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Non-Hermitian photonic systems capable of perfectly absorbing incident radiation recently attracted much attention both because
fundamentally they correspond to an exotic scattering phenomenon (a real-valued scattering matrix zero) and because their extreme
sensitivity holds great technological promise. The sharp reflection dip is a hallmark feature underlying many envisioned applications
in precision sensing, secure communication and wave filtering. However, a rigorous link between the underlying scattering anomaly
and the sensitivity of the system to a perturbation is still missing. Here, a theoretical description in complex scattering systems is
developed which quantitatively explains the shape of the reflection dip. It is furthermore demonstrated that coherent perfect ab-
sorption (CPA) is associated with a phase singularity and that the sign of the diverging time delay is related to the mismatch be-
tween excitation rate and intrinsic decay rate. The theoretical predictions are confirmed in experiments based on a three-dimensional
chaotic cavity excited by eight channels. Rather than relying on operation frequency and attenuation inside the system to be two
free parameters, “on-demand” CPA is achieved at an arbitrary frequency by tweaking the chaotic cavity’s scattering properties with
programmable meta-atom inclusions. Finally, the optimal sensitivity of the CPA condition to minute perturbations of the system is
proven theoretically and verified experimentally.

1 Introduction

The scattering of waves as they interact with matter is the basis of countless experimental methods, a
prominent example being imaging. Recently, many exotic scattering phenomena such as perfect absorp-
tion, exceptional points or bound states in the continuum have been extensively studied due to their
disruptive potential in areas such as sensing and computing; fundamentally, they can be understood in
terms of analytical properties of the associated scattering matrix [1]. Indeed, any wave scattering pro-
cess is fully characterized by the distribution of poles and zeros of the scattering matrix in the complex
frequency plane [2, 1]. Poles and zeros are spectral singularities associated with outgoing and incoming
boundary conditions, respectively. By including the appropriate amount of gain in the system, a pole
can be pulled up onto the real frequency axis: the scattering matrix will have an infinite eigenvalue and
lasing occurs. Conversely, by including the appropriate amount of loss, a zero can be pulled down onto
the real frequency axis, resulting in a zero eigenvalue of the scattering matrix and coherent perfect ab-
sorption (CPA) [3, 4]. Incident radiation corresponding to the eigenvector associated with the zero eigen-
value will be perfectly absorbed. CPA can be interpreted as a generalization of the critical coupling con-
dition [5] and can be understood as the time reverse operation of a laser (i.e. as an “anti-laser”) at the
lasing threshold (before the appearance of nonlinear saturation effects) [6, 7]. The generality of these
concepts implies that they also apply to random scattering media. Indeed, a “random laser” resonantly
enhances light by multiple scattering inside a disordered medium [8, 9]. Recently, the feasibility of real-
izing CPA in random scattering media and chaotic cavities has been studied theoretically and demon-
strated experimentally [10, 11, 12, 13], overcoming the immense difficulty of balancing excitation and de-
cay rate of a random system.
A hallmark signature of a system with a scattering matrix zero on the real frequency axis is a very pro-
nounced dip of the energy reflected off the system as a function of frequency or any other local or global
system parameter, evidencing an extreme sensitivity to tiny perturbations. This feature is at the heart
of the concept’s technological relevance: for regular systems, it was, for instance, leveraged to demon-
strate coherent modulation of light with light, i.e. without any non-linearity [14, 15, 16]; for randomly
scattering systems, the extreme sensitivity is the basic ingredient of a recently demonstrated physically
secure wireless communication scheme [17] as well as of envisioned precision-sensing applications [13, 17].
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Intuitively, one may explain this extreme sensitivity with the fact that the incident radiation is trapped
for an infinite time [3] when a real-valued scattering matrix zero is accessed: the longer the wave’s life-
time inside a chaotic system, the more likely it is that its evolution is impacted even by a tiny perturba-
tion. Nonetheless, a rigorous explanation of the physical origins of this extreme sensitivity and its link to
the underlying scattering anomaly is to date missing.
In our work, we fill this gap by studying the time delay of waves at the CPA condition inside a random
medium. Our theoretical model quantitatively explains the shape of the reflection dip and relates the
sign of the diverging time delay to the difference between the system’s excitation and decay rate. We
further analytically demonstrate the CPA condition’s optimal sensitivity to minute perturbations, irre-
spective of their location inside a chaotic system. Our theoretical findings are corroborated with ran-
dom matrix simulations as well as experiments in the microwave domain involving a chaotic cavity. To
facilitate accessing a real-valued zero experimentally, we follow (and generalize) an idea introduced in
Ref. [17]: we tune our disordered system’s scattering properties with programmable meta-atom inclu-
sions to a state in which a zero of the scattering matrix hits the horizontal axis. This procedure enables
the “on-demand” observation of a CPA condition at any desired frequency and without reliance on at-
tenuation being dominated by a localized and tunable loss center. Our versatile setup furthermore en-
ables a statistical study of perturbation strengths in the cases of coherent excitation of the system with
an unoptimized wavefront or the CPA wavefront, revealing that the latter enables sensing the perturba-
tion strength (for sufficiently small perturbations) whereas the former cannot discriminate between dif-
ferent perturber strengths. Our results pave the way for sensors with optimal sensitivity to minute per-
turbations of disordered matter such as tiny intrusions, defaults, changes in temperature or concentra-
tion.

