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Introduction

The concept of “information” is to date 

not very present when wave engineers 

and wave physicists conceive imaging 

modalities or design antennas. Yet, 

the ultimate purpose of such systems 

and devices is to extract or transfer 

information through tailored wave-

matter interactions. In other words, 

most wave engineers judiciously 

design systems to mold the flow of 

information without explicitly thinking 

about information. In fact, my question 

“what is information?” in job interviews 

is usually met with a blank stare. A 

basic understanding that information 

captures the amount of surprise in 

a signal is not routinely conveyed to 

engineering and physics students.

Modern wave-engineering challenges 

are usually overwhelmingly complex; 

consider, for instance, the recognition 

of human postures in complex indoor 

environments or the transmission of data 

in dynamic and spectrally congested 

settings. The conventional approach 

of seeking analytical descriptions and 

solutions of such complex problems 

is intractable here. Instead, it becomes 

increasingly important to take a step 

back and adopt a more abstract 

interpretation of the problem in terms 

of information flow: what information 

is supposed to be extracted and/

or processed and/or transmitted and 

what physical and digital operations act 

upon it? Once this is understood, the 

modern wave engineer can leverage 

artificial-intelligence (AI) tools to 

cope with their large data sets and 

complex problems. Beyond conceiving 

hardware, the modern wave engineer 

must increasingly also think about 

how to make optimal use of their 

(tunable) hardware. For instance, given 

programmable metamaterials, what is 

the best deployment mode in a specific 

problem?

In this paper, I provide conceptual 

guidance and sign posts to help wave 

engineers fully reap the potential of AI 

in their work. After a brief introduction 

to AI, I discuss the three possible 

use-cases of AI in wave engineering 

as (i) a surrogate inverse model, 

(ii) a surrogate forward model, and 

(iii) an end-to-end optimized hybrid 

analog-digital pipeline. The latter 

directly integrates tunable physical 

parameters such as the configuration 

of a programmable metamaterial into 

an AI pipeline. Thereby, the physical 

hardware becomes task-aware, which 

is the basis of fully reaping the potential 

of programmable metamaterials for 

complex communications, imaging and 

sensing tasks.

What is inside the AI 
black box?

So, to start, let’s open the black box 

that is AI. What is AI? The media often 

portray AI as an obscure concept that 

could one day take over the world. But, 

seen from a conceptual standpoint, 

AI is just a very elaborate function-

approximation technique. A typical 
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This paper emphasizes the importance of designing wave 
systems with an end-to-end vision of the information 
flow for the targeted applications. Focusing for 
concreteness on programmable-metamaterial hardware 
which is expected to become a pivotal ingredient of 
upcoming wireless systems for information extraction 
and transfer (e.g., in 6G networks), the role of artificial-
intelligence tools to design task-specific metamaterial 
configurations despite the overwhelming system 
complexity is discussed.
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exercise in freshman lab is to study 

the displacement y of a spring that is 

subject to a force x, and to perform 

a linear regression analysis y=kx to 

estimate the spring constant k. The 

students thus fit a model (y=kx) 

with a single free parameter (k) to 

their experimental data. Supervised 

learning in AI fits a more complex and, 

importantly, nonlinear model with many 

free parameters (termed weights) to 

training data. Elaborate algorithms like 

error backpropagation can efficiently 

identify the weights and have been 

known for decades [1]. However, only 

recently the necessary computational 

power and large data sets became 

available to achieve the impressive AI 

results that fueled the proliferation of AI 

in all areas of science and engineering.

What roles are there for 
AI in wave engineering?

To understand the various potential 

roles of AI in wave engineering, 

let’s focus for concreteness on an 

information-extraction problem  such 

as imaging a hand to recognize 

a hand sign. First, we denote the 

information of interest as x. Second, 

this information is physically encoded 

in the scene through a function S, for 

instance, the fingers of a hand may be 

arranged such that they display a peace 

sign S(x), in order to physically encode 

the information “Peace”. Third, we 

perform measurements by illuminating 

the scene with waves and (partially) 

capturing the scattered waves, yielding 

our measured data. The measurement 

process can be understood as a 

function M acting on S(x). Fourth, we 

perform data interpretation by applying 

a function D to M(S(x)). This finally 

yields our estimate x̃= D(M(S(x))) of x. 

Figure 1 summarizes this information 

flow.

