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Abstract

In this paper, we investigate a relation between the differential

equations and the non trivial zeros of the Zeta function.
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1 Main result

Consider the representation of the Riemann Zeta function ζ defined by the
Abel summation formula [[1], page 14 Equation 2.1.5] as

ζ(s) := −
s

1− s
− s

∫ +∞

1

{t}

t1+s
dt, ℜ(s) ∈ (0, 1), ℑ(s) ∈ R

∗, (1)

where {t} is the fractional part of the real t. We prove the following Theorem.

Theorem 1. Consider the function ζ defined by the Equation (1). For every

τ ∈ R∗ and r ∈ (12 , 1) we have

|ζ(r + iτ)| 6= 0.

Thanks to the Riemann functional equation we deduce that any non

trivial zero of the Zeta function has a real part equal to 1
2 , where the non

trivial zeros are defined in the following sense

Definition 2. Consider the function ζ defined by the Equation (1). Let be
s ∈ C. We say that s is a non trivial zero of the function ζ if

|ζ(s)| = 0 and ℜ(s) ∈ (0, 1), ℑ(s) ∈ R
∗.
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2 Main Proposition

For every r ∈ (0, 1) and τ ∈ R∗ the Equation (1) implies,

ζ(r + iτ)

r + iτ
= −

1

1− r − iτ
−

∫ +∞

1
u−iτ−1−r{u}du.

The aim is to studies the differential equation of solutions the functions

t 7→ ψτ,r(z, t) := tr+iτ
[

z +

∫ t

1
u−iτ−1−r{u}du

]

, z ∈ C, t ≥ 1.

We focus only on the bounded solutions (there is a unique bounded solu-
tion. All other solutions are oscillating and diverge to infinity in norm).
More precisely, the strategy to prove the Theorem 1, is to prove that
supt≥1 |ψτ,r(

1
1−r−iτ

, t)| < +∞ implies 2r ≤ 1. In other words | ζ(r+iτ)
r+iτ

| = 0
implies 2r ≤ 1.
For every τ ∈ R∗ and r ∈ (0, 1) we consider the following differential equation

d

dt
x = t−1

[

(r + iτ)x+ {t}
]

, (2)

t ∈ R+/N, x(1) =
1

1− r − iτ
, x : [1,+∞) → C.

In this paper we derive the functions only on R+/N.

Lemma 3. For every τ ∈ R∗ and r ∈ (0, 1) there exists a unique continuous

solution ψτ,r(t) : [1,+∞) → C of the differential equation (2). Further,

ψτ,r(t) = tr+iτ

∫ t

0
u−iτ−1−r{u}du, ∀t ≥ 1.

Proof. Let be r ∈ (0, 1) and τ ∈ R∗ fixed. Since {u} = u for every u ∈ (0, 1)
then

tr+iτ

∫ t

0
u−iτ−1−r{u}du =

t

1− r − iτ
, ∀t ∈ [0, 1].

Since 0 ≤ {u} ≤ 1 for every u ≥ 1 then the function

t 7→ tr+iτ

∫ t

0
u−iτ−1−r{u}du,

is continuous and C1 on R+/N. The Equation (2) is a non-
homogeneous linear differential equation. The unique continuous solution
ψτ,r(t) : [1,+∞) → C such that ψτ,r(1) =

1
1−r−iτ

is given by

ψτ,r(t) = tr+iτ

∫ t

0
u−iτ−1−r{u}du, ∀t ≥ 0.
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Proposition 4. Let be τ ∈ R∗ and r ∈ (0, 1). Consider the continuous

solution ψτ,r(t) : [1,+∞) → C of the differential equation (2). Suppose that

supt≥1 |ψτ,r(t)| < +∞, then 2r ≤ 1.

Notation 5. Denote

p(t) :=

∫ t

0

(

{u} −
1

2

)

du, ∀t ≥ 0,

where we recall that {u} is the fractional part of the real u.

Lemma 6. The function p is a continuous 1-periodic function and

maxt∈[0,1] |p(t)| ≤
1
2 .

Proof. The function u 7→ {u} is 1-periodic, then there exists a continuous
1-periodic function p : R → R such that

∫ t

0
{u}du = t

∫ 1

0
{u}du+ p(t), ∀t ≥ 0.

Since
∫ 1

0
{u}du =

∫ 1

0
u du =

1

2
,

we get
∫ t

0
{u}du = t

1

2
+ p(t), ∀t ≥ 0.

We have

max
t∈[0,1]

|p(t)| = max
t∈[0,1]

∣

∣

∣

∫ t

0

(

{u} −
1

2

)

du
∣

∣

∣
≤

1

2
.

Lemma 7. Let be τ ∈ R∗ and r ∈ (0, 1). Let ψτ,r(t) : [1,+∞) → C

be the continuous solution of the differential equation (2). Suppose that

supt≥1 |ψτ,r(t)| < +∞. Then

∣

∣

∣
ψτ,r(t) +

1

2

1

r + iτ

∣

∣

∣
<

|1 + r + iτ |

1 + r
t−1, ∀t ≥ 1.

Proof. Let be r ∈ (0, 1) and τ ∈ R∗ fixed. By Lemma 3

ψτ,r(t) = tr+iτ

∫ t

0
u−iτ−1−r{u}du, ∀t > 0. (3)
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Suppose that
sup
t≥1

|ψτ,r(t)| < +∞.

Since

sup
t≥1

|ψτ,r(t)| < +∞ =⇒
∣

∣

∣

∫ +∞

0
u−iτ−1−r{u}du

∣

∣

∣
= 0,

then
∫ t

0
u−iτ−1−r{u}du = −

∫ +∞

t

u−iτ−1−r{u}du, ∀t > 1.

