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Abstract—Radio localization is a key enabling technology
for situational awareness but conventional techniques based
on elaborate ray-tracing approaches naturally struggle in rich
scattering environments (inside rooms, metro stations, planes,
vessels, ...). Here, we discuss a completely different approach
to radio localization: instead of attempting to understand rich
scattering wave propagation in terms of rays, we harness the
overwhelming complexity because it assigns unique wave finger-
prints to each object position. We interpret wave propagation as
a physical encoder of the sought-after localization information in
multiplexed measurements and detail artificial neural network
(ANN) architectures suitable to decode these measurements for
a single or multiple, discrete or continuous, sought-after location
variable(s). Capitalizing on recent physics-driven experiments, we
clarify that the proposed technique is very robust to measurement
noise and capable of achieving deeply sub-wavelength localization
precision. The discussed technique can be implemented with
multiplexing across spatial, spectral or configurational degrees
of freedom, corresponding to sensor networks, broadband mea-
surements and RIS-programmable environments, respectively.
Specifically, multiplexing across a fixed random sequence of
RIS configurations enables single-frequency localization with a
single node. Finally, we propose an end-to-end vision of the
technique in which programmable RIS elements take the role
of physical weights in a hybrid analog-digital ANN. Thereby,
relevant information for the localization task can be discrimi-
nated from irrelevant information already in the measurement
process, enabling substantial latency improvements.

Index Terms—Radio Localization, Reconfigurable Intelligent
Surface, Rich Scattering Environment, Multi-Path, Artificial
Neural Network

I. INTRODUCTION

Localization information is a fundamental ingredient of situ-
ational awareness and underlies several emerging technologies
expected to impact society at large, including the areas of mo-
bility (autonomous vehicles and robots), health-care (ambient-
assisted living [1]), human-machine interaction (gesture-based
commands, virtual reality), retail (asset tracking, customer ana-
Iytics), and wireless communication (beamforming) [2]. Radio
technology 1is attractive for localization tasks because on the
one hand it is independent of scene lighting, optical colors and
optically opaque layers (clothes, fog, ...) while on the other
hand it can often leverage existing wirless communication
infrastructure, endowing it with a dual communication and
sensing functionality. Conventional radio localization relies on
ray-tracing, making use of information such as a radio wave’s
angle or time of arrival. These techniques were conceived

for operation in quasi-free space but inherently struggle when
confronted with the rich scattering that is typical for environ-
ments in which the above-listed applications are desired. In
rich scattering environments, wave energy is not incident from
one or a few well-defined directions at well-defined moments
in time; instead, it is statistically spread across all possible
directions and polarizations throughout the propagation envi-
ronment [3]. The amount of scattering depends on the specific
environment’s materials and geometry, as well as on the radio
wave’s frequency; for typical frequencies of a few GHz, as
used in WiFi, many common scenarios taking place inside
rooms, metro stations, planes or vessels are confronted with
strong reverberation and multipath effects.

Dealing with rich scattering environments from a ray tracing
perspective, in particular distinguishing objects of interest
from other strong reflectors, is highly challenging. Current
proposals tackle mildly scattering environments in which it
may be feasible to account for known scatterers with identified
position in ray tracing [4], [5], to conduct a statistical anal-
ysis of the channels [6], [7], to leverage large-scale antenna
arrays [8], [9], or to use an array of programmable reflectors
(a “Reconfigurable Intelligent Surface”, RIS) as known and
controllable reference or anchor points [10]. “Single-bounce”
assumptions [11] can be suitable simplifications of the mul-
tipath problem at higher frequencies. Some of the above-
described approaches have been tested experimentally in an
indoor environment using 2-GHz-bandwidth signals [4], [5],
[12] or using a base-station equipped with a large amount of
antennas [8].

