where NRIS
is the number of RIS elements. θ is a vector concatenating
all necessary parameters to fully describe the pertuber status.
In the simple case of a single irregularly shaped object
rotating around its own axis, θ is simply the object’s angular
orientation. In general, however, the perturbation can depend
on multiple parameters that would be collected in θ. In
addition, we assume the existence of an auxiliary wireless
channel, HAR−TX , between the transmitter and an auxiliary
receiver, AR, located at a fixed arbitrary position.

An algorithmic summary of the self-adaptive RIS’ workflow
performed during each coherence time is provided in Fig. 1.
First, the self-adaptive RIS estimates the current state of
the perturber, θ̃, by measuring the field transmitted from
TX to AR, HAR−TX , for a fixed series of random RIS
configurations. To this end, the artificial neural network (ANN)
coined S-ANN is used. Second, based on θ̃, the self-adaptive
RIS identifies a suitable configuration in order to implement
a desired channel shaping functionality. To that end, the RIS
uses the simple iterative Algorithm 1; every evaluation of the
cost function in Algorithm 1 makes use of a second ANN
coined CE-ANN that estimates the channel between TX and
RX for a given θ and C.
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We use the ANNs (S-ANN and CE-ANN) as faithful
interpolators of functions for which no analytical expression
exists.

Remark 1: For free-space operation, the channel HRX−TX

is usually decomposed into the channel from the TX to the
RIS, the RIS configuration, and the channel from the RIS to the
RX. Such a simple linear cascaded model is not applicable in
rich-scattering environments where each path may encounter
different RIS elements along its complicated trajectory.
The parametrization of the channel HRX−TX through RIS
(and dynamic perturbers) is hence highly complicated and
analytically intractable, which is why we learn the surrogate
forward model CE-ANN.

Remark 2: The stronger the perturber alters the auxiliary
wireless channel HAR−TX , the more accurately S-ANN
can estimate θ with a limited sequence of measurements
and/or in the presence of measurement noise [17]. Various
implementations of S-ANN (for different sensing tasks and
measurement protocols) were reported in Refs. [15]–[20].

III. PROBLEM STATEMENT

For concreteness, we illustrate our proposed generic
technique for the specific objective of maximizing the received
signal strength indicator (RSSI, i.e., the magnitude of the
transmitted spectrum) at a desired frequency between a
fixed transmitter and a fixed receiver inside a rich-scattering
enclosure including dynamic uncontrolled perturbers and a
conformal distributed 1-bit-programmable RIS. As illustrated
in Fig. 2a, the perturbers are four irregularly shaped objects
rotating in an uncontrolled manner around their centers. We
model the wireless channels with PhysFad [21], a physics-
based end-to-end communication model for RIS parametrized
wireless environments with adjustable fading. PhysFad is
based on a coupled-dipole formalism constructed from first
principles and thereby inherently obeys all essential physical
principles, including

• a notion of space and causality,
• dispersion (frequency selectivity) and the intertwinement

of a RIS element’s phase and amplitude response,
• any arising mutual coupling effects, including long-range

mesoscopic correlations, and
• the non-linear parametrization of wireless channels

through RIS and perturbing objects.
PhysFad is formulated, without loss of generality, in

arbitrary units such that the central operating frequency as
well as the medium’s permittivity and permeability are all
defined to be unity [21]. The utilized PhysFad parameters
are summarized for the sake of repeatability in Table I – the
interested reader is referred to Ref. [21] for details on PhysFad.

The impact of the RIS and/or perturbers on HRX−TX

is illustrated in Figs. 2b-d. The standard deviation σ of
the distribution of the complex-valued HRX−TX for random
choices of C with fixed θ (Fig. 2c) is seen to be comparable
to that for random choices of θ with fixed C (Fig. 2d). If both
C and θ are chosen randomly, σ is of course higher (Fig. 2b).
Overall, the non-trivial parametric dependence of HRX−TX

TABLE I
SUMMARY OF UTILIZED PHYSFAD [21] PARAMETERS.

Entity fres χ ΓL

Transceivers 1 0.5 0
Scat. Env. 10 50 104

RIS {1, 5} 0.2 0.05

Fig. 2. a) Considered setup in PhysFad [21]: An electrically large, irregularly
shaped, rich-scattering enclosure inside which four irregular objects rotate
(for simplicity in sync) in an uncontrolled manner. In addition, a distributed
conformal RIS partially covers the enclosure’s walls. The RIS consists of
100 1-bit programmable RIS elements which are clustered into macro-pixels
of four RIS elements. An example configuration is indicated, where the RIS
elements in the ON state are highlighted with a green circle. The wireless
channel of interest, HRX−TX , is parametrized by the RIS configuration
C and the perturber status θ. The self-adaptive RIS is equipped with an
auxiliary receiver (AR) at a fixed arbitrary location such that it can estimate
the perturber status based on measurements of the auxiliary wireless channel
HAR−TX . b)-d) Distribution of HRX−TX in the complex plane for 50
random realizations of C and θ (b), of C with fixed θ (c), and of θ with
fixed C. σ denotes the standard deviation of the complex-valued HRX−TX .

on C and θ is obvious, excluding the use of analytical channel
models as in free space.