2 Theoretical Model of Time Delays in Random CPA

2.1 Dip in Frequency-Dependent Reflection Coefficient

The wave-matter interaction in a complex scattering system is fully characterized by the system’s scat-
tering matrix S(ω) which relates an incoming field ψin to the corresponding outgoing field ψout via ψout =
S(ω)ψin. In a system without any absorption or loss, S(ω) is unitary and its zeros (zm = ωm + iΓm/2)
and poles (ωm = ωm − iΓm/2) are symmetrically placed in the upper and lower half of the complex fre-
quency plane, respectively. ωm and Γm denote central frequency and linewidth of the system’s mth res-
onance. In non-Hermitian systems, the presence of attenuation (or gain) Γa moves the zeros in the com-
plex plane: zm = ωm+i(Γm−Γa)/2. Because in our subsequent experiments losses are not spatially local-
ized but of uniform nature (specifically, they are approximately uniformly spread across the boundaries
of the scattering enclosure), we assume in this theory section that there are no significant mechanisms of
localized loss. When attenuation losses exactly balance dissipation through the channels for a given zero
(labelled with the subscript n in the following), that is Γa = Γn, the zero crosses the real frequency axis
such that zn = ωn. Then, S(ωn) has a zero eigenvalue such that the corresponding eigenvector ψCPA sat-
isfies S(ωn)ψCPA = 0 and the multi-channel reflection coefficient R(ωn) = ‖ψout‖2 vanishes: R(ωn)→ 0.
The vanishing reflection at the CPA condition suggests that the wave is infinitely trapped in the medium
which we expect to translate into a diverging time delay. To rigorously investigate this hallmark prop-
erty for CPA in a complex scattering system, we avail ourselves of a non-perturbative effective Hamilto-
nian formalism. Therein, a M ×M Hamiltonian H0 describes the internal system, its coupling to the N
channels is characterized by a matrix V , and S(ω) = −iV T [ω − H0 + i(V V T + Γa)/2]−1V [18, 19, 20].
The scattering matrix can also be decomposed in terms of the system’s natural resonances (the poles) as
[18, 21, 22]

S(ω) = −iΣM
m=1

WmW
T
m

ω − ωm + i(Γm + Γa)/2
. (1)

The complex eigenfrequencies ωm = ωm − iΓm/2 are the eigenvalues of the effective Hamiltonian Heff =
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2.2 Time Delay

H0 − iV V T/2 and the modal vectors Wm are the projections of the eigenfunctions φm of Heff onto the
channels: Wm = V Tφm. Using the completeness of the eigenfunctions, it can be demonstrated (see SI)
that the eigenstate corresponding to a CPA condition at ω = ωn, S(ωn)ψCPA = 0, is the time-reverse
of the modal wavefront: ψCPA = W ∗

n/‖Wn‖. ψCPA hence provides maximal excitation of the selected
mode [22, 23]. The interpretation of W ∗

n as the time-reversed output of a lasing mode (if loss mecha-
nisms were replaced by gain mechanisms of equal strength) led to the term “anti-laser” [3, 7, 12], an
analogy that should be used with caution since it neglects essential nonlinear processes in laser opera-
tion.
Any realistic experimental observation of CPA is however inevitably confronted with multiple practical
imperfections: (i) noise corrupts the measurement of S such that one measures S + ∆S, (ii) a small mis-
match ∆Γ between the modal linewidth and losses: Γa = Γn+∆Γ, (iii) a frequency shift ∆ω = ω−ωn. In
the vicinity of the CPA condition, the resonance associated with the real-valued zero dominates the sum
in Eq. (1). The latter implies that ψCPA is still an eigenvector of S with a reflection coefficient which is
therefore not zero but (see SI for algebraic details)

R(ω) =
4∆ω2 + (∆Γ)2

4∆ω2 + (2Γn + ∆Γ)2
+
‖∆S‖2F
N

. (2)

We will show below that this equation explains the characteristic shape of the reflection dip and can be
exploited to extract the experimental parameters by fitting the measured data with this model.

2.2 Time Delay

Having an analytical description of the reflection dip at the CPA condition in a random system, we can
move on to study the associated time delays. Various metrics to quantify time delays have been put forth
in the literature, usually oblivious to the impinging wavefront [24, 25, 26]. In contrast, here we are inter-
ested in the delay of the signal that exits the system without being absorbed if we inject the CPA wave-
front. Thus we define the time delay of a specific incoming wavefront ψin that is scattered in our multi-
channel system via the Wigner-Smith operator Q(ω) = −iS(ω)†∂ωS(ω) which involves the derivative of
S(ω) with angular frequency:

τ(ω) =
ψ†inQ(ω)ψin

ψ†inS(ω)†S(ω)ψin
. (3)