Surrogate inverse model

The most common use of AI is at 

the data-interpretation step in order 

to learn a function D that inverses 

the information flow from x via S(x) 

into M(S(x)), in order to obtain an 

estimate x̃ of x.  Because S and M are 

in general complicated (and maybe 

not analytically known) functions, we 

do not  tend to know how to invert 

them analytically. But using sufficient 

training data, we can train an AI 

model that approximates the inverse 

of this information flow. Such an AI 

model is known as surrogate inverse 

model and will be used as D in the 

data interpretation step from Figure 1. 

Learning surrogate inverse models is 

the fundamental idea underlying the 

use of AI in the field of computer vision.

In electromagnetism and other areas 

of wave engineering (acoustics, etc.), 

of course, it is also often necessary 

to approximate the inverse of M(S(x)). 

One example from my own research 

was our demonstration of achieving 

deeply sub-wavelength resolution 

without using evanescent waves [2]. 

We hypothesized that if a scene was 

placed inside a reverberant enclosure 

as opposed to in free space, then 

the waves used to probe the scene 

would ricochet inside the enclosure, 

encountering the scene multiple 

times and hence developing a greater 

sensitivity to sub-wavelength scene 

details. We were convinced that 

reverberation yields an interferometric 

sensitivity that more efficiently 

encodes sub-wavelength information 

in the measurements. However, the 

measurement process also completely 

scrambles this information. Hence, we 

trained an AI model to approximate the 

function D that would unscramble the 

measured signals of our reverberation-

coded aperture. Indeed, this enabled 

us to confirm our hypothesis and 

unveil a fundamental relation 

between reverberation, sensitivity and 

achievable resolution.

...

 Figure 1 : Information flow in a generic information-extraction problem. Wave engineering intervenes at the measurement  step, e.g., with respect to how to illuminate a 
scene with programmable-metamaterial hardware to recognize a hand sign.
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But using AI as surrogate inverse model 

is only the most basic purpose that AI 

can serve in wave engineering. Many 

groups still limit themselves thereto, 

without being aware of the more 

advanced roles that AI can play which 

are detailed below.

Surrogate forward model

A second use case for AI in wave 

engineering is to approximate the 

function M, i.e., to learn a surrogate 

model of a physical forward process 

that is too complicated to be described 

analytically. Again, of course, a large 

and representative training data set 

is required to successfully learn such 

a model. This approach is helpful to 

predict the scattering properties of 

a parametrized scattering system. 

For example, nanophotonic design 

procedures increasingly rely on 

learned surrogate forward models 

of electromagnetic solvers [3–5]. 

Another timely example is the use of 

a programmable metasurface (PM) 

to massively parametrize a wireless 

propagation environment. The vision 

of this research thread is a smart radio 

environment [6] whose propagation 

properties are customized by tailoring 

the PM configuration to the needs of a 

wireless functionality that is desired to 

facilitate communications, sensing, etc. 

The PM contains hundreds of elements 

with individually adjustable scattering 

properties [7], and their impact on a 

wireless channel is, in general, highly 

nonlinear [8]. This should not be 

confused with the linearity of the wave 

equation: while the input-output relation 

of the channel is linear, the dependence 

of the channel on parameters of the 

electromagnetic environment is in 

general nonlinear.   In order to capture 

how a wireless channel of interest in a 

complex indoor environment depends 

on the configuration of a PM, the most 

convenient approach may thus be to 

train in situ a surrogate forward model 

mapping a PM configuration to the 

corresponding wireless channel state.

End-to-end optimized hybrid 
analog-digital pipeline

Each of the previous two approaches 

only focuses on one specific step 

of the information flow in Figure 1. 

By separately treating measurement 

and data processing, many research 

groups deprive themselves to date 

of fully reaping the potential of their 

hardware. If the measurement process 

is optimized independently from data 

interpretation, then the measurement 

is task-agnostic and it is impossible 

to distinguish between task-relevant 

and task-irrelevant information during 

the measurement. Consequently, one 

acquires unnecessary task-irrelevant 

information and more measurements 

are needed to capture enough 

relevant information. Ultimately, the 

acquisition of irrelevant information 

deteriorates the latency as well as other 

metrics (processing burden, power 

consumption, memory usage, …).