Instead of struggling to deal with multi-path in ray-tracing
frameworks, a completely different approach consists in har-
nessing the overwhelming scattering richness via wave fin-
gerprinting (WFPing). The wave field in a rich scattering
environment is extremely sensitive to geometrical perturba-
tions such that the wave fields act as WFPs for different
object positions. To unambiguously identify the WFPs, they
must be “inked” with sufficient distinct measurements. These
measurements of the wave field can multiplex the sought-after
location information across spatial, spectral or configurational
degrees of freedom (DoF) of the system. Spatial DoF are
accessed via large-scale antenna arrays [13]-[15], spectral DoF
via (ultra-) broadband measurements [16]-[20], and configura-
tional DoF via a pre-defined series of random configurations
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of a RIS-programmable propagation environment [21]. The
latter has the advantage of using only a single node and
a single frequency, resulting in a very light hardware layer
and minimal spectrum allotment concerns. Moreover, unlike
RIS-based localization proposals in quasi-free space [22], the
use of random sequences for WFPing implies no need to
model and optimize the RIS configuration. Not relying on a
RIS model is of practical importance because to date no RIS
models that faithfully capture all physically important details
(inter-element coupling, dependence on angle of incidence,
frequency and polarization, influence of nearby scatterers) is
available.

Here, we discuss WFP-based radio localization in rich
scattering environments from an information flow perspective
in order to clarify important questions about its potential
limitations (achievable localization precision, performance in
dynamic environments). We interpret wave propagation in the
rich scattering environment as physical encoder of the sought
localization information, and discuss how this information can
be decoded from the measurements. In particular, we argue
that artificial neural networks (ANNs) are a good choice of
digital decoder and discuss suitable architectures in various
scenarios. Finally, the information flow perspective allows us
to envision an end-to-end optimized localization scheme in
which the programmable propagation environment plays the
role of a first trainable ANN layer, holding the promise of
significant latency improvements. With this unifying perspec-
tive on information flow, we bring together somewhat disjoint
research threads on wave physics, metamaterials, and signal
processing.

II. INFORMATION FLOW

To start, we analyze how information flows through the
physical and digital layers of the localization sensing pipeline.
For concreteness, we consider the use of RIS-based configura-
tional diversity in Fig. 1. Wave propagation encodes the sought
after information in the multiplexed measurements, and the
digital layer serves as decoder of the desired information.

Many choices of digital decoder are conceivable. When the
measurements are complex-valued, a phase retrieval problem
is avoided and the problem can be framed as a matrix inver-
sion, which can be further refined via various regularization
strategies. A digital decoder that works irrespective of the
availability or not of phase information is a correlation-based
dictionary search, sometimes also marketed as “virtual time
reversal” if spectral DoF are used. A more modern strategy
is to train an ANN to approximate the inverse function of the
physical encoder. Refs. [23], [24] both observed that ANN
decoders are significantly more robust to noise than their
competitors. A further advantage, in comparison to inversion
or correlation, is that during inference the forward pass through
the ANN is likely faster.

III. NEURAL NETWORK ARCHITECTURE

In this section, we discuss the choice of layer architecture,
activation functions and cost functions in various scenarios.

.
Tobj

Information Space

Physical Layer

Measurement Space

Digital Layers foreir ~ foiys

Information Space T,

Fig. 1. Information Flow in WFP-Based Radio Localization using RIS-
Based Configurational Diversity. Wave propagation in the RIS-parametrized
rich scattering environment encodes the information about the object lo-
cation, 7o, in a measurement vector M = fppys(Fop;,{Ci}). The
ith measurement is a single value (real or complex, depending on whether
phase information is acquired) corresponding to the ith fixed random RIS
configuration C;. M concatenates the M/ measurements obtained with the
fixed series of M random RIS configurations, {C;}. The digital layer then
attempts to decode M by approximating the inverse function of fppgy g to
obtain an estimate of the object position: F’obj = fprarr(M) = Top;.