The real part of the complex-valued τ(ω) is related to the frequency derivative of the scattering phase
and can hence be interpreted as the delay of reflected intensity for an incoming pulse with vanishing band-
width. The imaginary part of τ(ω) is related to the variation of reflected intensity with frequency [27,
28, 29]. Our model also allows us to estimate the real and imaginary parts of τ(ω) at the CPA condi-
tion, ψin = ψCPA, (see SI):

Re[τ(ω)] =
1

R(ω)

4Γn(4∆ω2 −∆Γ(2Γn + ∆Γ))

[4∆ω2 + (2Γn + ∆Γ)2]2
(4)

and

Im[τ ] = − 4Γn
4∆ω2 + ∆Γ2

4∆ω(Γn + ∆Γ)

4∆ω2 + (2Γn + ∆Γ)2
, (5)

where R(ω) is given by Eq. (2). Obviously both the real and imaginary parts of τ(ω) diverge as ∆ω →
0 and ∆Γ → 0, which confirms the intuition that the wave injected into the system is trapped for an
infinitely long time at the CPA condition.
Surprisingly, we observe a phase transition of Re[τ(ω = ωn)] as the amount of losses increases and sur-
passes the modal linewidth. When the zero zn = ωn + i(Γn − Γa)/2 is located in the upper half of the
complex frequency plane (Γa < Γn), the time delay Re[τ(ω)] is positive. At the crossover of the real
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frequency axis (Γa = Γn), a singularity occurs and |Re[τ(ω)]| diverges. When losses dominate the cou-
pling to channels, Γa > Γn, Re[τ(ω)] becomes negative. We note here that negative time delays have pre-
viously been found for wavefronts that are strongly absorbed by lossy resonant targets within multiply
scattering media [30, 31, 29] and transmission through diffusive random media [25, 26]. Negative time
delays arise due to the distortion of the incident pulse for which the intensity is more strongly absorbed
at long lifetimes than at early times (see SI).

2.3 Sensitivity to Perturbations

We now seek to demonstrate that the strong enhancement of the delay time provides an extreme sensi-
tivity of the outgoing field to tiny perturbations within the system. To establish this link, let us begin
by considering the generalized Wigner-Smith operator Qα = −iS†∂αS [32] defined with respect to a
change of a parameter α of the system; α can be a local or a global parameter. In systems where S is
close to unitarity, the optimal eigenstates of Qα provide the optimal wavefronts to locally manipulate a
perturber [32, 33]. In analogy with the delay time in Eq. (3), the variations of the outgoing field for a

change of α are encapuslated within the complex parameter τα = ψ†inQαψin/R. The relation between the
delay time τ(ω) and τα at the CPA condition can be established using the modification of the system’s
resonances due to the perturbation.
First, we note that upon injection of the CPA wavefront (ψin = ψCPA), the variation of the outgoing
field in the vicinity of the CPA condition results from the change of a single eigenstate (labelled n) in
Eq. (1). This property yields a linear relation between the projection of the CPA wavefront on Qα and
on the generalized Wigner-Smith operator applied to a perturbation of ωn, Qωn = −iS†∂ωnS,

ψ†CPAQαψCPA = [∂αωn]ψ†CPAQωnψCPA. (6)

The perturbation-induced shift in ωn is given by ∂αωn = β∇|φ(r)|2 for local perturbations, where ∇|φ(r)|2
is the gradient of the energy density taken in the direction of the displacement and β depends on the ge-
ometry of the perturber [34].
Second, in the approximation of a single resonance contribution, the projection on the operators Q =
−iS†∂ωS and Qωn yields the same result except for a global minus sign. This provides the sought-after
relation between τ(ω) and τα for the CPA condition:

τα = −[∂αωn]τ(ω). (7)

The divergence of τ(ω) hence leads to an extreme sensitivity of the outgoing field. In our case, the CPA
wavefront does not provide focusing on a perturber but is the optimal wavefront to detect a tiny varia-
tion anywhere within the cavity. We emphasize that ψCPA is also the optimal eigenvector of the operator
−iS−1∂αS (see SI). This property results from the vanishing eigenvalue of S leading to a pseudo-inverse
matrix S−1 dominated by a single eigenstate.
Equation (7) directly provides the sensitivity of the reflection coefficient at the CPA condition. Using

that ∂αR = −2Im[ψ†CPAQαψCPA], we obtain

1

R
∂αR = [∂αωn]Im[τ(ω)]. (8)

The derivative of the logarithm of the reflection coefficient (∂αlog(R) = [∂αR]/R) hence increases ex-
tremely rapidly in the vicinity of the CPA condition. This unique feature makes it possible to finely char-
acterize the strength of the perturbation from the shape of the reflection dip. Because the change in R is
proportional to the change in ωn, this dip is anew given by Eq. (2) in which ∆ω has to be replaced with
∆ωn ∼ ∆α[∂αωn] = ∆α[β∇|φ(r)|2].
We note that another slightly different operator has been introduced in recent related work to maxi-
mize the measurement precision of an observable parameter [35]. The eigenstates of the operator Fα =
(∂αS)†∂αS have indeed been identified as “maximum information states” maximizing the Fisher-information
related to the parameter α. Fα coincides with Qα only for a unitary scattering matrix. The results in