IV. METHODS

In this section, we present preliminary results for the
three-step procedure outlined in the Introduction to realize
a self-adaptive RIS under fading rich-scattering conditions.
We leave discussions of technical details like the influence
of the amount of training data and the choice of ANN
hyperparameters for future work. We work on purpose with
“simple” fully connected layers because the rich-scattering
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enclosure scrambles information such that the features we
seek to identify are likely to be encoded in long-range
correlations [17], [18].

A. Step 1: CE-ANN

Our CE-ANN consists of two fully connected layers with 64
neurons and ReLu activation, followed by a linear output layer.
Tackling a regression (rather than classification) problem, our
cost function is the mean-squared-error (MSE) of the predicted
HRX−TX . For training, we use a labeled dataset with 105

entries {C, θ,HRX−TX} of which 15% are used for validation
to decide when to stop the training in order to avoid overfitting.

B. Step 2: S-ANN

Our S-ANN consists of three fully connected layers with
256, 128 and 26 neurons, respectively, and ReLu activation,
followed by a linear output layer. Tackling another regression
problem, our cost function is again a MSE, this time the MSE
of the predicted θ (defined in terms of arc length on a unit
circle to account for the periodicity). For training, we use
a labeled dataset with 103 entries {θ, {HAR−TX,i}} where
the set {HAR−TX,i} denotes the collection of transmission
spectra of the auxiliary wireless channel for a fixed series of
10 random RIS configurations. 15% of the data are used for
validation to decide when to stop the training in order to avoid
overfitting.

C. Step 3: Algorithm 1

Algorithm 1 is implemented as detailed in Fig. 1, making
use of CE-ANN everytime it evaluates the cost function. The
θ-input of CE-ANN is obtained from the output of S-ANN.

V. RESULTS

Our preliminary results are summarized in Fig. 3. After
training S-ANN and CE-ANN as detailed in Sec. IV, we test
the performance of our self-adaptive RIS for the designated
task of optimizing the RSSI on the wireless link HRX−TX

for 100 random test instances of the dynamic rich-scattering
environment. For each test instance, a random perturber status
θ is chosen. The 10 measurements of the auxiliary channel
HAR−TX for the 10 fixed random RIS configurations are
made, and an estimate θ̃ of the perturber status is obtained.
The results in Fig. 3a reveal excellent precision in estimating
the perturber status. As noted above, estimating the perturber
status is relatively easy for large perturbers as in the considered
case.

Having obtained θ̃ in a given test instance, we next
run Algorithm 1 to optimize the RIS configuration
for the designated channel shaping functionality (RSSI
maximization). The final optimized RIS configuration is
evaluated in PhysFad to determine the achieved RSSI
improvement independently from the quality of CE-ANN as
a surrogate forward model. We also evaluate the RSSI for
500 random RIS configurations as benchmark. The results
displayed in Fig. 3b indicate clear RSSI improvements in
every test instance for our self-adaptive RIS. On average, the

Fig. 3. Results obtained for 100 test instances with random perturber status
θ. a) Estimation of perturber status θ̃ (green) from S-ANN, and ground
truth θ (violet). b) For each test instance, the average of RSSI over 500
random RIS configurations (blue) is contrasted with the RSSI of the RIS
configuration optimized for the test instance using Algorithm 1 (red). While
the identification of the optimized RIS configuration is solely based on CE-
ANN, the final displayed RSSI results are evaluated in PhysFad [21] to avoid
reliance on CE-ANN being a high-quality representation of the underlying
model.

magnitude of HRX−TX is doubled, corresponding to a four-
fold intensity improvement.

VI. CONCLUSION

We have introduced a paradigm through which a RIS can
self-adapt its configuration inside a dynamic rich-scattering
environment to reliably implement a desired channel shaping
functionality despite dynamic perturbations. The conception
of a self-adaptive RIS is particularly challenging to realize in
our setting of a rich scattering environment where no simple
analytical channel description exists. In practice, our technique
will be useful when the channel coherence time is significantly
longer than the time it takes our RIS to self-adapt through the
procedure summarized in Fig. 1. Current RIS prototypes can
refresh their configuration within 20 µs (e.g., in Ref. [22]),
with further room for improved refresh rates, suggesting that
our method may serve in many realistic scenarios, e.g., where
human motion is the perturbation.

Looking forward, our technique can be extended to scenes
with more complicated dynamics (e.g., complex motion of
multiple perturbing objects and moving receiver). In particular,
the scalability of our approach to scenarios with more
independent perturbers as well as the impact of the SNR on the
performance deserve attention. The training procedure to adapt
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to a specific environment may be eased in the future through
transfer learning. Furthermore, we envision smarter ANNs that
anticipate motion and cognitively select intelligent sensing
patterns [23]. Overall, it remains to be determined whether the
system level advantages of smart radio environments justify
the cost of the associated overhead (in our work, going through
the procedure summarized in Fig. 1).
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