A. Fully Connected or Convolutional Layers?

Convolutional architectures are currently very popular in
deep learning, including in WFP-based localization in rich
scattering environments [15]. Their popularity originates from
their success in computer vision, where convolutional layers
excel at extracting local features from data [25]. Computer
vision deals with optical images in which there is a one-
to-one mapping between scene and image. In sharp contrast,
there is no one-to-one mapping between scene and multiplexed
measurements in WFP-based localization data. Information
from all parts of the scene is scrambled via wave propagation
in the rich scattering environment, and each scene compo-
nent contributes to each measurement. Therefore, local scene
features are very likely encoded in long-range correlations
in the multiplexed data and hence fully connected layers
capable of identifying global features in data from multi-
plexed measurements appear preferable. Indeed, recent work
on the recovery of scrambled optical images after propagation
through a multimode fiber confirmed this hypothesis [26], and
successful WFP-based radio localization with a simple ANN
consisting only of two fully connected layers was reported [3],
[23].

B. Choice of Activation and Cost Functions

Depending on whether the sought-after location variable is
discretized or continuous, the problem falls into the categories
of classification or regression, respectively, with important
consequences for the choice of activation and cost function.

Initial works [3], [21], [23] discretized the location variable
via a grid of predefined positions on which the object was
allowed to be located. For a single object, this is a standard
classification problem that can be tackled with ReLU activa-
tion functions, except for the last layer on which a SoftMax
activation should be applied, in combination with a cross-
entropy cost function [23]. If more than one object is to
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be localized, the classes are independent and not mutually
exclusive, resulting in a multi-class multi-label classification
problem. To that end, the activation function of the last layer
should be a Sigmoid rather than a SoftMax function, again in
combination with a cross-entropy cost function [3].!

More recently, in order to probe the achievable localization
precision, Ref. [24] treated the location variable as continuous.
For such a regression problem, it was heuristically observed
that Sigmoid activation functions should be used after the fully
connected layers; no activation function should be applied to
the output layer. The cost function should be the mean error
(or root-mean-square error), i.e. not a cross-entropy based cost
function.

IV. POTENTIAL LIMITATIONS

In this section, we address two potential limitations of WPF-
based radio localization.

A. Achievable Precision

It is often assumed that the localization precision can be at
best half the operating wavelength because of the diffraction
limit. However, the diffraction limit applies to energy focusing
whereas the WFP-based localization operates with multiplexed
measurements without any energy focusing. Moreover, the
crucial roles of a priori knowledge and signal-to-noise (SNR)
ratio are ignored by the diffraction-limit argument. In fact,
reverberation in a rich scattering environment encodes deeply
sub-wavelength information in the multiplexed measurements,
and the longer the waves dwell in the environment, the
more efficiently they encode such information [24]. Intuitively,
this link between dwell time and localization precision is
easily understood: the probability that a deeply sub-wavelength
detail impacts the evolution of a wave is higher if the wave
reverberates longer in the interaction domain. Specifically,
this means that the localization precision in rich scattering
media can vastly exceed that achievable in quasi-free space,
underlining the potential of harnessing rich scattering. The
challenge lies then only in extracting the sought-after infor-
mation from the multiplexed measurements, and an ANN
decoder is a suitable way of doing so [24]. There is hence
no fundamental wavelength-induced bound on the achievable
localization precision. Instead, in practice, the latter depends
on physical parameters (dwell time and SNR), the available a
priori knowledge, and the choice of digital decoder.