4



d

Im
(ω

)

Re(ω)CPA

z n

b

ωn

a
Zeroes of the scattering matrix

Antenna

Array

PerturberMetasurfaces

c

10 20 30 40
Iterations

-100

-80

-60

-40

-20

Re
�e

ct
io

n 
(d

B) Random con�gurations

5.12 5.13 5.14 5.15 5.16 5.17 5.18
-100

-80

-60

-40

-20

0

Re
�e

ct
io

n 
(d

B)

Frequency (GHz)

f
CPA

 = 5.137 GHz

f
CPA

 = 5.142 GHz

f
CPA

 = 5.147 GHz

f
CPA

 = 5.152 GHz

f
CPA

 = 5.157 GHz

Semispheres

Optimization

Figure 1: “On-demand” realization of CPA in a programmable complex scattering enclosure. a, Experimen-
tal setup consisting of a three-dimensional electrically large irregular metallic enclosure equipped with two arrays of 1-bit
reflection-programmable meta-atoms to tune the system’s scattering properties. The system is connected to eight channels
via waveguide-to-coax transitions. Small perturbations of the system can be induced by rotating a metallic rod placed on a
metallic platform. b, Illustration of operation principle in the complex frequency plane. By tuning the system’s scattering
properties with the programmable meta-atoms, a zero of the scattering matrix is moved onto the real frequency axis at
a target horizontal position (here 5.147 GHz). c, Dynamics of an example iterative optimization of the meta-atom con-
figurations. d, Spectrum of the multi-channel reflection coefficient R(ω) for five optimized systems targeting five distinct
regularly spaced nearby target frequencies between 5.137 GHz and 5.157 GHz.

Ref. [35] however differ sharply from our present work in three important ways: first, while Ref. [35] con-
siders a “random” configuration of a disordered medium, we operate under the very special CPA condi-
tion for which S has a real-valued zero; second, while Ref. [35] identifies a so-called “maximum informa-
tion state” that is specific to the observable of interest (e.g. location of the pertuber), our CPA condi-
tion yields an optimal sensitivity to any perturbation irrespective of its location; third, the approach of
Ref. [35] requires perturbations of the specific variable of interest in order to determine the input wave-
front.

3 Experimental Measurement of Time Delays

Having established a theoretical model for the characteristic reflection dip and delay time associated
with CPA, we now seek to verify its validity in experiments. Experimentally realizing CPA in a random
medium is a very challenging task that was only mastered recently for the first time [12, 13]. These early
realizations relied on both ω and Γa being freely tunable parameters to identify a setting in which one
zero of S(ω) lies on the real frequency axis. For our experiments, we consider a more realistic three-dimensional
complex scattering enclosure with fixed homogeneously distributed losses and we fix the working fre-
quency to 5.147 GHz. In order to realize CPA “on demand” without control over ω and Γa, we dope our
system with reflection-programmable meta-atoms (see Experimental Section). In our experiment illus-
trated in Figure 1a and as detailed in the Experimental Section, N = 8 channels are connected to a
chaotic cavity and an iterative algorithm is used to optimize the configuration of the 304 meta-atoms.
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Figure 2: CPA signature on time delays. Multichannel reflection coefficient R(ω) (a) and time delay Re[τ(ω)] (b)
found in random matrix simulations with an effective Hamiltonian model (red lines) in the vicinity of a CPA condition
at ωn for a mode with linewidth Γn, plotted as a function of linewidth detuning ∆Γ/Γn = (Γa − Γn)/Γn. The time de-
lay has been normalized by its value in absence of absorption. These numerical results are in excellent agreement with
our theoretical predictions (black dashed lines) given by Eq. (2) and Eq. (4). c, Variations of the time delay with ∆Γ/Γn

