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Abstract
In this paper, we investigate a relation between the differential
equations and the non trivial zeros of the Zeta function.
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1 Main result

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

s too
C(s)i=——— s/l t{li}sdt R(s) € (0,1), S(s)eR*, (1)

1—s

where {t} is the fractional part of the real t. Define the non trivial zeros of
the function ¢ in the following sense

Definition 1. Consider the function ¢ defined by the Equation (). Let be
s € C. We say that s is a non trivial zero of the function ( if

IC(s)]=0 and R(s) € (0,1), S(s)e R".
We prove the following Theorem.

Theorem 2. Consider the function ¢ defined by the Equation (). The point
s € C is a non trivial zero of the function C, if and only if

]27T 1
1—4s(1 - E E =0.
s(1—s) 2 (2K)! 2k—1—3s 0
jGD\I* keN*




2 W. OuKIL

2 Main Proposition

In order to simplify the notation, denote
B:={seC/ R(s)e(0,1), S(s)e R}

For every s € B, the Equation (IJ) is equivalent to,

¢(s) _ ! _/+0<> w7 {u}du.
1

s S 1-s
The aim is to studies the differential equation of solutions the functions

t

t > s(z,t) = t° {z +/ u 1_8{u}du}, zeC, t>1.
1

We focus only on the bounded solutions (there is a unique bounded solu-
tion. All other solutions are oscillating and diverge to infinity in norm).
More precisely, the strategy to prove the Theorem 2] is to find z; € C such
that sup;>; [1hs(zs,t)| < +00. Since sup;s; [¢hs (1, t)| < +oo if and only if
\@\ =0, we obtain T = z,.

For every s € B we consider the following differential equation

d__ -1 -1
E:E—St x4+t {t}, (2)

te[l,+o0)/N, z(l)=2, 2€C, x:[l,+00)— C.
In this paper we derive the functions only on [1,400)/N.

Lemma 3. Let be s € B. For every z € C there exists a unique continuous
solution s(z,t) : [1,400) — C of the differential equation [2)). Further,

t
hs(z,t) =t° [z +/ w T uldu|, V> 1.
1
Proof. Let be s € B fixed. The function
t
t— ts/ w i {uldu, t > 1,
1

is C* on [1,400)/N and continuous on [1,+00). The Equation ) is a
non-homogeneous linear differential equation. For every z € C the unique
continuous solution ¥s(z,t) : [1,400) — C such that ¢4(z,1) = z is given by

t
Ys(z,t) = t° {z +/ u T uldul, V> 1.
1



Lemma 4. For every s € B, there exists a unique zs € C such that the
solution s(zs,t) : [1,+00) — C of the differential equation () satisfies
supysg [¥s(zs, )| < +o00. Further,

“+oo “+o0o
Zg = —/ w T ubdu, and hg(zs,t) = —ts/ w T ubdu, V> 1.
1 t

Proof. Let be s € B fixed. There is a unique bounded solution. All other
solutions are oscillating and diverge to infinity in norm. Let be z € C and
suppose that

sup |15 (z,t)| < 4o0.
t>1

Since R(s) € (0,1), by the Lemma [3, we have

+oo
sup ()] < +o0 = | [ w1 updu] =0,
t>1 1

Then
“+o0o
zs = —/ w7 {u}du.
1

Prove that sup;q [1s(2s,t)| < +o0. Since

+00
Zs +/ u_l_s{u}du‘ =0,
1

then

t +o0o
Zs +/ u T uddu = —/ u T uydu, V> 1
1 t

By the Lemma [3] we get
+o00o

Ys(zs,t) = —ts/ u_l_s{u}du, YVt > 1.
t

Then sup,;>, |[s(2s, )| < §R:(ls)' -

Lemma 5. Let be s € B. For every z € C there exists a unique z € C
such that the solution s(z,t) : [1,400) — C of the differential equation (2)
satisfies

Vs(z,t) = Ys(zs,t) +°2, VE> 1.
where t — 1s(zs,t) is the bounded solution given by the Lemmal[f In addi-
tion,

+o0
Z=2z+ / u " {u}du.
1
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Proof. Consider
+0o0o
Z=z+ / u " {uddu,
1

By the Lemma [3] we have

+o0
hs(z,t) = —ts/t w T uydu 4+ 52, Wt > 1.
By the Lemma [l we get
Ps(2,t) = (25, 8) +1°2, VE> 1.
O

Proposition 6. Let be s € B. Let be z € C and consider the continu-
ous solution s(z,t) : [1,400) — C of the differential equation ). Then
sup;>q [¢s(z,t)| < +o0, if and only if

11 LG2m 1

= - +4201 .