Consider the case of computational 

imaging with PMs. Therein, a PM is 

used to sculpt the waves that illuminate 

the scene during the measurement 

process. Typically, a known series of 

random PM configurations is used to 

perform “compressed sensing”  [9]. 

The measured data is then often 

interpreted using an AI-based learned 

surrogate inverse model for D. But the 

random scene illuminations, captured 

by the measurement function M, are 

completely agnostic to our task of, say, 

recognizing a hand sign.

How can we do better? “Learned 

sensing” formulates a single pipeline 

that includes both M (with trainable 

physical weights) and D (with trainable 

digital weights), mapping S(x) to x̃ . 

Based on training data, one can then 

simultaneously optimize all weights 

in this end-to-end pipeline, i.e., both 

the physical measurement and the 

digital processing steps. Thereby, the 

measurement is automatically tailored 

to the task such that it will highlight 

salient scene features, converting the 

measurement into an analog over-the-

air wave processor. Ultimately, more 

task-relevant information is acquired 

per measurement such that remarkably 

fewer measurements are needed to 

answer the task [10].

Incidentally, to formulate the end-to-

end pipeline, a differentiable forward 

model of the measurement process 

is needed. Where this cannot be 

formulated analytically, one can learn 

an auxiliary surrogate forward model for 

that purpose (see above).

This “learned sensing” approach, in 

contrast to a task-agnostic conventional 

“compressed sensing” approach [11], is 

a powerful example of how the potential 

of a given hardware, e.g., a PM, can only 

be fully reaped through an end-to-end 

optimized approach. PM hardware has 

been around since at least 2014 [7] but 

only now do we know how to make full 

use of it by tailoring its configuration in situ 

to a specific task. The direct integration 

of programmable meta-atoms into an 

AI pipeline merges the worlds of wave 

engineering and information science. 

Interestingly, the use of AI does not 

preclude intuitive insights into the 

optimal metamaterial configurations: 

trends in their “macroscopic” properties, ...
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” Nowadays, the information at hand gets 
increasingly complex, such that it becomes 
increasingly important (if not inevitable)  
to intelligently use available hardware 
(e.g., a programmable metasurface). ”
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... for instance, how their overlap and 

intensities are adapted to noise, can be 

comprehended [12].

Conclusions

The ultimate purpose of most efforts 

in wave engineering is to mold the flow 

of information through tailored wave-

matter interactions. Nowadays, the 

information at hand gets increasingly 

complex, such that it becomes 

increasingly important (if not inevitable) 

to intelligently use available hardware 

(e.g., a PM). Hybrid end-to-end pipelines 

capture the flow of information in its 

entirety and thereby enable task-specific 

hardware configurations that fully reap 

the potential of PMs. The work of a 

modern wave engineer is increasingly 

multidisciplinary and requires awareness 

of the concept of “information”. To 

solve the challenges of tomorrow, an 

information theory of waves in matter 

is needed. In my own “Intelligent Wave 

Systems” research group, I seek to 

establish a culture in which we always 

think about the information flow in its 

entirety to guide our understanding and 

conception of wave systems. n
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Résumé Abstract
Exploiter pleinement les avantages des métamatériaux program-

mables pour l’extraction d’informations (imagerie, détection, loca-

lisation) ou le transfert d’informations (communications sans fil) 

nécessite une optimisation de bout en bout du flux d’informations, 

ce qui inclut les couches physiques et numériques. Une synergie 

délibérée entre l’ingénierie des ondes et la science de l’informa-

tion est donc essentielle pour faire face aux problèmes complexes 

de l’ingénierie de demain. Les outils d’intelligence artificielle per-

mettent aux ingénieurs des ondes d’optimiser les processus de 

mesure spécifiques à leur tâches malgré la complexité (souvent 

insoluble sur le plan analytique) de la couche physique impliquant 

des métamatériaux programmables ainsi que des tâches. n

Fully reaping the benefits of programmable metamaterials 

for information extraction (imaging, sensing, localization) or 

information transfer (wireless communications) requires an 

end-to-end optimization of the information flow, including 

physical and digital layers. A deliberate synergy of wave 

engineering and information science will be pivotal to face 

the complex engineering problems of tomorrow. Artificial-

intelligence tools allow wave engineers to achieve optimized 

task-specific measurement processes despite the (oftentimes 

analytically intractable) complexity of programmable-

metamaterial hardware and task. n
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