and frequency detuning ∆ω/Γn = (ω − ωn)/Γn are visualized as three-dimensional surface. The experimental results in
d and e as a function of frequency detuning are also perfectly fitted with our theory for two different realizations of the
CPA condition. f, Evolution of time delay during an example optimization. The absolute time delay |Re[τ(ω)]| increases as
R(ω0) is minimized but the sign of Re[τ(ω)] jumps from negative to positive after 40 iterations. This is a signature of the
time-delay singularity. The color-code indicating the iteration index is the same as in Figure 1c.
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The latter allow us to tweak S such that one of its zeros hits the real frequency axis [17], as illustrated
schematically in Figure 1b. This approach generalizes the technique of purposefully perturbing a random
scattering enclosure to achieve perfect absorption presented in Ref. [17] from single-channel excitation to
multi-channel excitation. Moreover, our setup includes an irregular metallic structure attached to a rota-
tion stage; we can thus identify different realizations of CPA by rotating this “mode-stirrer” to different
positions and optimizing the meta-atom configurations for each position.
Random configurations of the meta-atoms yield reflection values between −20 dB and −40 dB. Starting
from a configuration corresponding to roughly −40 dB, our optimization algorithm which minimizes the
reflection R = ‖Sψin‖2 eventually identifies a setting with R ∼ 4.85 × 10−10 = −93 dB, as depicted
in Figure 1c. We then repeat the experiment for other predefined frequencies. In each case, the corre-
sponding reflection spectrum in Figure 1d displays the expected very narrow and deep dip at the desired
working frequency.
We can now test our theoretical model’s prediction for the reflection and delay time at the CPA con-
dition. Before confronting it with our experimental data, we perform a random matrix simulation for
which the internal Hamiltonian H0 is a a real symmetric matrix drawn from the Gaussian orthogonal
ensemble and V is a real random matrix with Gaussian distribution [36]. We select a resonance and ex-
plore the variations of R(ω) and Re[τ(ω)] near the CPA condition as a function of the normalized linewidth
mismatch ∆Γ/Γn and frequency detuning ∆ω/Γn. As shown in Figure 2a-c, the dip in the reflection co-
efficient and the singularity of the time delay found in simulations are perfectly reproduced by Eqs. (2)
and (4). In particular, Figure 2b highlights the divergence of Re[τ(ω)] as ∆Γ → 0 with positive (nega-
tive) values when the zero lies in the upper (lower) complex plane.
To compare our theoretical model with our experiment, we extract the parameters involved in the model,
that is Γn, ∆Γ and ‖∆S‖2F , by fitting our model to the spectra of R(ω) and Re[τ(ω)]. We thereby ob-
tain a linewidth γCPA = ΓCPA/(2π) ∼ 51 MHz, a mismatch ∆Γ/(2π) ∼ 1.3 kHz and a relative noise
level ‖∆S‖2F/‖S‖2F ∼ 3 × 10−9. As seen in Figure 2d,e, our model exactly fits our experimental data
on a frequency range smaller than the mean level spacing ∆ = 〈ωn+1 − ωn〉/(2π) given by Weyl’s law,
∆ = c30/(8πV f

2) ∼ 0.54 MHz. The very small value of ∆Γ evidences that our optimized system is
extremely close to the CPA condition. In Figure 2e we observe a strong enhancement of the time de-
lay for two representative realizations of CPA; |Re[τ(ω)]| reaches values as high as 80 µs. For compari-
son, wavefronts that are orthogonal to ψCPA yield an average time delay of 10.9 ns, almost four orders of
magnitude smaller. The two CPA realizations in Figure 2d,e associated with a positive (negative) time
delay correspond to a zero of S just above (below) the real frequency axis. During the optimization of
the meta-atom configurations, the zero can even cross the real frequency axis, an example thereof being
shown in Figure 2f for which Re[τ(ω)] suddenly jumps from −25 µs to 41 µs after a single iteration.

4 Time Delay Singularity for Optimal Sensitivity

Now that we have have established and experimentally confirmed the physical origin of the time-delay
singularity at the CPA condition in complex scattering media, we go on to investigate experimentally
how this singularity can enhance the sensitivity of measurements to parametric perturbations, which
is essential in sensing applications. The term “sensitivity” in the present work refers to a transduction
coefficient of the sensor from the quantity to be measured (a perturbation ∆α of a parameter α) to an
intermediate output quantity. This should not be confused with the smallest measurable change of the
input quantity which pivotally depends on the measurement noise [37]. In the following, first, we show
that at the CPA condition, the ability to detect tiny perturbations is enhanced due to a rapid field decor-
relation, the latter being intimately linked to the time delay. Then, second, we investigate the extent to
which the CPA condition also enables a characterization of the perturbation in terms of its strength.
Wave chaos is generally known to be quite sensitive to perturbations; techniques known as diffuse wave
spectroscopy (DWS) study the decorrelation of the outgoing field due to a dynamic perturbation in or-
der to quantify the latter [38, 39, 40] and “reverberation coded apertures” enable deeply sub-wavelength
object localization [41]. These techniques benefit from ergodicity which ensures that the sensitivity to

7



a b

0 5 10 15 20 25 30 35

Rotation angle

-100

-80

-60

-40

-20

0

Re
�e

ct
io

n 
(d

B)

κ=1 (CPA)
κ =0 (random)

0 5 10 15 20 25 30 35
Rotation angle

0.2

0.4

0.6

0.8

1
Co

rr
el

at
io

n 
co

e�
ci

en
t

κ  = 0 (random)
κ  = 0.74 

κ  = 0.98
κ  = 1 (CPA)

0
10 -2 10 -1 10 0 10 1

Re[τ] (µs)

0

0.2

0.4

0.6

0.8

C(
0)

 - 
|C

(∆
θ)

|

c

-100 -80 -60 -40 - 20 0

Re�ection (dB)

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n θ = 0

θ = 0.7
θ = 3.5
θ = 7.7

d

Increasing κ

Figure 3: Enhanced sensing with the time-delay singularity at the CPA condition. a, Magnitude of the correla-
tion coefficient C(ψin, θ) of the outgoing field as a function of the size of the perturbation (angle of rotation θ) for κ = 0
(fully random wavefront), κ = 0.74, κ = 0.98 and κ = 1 (CPA wavefront). b, Decorrelation rate C(0) − |C(∆θ)| as a
function of the delay time for incoming wavefronts with κ increasing from 0 to unity. c, Multichannel reflection coefficient
for κ = 0 and κ = 1. d, Histogram of observed reflection values for different perturbation strengths, based on 18 CPA
realizations with different initial orientations of the perturber.