B. Operation in Dynamic Environments

A common objection to WFP-based localization are doubts
about its ability to perform well in dynamic environments.
Indeed, WFPing is based on the sensitivity of chaotic wave
fields to the object to be localized, but the sensitivity of
course equally applies to parasitic perturbations. In principle,
the perturbation can be interpreted and treated as an effec-
tive source of noise. The worse the effective SNR, the less

!In both cases, it is important in practice to make sure the last activation
function is not accidentally applied twice; for instance, in Tensorflow, cross-
entropy loss functions such as softmax_cross_entropy_with_logits compute
internally the softmax of their inputs.

useful information is obtained per measurement. However,
this can be counterbalanced by taking more measurements
with distinct measurement modes. Therefore, even if the
parasitic perturbations are stronger than those of the object(s)
of interest, in principle that does not automatically preclude
the successful implementation of WFP-based localization [23].
However, the stronger the parasitic perturber is, the more
important it becomes to thoroughly characterize it such that the
ANN can faithfully extract statistically relevant information
from perturbed measurements. Specifically, this means that
the training data set should capture a representative set of
realizations of the perturbations that can be expected during
on-line inference.

V. END-TO-END VISION

Reducing latency is a crucial goal for many localization
applications. In terms of information flow, it is obvious that
the above-discussed WFP-based schemes do not discriminate
between relevant and irrelevant information during the physi-
cal encoding in multiplexed measurements. If only information
relevant to the localization task was included in the measure-
ments, fewer measurements would be needed to acquire the
same amount of useful information, and less data would have
to be processed, resulting in a double advantage in terms of
latency.

If RIS-enabled configurational DoF are used for WFPing,
it is possible to optimize the measurement modes. A random
sequences of RIS configurations, as discussed thus far, yields
pseudo-orthogonal measurement modes. This means that not
only do the measurement modes not filter out irrelevant
information but subsequent measurements in fact acquire to
some extent redundant information due to the finite overlap
of the measurement modes. This redundancy can be removed
by optimizing the RIS sequence such that the measurement
modes are truly orthogonal [27]. Such a sequence can be
identified iteratively in the experiment, without needing to
model the interaction of waves with the RIS. However, truly
orthogonal measurement modes still fail to separate relevant
from irrelevant information.

Information Space

Tobj

Physical Layer

Measurement Space

Digital Layers

Information Space Tobj

Fig. 2. “Learned Sensing” Architecture for RIS-Based Radio Localization.
Learned Sensing is based on a hybrid analog-digital ANN, consisting of a
physical layer on which the RIS elements’ configurations are the trainable
physical weights, followed by several traditional digital layers, with conven-
tional digital weights. I denotes the identity function.
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1. Train Learned Forward Model of Physical Layer

Tobj
— M
{Gi}

2. Train Learned Sensing Localization Pipeline

Train 6 such that
fFWM (Tbj), {Ci}’ 9) ~ fPHYS(?bj: {Ci}) = M

Tobi —| WAL M T Tobj
Train {{C;}, ¢} such that
. fus (Tovj (Ci3, &) ~ Tov;
Tobj —] frs@objy 1Ci}, &) T T,
Fig. 3. Implementing a Realistic Learned Sensing Localization Pipeline. First, a learned forward model is established to approximate the physical layer.

The physical layer performs the function fpry s(7opj, {Ci}) = M, where 7op; is the object position, {C;} is a set of M RIS configurations, and M is
the 1 X M measurement vector (one measurement per RIS configuration). M can be real or complex valued, depending on whether phase information is
measured or not. A neural network with trainable weights 6 is now trained by optimizing 6 such that frw ar(7op;,{Ci},0) = fPaY S(Fobj, {Ci}) = M.
Second, this learned forward model fryy s is integrated into the learned sensing pipeline. Now, § remains fixed to the optimized values from the first step.
The learned sensing network has a set of trainable physical weights, namely the RIS configurations {C;}, and a set of trainable digital weights, namely the
weights of the digital decoding network ¢. Overall, the learned sensing network is supposed to perform a function frg(7op5, {Ci}, ®) = Top;. To that end,

its trainable physical and digital weights are jointly optimized.