‘ 2s+(+82( 22 (k) 2k—1—s
FEN* keN*

Notation 7. Denote

p(t) :== /1t <{u} - %)du, vVt > 1,

where we recall that {u} is the fractional part of the real w.

Lemma 8. The function p is a continuous 1-periodic function and satisfies

pt)=23" ﬁ(cos(ﬂﬂt) - 1), V> 1.

JEN*

Proof. The function u — {u} is 1-periodic, then there exists a continuous
1-periodic function p : R — R such that

t 2
/{u}du: (t—l)/ (uydu+p(t), VE>1.
1 1

/lz{u}du = /Ol{u}du = /Olu du = %,

Since



we get
t
/ (uldu = (¢ = )5 +p(t), Ve>1
1

The function p is a piecewise C°°, continuous on R and 1-periodic. By
Dirichlet Theorem, the Fourier series

n
n— Z ay exp(ik27t),
k=—n

converge uniformly on Ry to the function ¢ — p(t), where (ay)r C C are the
Fourier coefficients of the function p.

t
/ ({v} — %)dv = Zaj exp(ij2nt), Vt>0.
0 °
JjEZ

By definition of the Fourier coefficients we have

a; = /01 exp(—z’j27ru)(/0u <{U} — %)dv) du

1 1

1
= 5/0 exp(—ij2ru)u(u — 1)du = SR VjeZz",

and

N

_l/l(_l)d __i—_z 1
w=35 ), " YT T (j2r)?

JEZ*

The function p satisfies

pt)=3" ﬁ(exp(ij%'t) - 1), vt > 0.
JEZ*
O

Proof of the Proposition[6l. Let be s € B. Let be z € C and consider the
continuous solution ts(2,t) : [1,+00) — C of the differential equation (2.
Define the function (2, t) : [1,400) — C as

(z,1) / Ys(z,u)d t>1.
The Equation (2) implies

t
%¢s(z,t) = t7 11 + 8)hs(2,t) + t‘l/ {uydu+t"tz, Vt>1.
1
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By the Lemma [§] we have

/({u}——)du 22 (Cosg27rt) 1),
= Z( QZ ‘727T St Ve L

JEN* keN*

Then
4o t) =171 (1 4+ 8)1[) (20) + 2(1 = (1 — 2271
dt S ) S 9 2
+2Z G2 S~ ]277 TR (=0 N C)

]ED\I* keN*
Integrate, to obtain
~ 1,1 1—2z
t) = —(—=¢t 4
NN 2( St ) @)
j2m)2k 1
9 1 k(U 2k
* ZN: k%; TSR g
1, 1 1-22 L (j2m)2 1
_tl—i-s |:_ _ - .
2( s+1+s)+ ZN:*( 2kZ.;* (2k)! 2k—1-—3s

By Lemma [l and the definition of (2, t) we have

B t t 2 2
(2, 1) = s du = (25, u)du — tits t>1.
Ys(z,t) /1w(z,u)u /1w(z,u)u 1+s+ s Vit >

where t — 1)5(zs, 1) is the bounded solution given by the Lemma [ and where

+o00
Z=z+ / u " u}du.
1

By identification with the the Equation (@) we get
z 1, 1 i 1— 22)
1+s 2" s 1+s

j27T 1
Z 22 (2k)! 2k —1—s’

jelN* keN*




In other words,

+oo 11
/ w T {uydu = ==
1 2 S

—2(1+8)Z(

1 p(G2m) 1
— ~1 .
bt j2m)? kZN:*( ) (2K)! 2k—1-—3s

By the Lemma [ we have sup;~q [s(2,t)| < +oo0, if and only if

+oo 11
—1 s
= = — d P N —
z =z . {utdu = 53
. (52m)%k 1
+2(1+ Z 22 Qka 2k —1—s
jen\l* keN*

3 Proof of the Theorem 2|

Proof of the Theorem [ Let be s € B. By the Equation (d]) we have,

@ - _ 1 _ /+oo w7 {u}du.
1

s 1—3s

Let 1s(71-,t) : [1,+00) — C be the unique continuous solution of the dif-
ferential equation (2]). By Lemma [3] we have,

1
1¢(s)| =0 <= sup|vhs(——, 1) < +o0.
t>1 1—s

Thanks to Main Proposition [, |((s)| = 0 if and only if

1 11 ]27T 1
= ——+2(1 .
1—s 28+ (I+s j%\l:* 22 (2K)! 2k—1—3s
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