ca bUnoptimized wavefront CPA wavefront

-60 -50 -40 -30 -20 -10

Re�ection (dB)

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 115 pixels

5 pixels
1 pixel

-16 -14 -12 -10 -8 -6

Re�ection (dB)

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 115 pixels

5 pixels
1 pixel

0 5 10 15 20 25

Number of detuned meta-atoms

-80

-60

-40

-20

0

Re
�e

ct
io

n 
(d

B)

CPA wavefront
unoptimized wavefront
Model
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dom incoming wavefront (a) and the CPA wavefront (b) for detuning 1, 5 and 115 meta-atoms. c, Variations of the
reflection coefficient on a logarithmic scale at the CPA condition (blue crosses) and for a random incoming wavefront
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R. For small perturbations, the result obtained with the CPA wavefront is well explained by Eq. (2) upon substituting
∆ω = 2πKp, with K = 0.35 MHz (see main text for details).
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perturbations (determined by the dwell time) has statistically similar properties throughout the system
and for different realizations of the system. In contrast, here we are interested in the sensitivity to small
perturbations of a system in one specific state. Purely relying on the sensitivity of wave chaos corre-
sponds (in our system tuned to have a real-valued zero) to injecting an unoptimized random wavefront
ψin = ψrand. However, because of the divergence of the delay time, the perturbation-induced decorrela-
tion of the wave may be dramatically enhanced by injecting the optimized wavefront ψin = ψCPA. We
begin by defining a correlation coefficient based on the outgoing field as

C(∆α, ψin) =
ψ†out(α + ∆α)ψout(α)√

R(α)R(α + ∆α)
. (9)

To confirm the predicted rapid decorrelation of the outgoing field at the CPA condition experimentally,
we gradually perturb the system by rotating a small metallic structure (a metallic pillar located on a
metallic platform, see Figure 1a) in steps of ∆θ = 0.62◦ (see Figure 3a). At each step, we measure S(θ)
and evaluate the outgoing field ψout(θ) = S(θ)ψin for wavefronts defined as ψin(κ) = κψCPA+(1−κ)ψrand
and normalized to unity. ψin(κ = 0) is hence an unoptimized wavefront while ψin(κ = 1) yields the CPA
wavefront. We repeat this procedure for 18 realizations of different initial positions of the rotating ob-
ject. In Figure 3a we plot |C(∆α = θ)| as a function of the size of the perturbation (here the angle of
rotation θ).
For ψin = ψrand, the field barely decorrelates even after 100 rotation steps. In other words, DWS-based
sensing would not be capable of detecting or quantifying the perturbation that we consider. In contrast,
for ψin = ψCPA, the field strongly decorrelates even for the smallest step. Figure 3a therefore evidences
the extreme sensitivity of the CPA condition for precision sensing in complex systems, well beyond that
achievable with traditional DWS. The link between the enhancement of the sensitivity and the enhance-
ment of the delay time near the CPA condition is confirmed in Figure 3b. For different values of κ be-
tween zero and unity, we evaluate both the corresponding decorrelation rate C(0)−|C(∆θ)| for the small-
est rotation step ∆θ and the corresponding time delay Re[τ ]. The resulting plot in Figure 3b evidences
the dramatic increase of C(0) − |C(∆θ)| as Re[τ ] increases. C(0) − |C(∆θ)| reaches a plateau for very
large delay times as the smallest step is larger than the rotation giving a complete decorrelation of the
outgoing field.
Having clarified that the rapid decorrelation of the outgoing field enhances the ability to detect the pres-
ence of a perturbation, we now explore to what extent this perturbation can also be characterized. For
a chaotic cavity (not tuned to have a real-valued zero) and/or a random incoming wavefront, the av-
erage reflection coefficient is statistically independent of the perturbation strength. In contrast, at the
CPA condition, R(α + ∆α) increases with ∆α so that it may be possible to discriminate between two
perturbations ∆α1 and ∆α2 based on measurements of R(∆α1) and R(∆α2). The reflection coefficient
R(θ, ψCPA) shown in Figure 3c increases rapidly with θ but then saturates for θ > 5◦. Note that the
plateau reached for large angles is 20 dB below R(θ, ψrand) because the perturbation is small.
In wave-chaotic systems as our complex scattering enclosure, the energy density (and hence ∂αωn and
R) are distributed quantities which fluctuate for different realizations of the system; an example are the
histograms of R(θ, ψCPA) shown in Figure 3d. To investigate the dependence of R(α + ∆α) on the per-
turbation strength ∆α, a statistical analysis is hence required. We conveniently achieve this in Figure 4
by considering a different type of perturbation: the detuning of p meta-atoms away from the CPA con-
figuration [17]. We successively determine R for 200 realizations of p detuned meta-atoms in 15 CPA re-
alizations, with p varying from p = 1 to p = 115.
As expected, for random wavefronts, R(p, ψrand) is statistically independent of p: the distributions P (R(p, ψrand))
found for p = 1, 5 and 115 detuned meta-atoms hence completely overlap, as seen in Figure 4a. In con-
trast, Figure 4b reveals that P (R(p, ψCPA)) strongly depends on p because the variations of ωn due to
local changes of the boundary conditions increase with the number of detuned meta-atoms. We find that
in the regime of small perturbations (here p ≤ 5), 〈R(p, ψCPA)〉 is in good agreement with Eq. (2) upon
replacing the frequency shift ∆ω = ω − ωn with 2πKp, where K = 0.35 MHz is a constant depending
on the scattering cross-section of the meta-atoms and the volume of the cavity. Our model’s validity is
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confirmed by its faithful fit to the experimental data for p ≤ 5 in Figure 4c.
Nonetheless, we point out that R being a distributed quantity results in fundamental limits on the pre-
cision with which the strength of any given perturbation can be determined. Indeed, the distributions
P (R(p, ψCPA)) partially overlap for close values of p, as shown in Figure 4b. This limitation may be un-
derstood as the price for the enhanced sensitivity to any perturbation within the system irrespective of
its location.