Following the recently introduced “learned sensing”
paradigm in electromagnetic imaging and gesture recogni-
tion [28], to endow the physical layer with task-awareness,
we propose to interpret the RIS-programmable rich scattering
propagation environment as a trainable physical layer of a
hybrid analog-digital neural network, followed by the digital
layers discussed previously. The traditional WFP architecture
from Fig. 1 also seeks to ultimately approximate an identity
function by using fprarr ~ f;}iy - however, therein fprys
is fixed and not trainable (a fixed sequence of random RIS
configurations is used). In Fig. 1, only the digital layer can be
optimized.

The architecture in Fig. 2 is reminiscent of an auto-encoder
(see Ch. 14 in Ref. [29]) in that it seeks to map the informa-
tion space to itself by approximating an identity function. It
lacks, however, the common architectural symmetry of auto-
encoders. Most importantly, the encoding step of the proposed
“learned sensing” pipeline happens in the physical rather than
digital world — a fundamental difference from conventional all-
digital auto-encoders. Conventional auto-encoders are a signal
processing tool aimed at dimensionality reduction of measured
data, whereas here we aim at optimal joint measuring and
processing of data given a variable of interest. Auto-encoders
can also be trained to yield representations of corrupted input
data, known as denoising auto-encoders [30]; this functionality
is inherent in our proposal because the physical layer involves
measurements that are inevitably affected by measurement
noise.

In practice, an important challenge will be to obtain a for-

ward model of the physical layer such that it can be integrated
into the hybrid analog-digital end-to-end pipeline. Analytical
forward models seem difficult to realize for localization in
rich scattering environments for two reasons: (i) no models
of RIS that faithfully capture the physics are available, and
(i1) modelling a rich scattering environment via ray tracing is
prohibitively expensive. Instead, it appears best to resort to
a learned forward model [31]. To that end, as illustrated in
Fig. 3, in a first step, an auxiliary neural network is trained
such that the function fryy s that it performs approximates the
physical layer; specifically, fpy s predicts the measurements
M as a function of a set of RIS configurations {C;} and
the object position 77, . To train this neural network, a
representative sample of measurements obtained for different
object positions and random RIS configurations is required.
In a second step, this learned forward model is integrated into
the “learned sensing” pipeline, where {C;} are the physical
trainable weights and ¢ are the digital trainable weights. The
learned sensing network is then trained by jointly optimizing
{C;} and ¢. Thereby, the RIS configurations learn to take
into account the ultimate localization task, making it possible
to discriminate between relevant and irrelevant information
already in the measurement process. Since each measurement
will then contain more information relevant to the localization
task, fewer measurements will be needed to successfully per-
form the localization task. The shorter measurement process,
combined with a lower data processing burden, will enable sig-
nificant latency improvements. Moreover, the reduced number
of necessary measurements will favorably impact other metrics
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such as power consumption and radiation exposure. We are
confident that these latency trends which were evidenced in
recent “learned sensing” studies of electromagnetic imaging
in free space [28], [31] will also apply to localization in rich-
scattering environments: on a very abstract level, localizing
an object can be interpreted as imaging of an extremely
sparse scene; the environment’s rich-scattering nature can be
interpreted as part of the “scene illumination hardware”.

VI. CONCLUSION

To summarize, we discussed WFP-based radio localization
from an information flow perspective, with a focus on the use
of configurational DoF offered by a RIS-equipped propagation
environment. We considered technical details of ANN-based
digital decoders (layer architecture, choice of activation and
cost functions) in various scenarios. Moreover, we clarified
the absence of wavelength-induced bounds on the achievable
localization precision, as well as that operation in dynamic
environments is feasible. Then, we introduced an end-to-end
vision for a hybrid analog-digital localization pipeline which
treats the RIS-programmable environment as a first trainable
physical layer. On the one hand, thereby wave propagation
acts as analog processor. On the other hand, the measurement
process pre-selects information relevant to the localization task
which avoids the acquisition of irrelevant information. We
expect the end-to-end pipeline to enable significant latency
improvements. Looking forward, this vision can be further
refined within the realm of reinforcement learning to update
the sequence of RIS configurations in real time [32].
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