5 Discussion

The discussed CPA condition can be interpreted as a special case of two distinct more general scattering
phenomena: coherently enhanced absorption (CEA, [42]) and virtual perfect absorption (VPA, [43]).
CEA is a route to achieving very low (but finite) reflection values over an extended frequency range.
Similarly to CPA, CEA relies on injecting the incoming wavefront giving the smallest reflection, which
is the eigenstate of the matrix S†(ω)S(ω) with minimal eigenvalue. Unless a zero of S happens to lie on
the real-frequency axis at ω, this eigenstate generally does not correspond to an eigenstate of S (CPA
condition) so that the reflection coefficient does not vanish. Multiple resonances of the system are then
involved and the reflection dip associated with CEA is not as pronounced as for CPA. In the case of CEA,
the reflection coefficient decorrelates on a scale inversely proportional to the absorption mean free path
[42]. The time delay of waves and the sensitivity of the medium to a perturbation are hence generally
bounded for CEA.
The idea of CPA is to bring a zero onto the real-frequency axis such that it can be accessed with a monochro-
matic excitation oscillating at a real frequency. If, however, the zero is not on the real frequency axis, it
can still be accessed in the transient regime using a nonmonochromatic signal oscillating at a complex
frequency. This VPA concept was recently studied for regular (almost) lossless systems for which the
zero always lies in the upper half of the complex frequency plane [43, 44]. Consequently, the excitation
signal has to exponentially increase in time to interfere destructively with the waves reflected off the sys-
tem. The interaction of the incident pulse with the scattering medium then provides ideal energy storage
until the interruption of the exponential growth of the injected signal. Given the generality of the scat-
tering matrix formalism, this concept can be extended to disordered lossy matter such as complex scat-
tering enclosures. The zeros may then lie anywhere in the complex frequency plane, implying that the
necessary excitation is not always an exponentially increasing one. Interesting links with the sign of the
time delay as discussed in the present work then arise.
To summarize, we have proposed a theoretical description of the hallmark sign of CPA in complex scat-
tering system and we verified our theory experimentally. Our work rigorously explains the divergence
of the time delay at the CPA condition and how this singularity justifies the optimal sensitivity of the
CPA condition for detecting minute perturbations. This feature will enable novel precision sensing tools
but also impact other areas such as filter applications and secure wireless communication [17, 13]. Fur-
thermore, our experiments demonstrated how a CPA condition can be accessed “on demand” at an ar-
bitrary frequency without controlling the level of attenuation in the system. Finally, we note that our
results are very general in nature and apply to other types of wave phenomena, too. Looking forward, it
may be feasible to engineer a CPA exceptional point in a random scattering medium, requiring the coa-
lescence of two or more real-valued zeros and the corresponding eigenvectors, which may alter the func-
tional dependence of the reflection coefficient on various kinds of detuning [45]. Further inspiration for
future work may also be found in recent papers based on regular (rather than randomly scattering) sys-
tems involving the tailoring of CPA and lasing [46, 47, 48, 49].
Note added. — In the process of finalizing this manuscript, we became aware of related work [50] that
also generalizes the concept of “on-demand” access to a real-valued scattering matrix zero in a metasurface-
tunable complex scattering enclosure from single-channel [17] to multi-channel excitation.
Note added. — During the peer review process of this manuscript, a preprint [51] appeared that stud-
ies the generalization of the Wigner time delay from unitary systems to sub-unitary systems with global
losses and/or spatially localized loss centers. Therein, the authors point out that in the presence of lo-
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calized loss mechanisms (a scenario not compatible with our theoretical and experimental work in which
losses are uniform), the real parts of associated poles and zeros of the scattreing matrix are in general
not identical.

6 EXPERIMENTAL SECTION

Experimental Setup
Our complex scattering enclosure (depicted in Figure 1a) is a metallic cuboid (50 × 50 × 30 cm3) with
two hemispheres on the inside walls to create wave chaos. In short, the difference between the trajecto-
ries of two rays launched from the same position in slightly different directions will increase exponen-
tially in time. The system is excited via eight antennas (waveguide-to-coax transitions designed for oper-
ation in the 4 < ν < 7 GHz range) which are connected to an eight-port vector network analyser (VNA).
The VNA acquires the full 8×8 scattering matrix in one go. It emits signals at 0 dBm and operates with
an intermediate-frequency bandwidth of 2 kHz to ensure a high signal-to-noise ratio. In the vicinity of
the targeted CPA frequency ν0 = 5.147 GHz, we measure the spectra with an extremely small frequency
step (∆ν = 1 kHz) and subsequently fit them with a linear regression in the Argand diagram to further
reduce the impact of noise.
In order to tune our random system’s scattering matrix, two programmable metasurfaces [52] are placed
on two neighboring walls of the cavity [53]. Each metasurface consists of an array of 152 1-bit programmable
meta-atoms. Each meta-atom has two digitalized states, “0” and “1”, with opposite electromagnetic
responses. The working principle relies on the hybridization of two resonances of which one is tunable
via the bias voltage of a pin diode; details can be found elsewhere [54]. The two states are designed to
mimic Dirichlet and Neumann boundary conditions and their detailed characteristics are provided in the
SI.
Based on the experimentally measured 8 × 8 scattering matrix and the linearity of the wave equation,
we can precisely calculate the outgoing wavefront ψout for any desired injected wavefront ψin via ψout =
S(ω)ψin. To access the CPA scattering anomaly, the injected wavefront must correspond to the eigenvec-
tor of the scattering matrix associated with a zero eigenvalue. In general, for a complex scattering sys-
tem the required input wavefront ψCPA looks seemingly random.

Optimization of Meta-Atom Configurations
Identifying a configuration of the programmable metasurfaces that yields CPA at the targeted frequency
is a non-trivial task since there is no forward model describing the impact of the metasurface configu-
ration on S. Hence, we opt for an iterative optimization algorithm similar to the one in Ref. [55]. We
begin by measuring S for 200 random configurations. We then use the configuration for which the small-
est eigenvalue λ8 of S(ν0) is the lowest as starting point. For each iteration, we randomly select z meta-
atoms and flip their state. If the resulting S(ν0) has a lower λ8, we keep the change. We gradually re-
duce the number of meta-atoms whose state is flipped per iteration, according to z = max(int(50e−0.02k), 1),
where k is the iteration index. As typical for inverse design problems, there is no guarantee that our op-
timization algorithm identifies the globally optimal configuration. However, typically it rapidly identi-
fies a local optimum and runs with different random initializations tend to yield distinct local optima of
comparable quality.

Characterization of Chaotic Cavity
We characterize our system’s linewidth associated with the N attached channels, Nγc, and its linewidth
associated with global absorption effects, γa, in the following. To that end, we measure S(ω) for 300 ran-
dom metasurface configurations and repeat the measurements for a number of channels connected to the
cavity varying from N = 3 to N = 8. In each case, we estimate the average linewidth 〈γ〉 by fitting
the exponential decay of average reflected intensities in the time domain, I(t) = e−2π〈γ〉t (see SI for de-
tails). Using the variations of 〈γ〉 with respect to the number of attached channels, 〈γ〉 = 〈γa〉 + N〈γc〉,
we obtain an average absorption strength 〈γa〉 = 11.2 MHz and a linewidth associated with the channels
〈γn〉 = 8〈γc〉 = 0.33 MHz. Compared with the linewidth γCPA found at the CPA condition it appears
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at first sight surprising that γCPA exceeds 〈γa〉 and 〈γn〉 by more than one order of magnitude. The ap-
parent paradox is resolved by noting that the resonance widths in wave-chaotic systems are not normally
distributed; instead they have a distribution skewed toward lower values with a long tail for larger val-
ues [56, 57]. Such a distribution is not fully characterized by its average, and observing values well above
the average, as in the case of γCPA, is by no means impossible.
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[4] D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Nat. Rev. Mater. 2017, 2, 12 17064.

[5] M. Cai, O. Painter, K. J. Vahala, Phys. Rev. Lett. 2000, 85, 1 74.

[6] W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao, Science 2011, 331, 6019 889.

[7] Z. J. Wong, Y.-L. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, X. Zhang, Nat. Photon. 2016, 10, 12
796.

[8] H. Cao, Waves Random Media 2003, 13, 3 R1.

[9] D. S. Wiersma, Nat. Phys. 2008, 4, 5 359.

[10] Y. V. Fyodorov, S. Suwunnarat, T. Kottos, J. Phys. A 2017, 50, 30 30LT01.

[11] H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz, T. Kottos, Phys. Rev. Lett. 2017, 118, 4 044101.
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[33] M. Horodynski, M. Kühmayer, A. Brandstötter, K. Pichler, Y. V. Fyodorov, U. Kuhl, S. Rotter,
Nat. Photonics 2019, 1–5.
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[54] N. Kaina, M. Dupré, M. Fink, G. Lerosey, Opt. Express 2014, 22, 16 18881.

[55] P. del Hougne, M. Davy, U. Kuhl, Phys. Rev. Applied 2020, 13, 4 041004.

[56] T. Kottos, J. Phys. A 2005, 38, 49 10761.
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