Equation (3) can be written as

ψτ,r(t) = −tr+iτ

∫ +∞

t

u−iτ−1−r{u}du, ∀t > 1. (4)

Consider the function p given in the Notation 5. By Lemma 6, the function
p is 1-periodic, then it is bounded. Use the integration part formula in
Equation (4),

ψτ,r(t) = −
1

2

1

r + iτ

− (iτ + 1 + r)tiτ+r

∫ +∞

t

u−iτ−2−r
(

p(u)− p(t)
)

du,

Since |p(u)− p(t)| ≤ 1 for all u ≥ t ≥ 1, we obtain

∣

∣

∣
ψτ,r(t) +

1

2

1

r + iτ

∣

∣

∣
< |1 + r + iτ |tr

∫ +∞

t

u−2−r =
|1 + r + iτ |

1 + r
t−1.

Proof of the Proposition 4. Let be r ∈ (0, 1) and τ ∈ R∗. Use the change of
variable

ψ̃τ,r(t) := −
t

1− r − iτ
+ (r + iτ)ψτ,r(t) + {t}, t ≥ 1.

The Equation (2) can be written as

d

dt
ψ̃τ,r(t) = t−1(r + iτ)ψ̃τ,r(t), ∀t ≥ 1. (5)

For the particular initial condition of ψτ,r, we have

ψτ,r(1) =
1

1− r − iτ
,
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by the definition of ψ̃τ,r we get

ψ̃τ,r(1) = −1.

The Equation (5) implies the following new differential equation,

t−1ψ̃τ,r(t) = (r + iτ)t−1

∫ t

1
u−1ψ̃τ,r(u)du − t−1⌊t⌋, ∀t ≥ 1,

where u 7→ ⌊u⌋ is the floor function. The wronksien is given by

d

dt
Ψτ,r(t) = 2rt−1Ψτ,r(t)− 2t−1⌊t⌋wτ,r(t), (6)

where in order to simplify the notation, we denoted

Ψτ,r(t) :=
∣

∣

∣

∫ t

1
u−1ψ̃τ,r(u)du

∣

∣

∣

2
,

wτ,r(t) :=

∫ t

1
u−1ℜ

(

ψ̃τ,r(u)
)

du and vτ,r(t) :=

∫ t

1
u−1ℑ

(

ψ̃τ,r(u)
)

du.

Integrate the Equation (6) as a non-homogeneous linear differential equation,
we obtain

Ψτ,r(t) = −2t2r
∫ t

1
u−2r−1⌊u⌋wτ,r(u)du, ∀t ≥ 1. (7)

Suppose that supt≥1 |ψτ,r(t)| < +∞. Thanks to the Lemma 7 there exist
ωτ,r > 0 and a continuous function ǫτ,r : [1,+∞) → C such that

|ǫτ,r(t)| < ωτ,rt
−1, ∀t ≥ 1, (8)

and there exists a constant cτ,r ∈ C such that

∫ t

1
u−1

[

(r + iτ)ψτ,r(u) + {u}
]

du = cτ,r + ǫτ,r(t), ∀t ≥ 1.

By definition of ψ̃τ,r we have

∫ t

1
u−1ψ̃τ,r(u)du = −

t

1− r − iτ
+ c̃τ,r + ǫτ,r(t), ∀t ≥ 1,

c̃τ,r := cτ,r +
1

1− r − iτ
.
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For every t ≥ 1, the Equation (7) implies

∣

∣

∣

t

1− r − iτ
+ c̃τ,r + ǫτ,r(t)

∣

∣

∣

2
=

2(1− r)

(1− r)2 + τ2
t2r

∫ t

1
u−2r⌊u⌋du

− 2ℜ
(

c̃τ,r

)

t2r
∫ t

1
u−2r−1⌊u⌋du (9)

− 2t2r
∫ t

1
u−2r−1⌊u⌋ℜ

(

ǫτ,r(u)
)

du. (10)

By the Lemma 7 for every t ∈ R+/N we have

|
d

dt
ǫτ,r(t)| = t−1

∣

∣

∣
(r + iτ)ψτ,r(t) + {t}

∣

∣

∣

<
|1 + r + iτ |2

1 + r
t−2 +

(

{t} −
1

2

)

t−1.

By the Equations (8) and (10) we deduce that 2r ≤ 1.

Remark 8. In the previous Proof, using the fact

ψ̃τ,r(1) = −1.

remark that the sequence
(

n−r−iτ ψ̃(n)
)

n∈N∗

is given by the Riemann series;

n−r−iτ ψ̃(n) = −

n
∑

k=1

1

kr+iτ
, ∀n ∈ N

∗.

3 Proof of the Theorem 1

Proof of the Theorem 1. Let be x ∈ (0, 1) and τ ∈ R∗. Suppose that
|ζ(x+ iτ)| = 0. By the Equation (1) we have,

ζ(x+ iτ)

x+ iτ
= −

∫ +∞

0
u−iτ−1−x{u}du.

Then
∣

∣

∣

∫ +∞

0
u−iτ−1−x{u}du

∣

∣

∣
= 0.

Implies

∫ t

0
u−iτ−1−x{u}du = −

∫ +∞

t

u−iτ−1−x{u}du, ∀t ≥ 1.
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sup
t≥1

∣

∣

∣
tx+iτ

∫ t

0
u−iτ−1−x{u}du

∣

∣

∣
= sup

t≥1

∣

∣

∣
tx+iτ

∫ +∞

t

u−iτ−1−x{u}du
∣

∣

∣

≤ sup
t≥1

[

tx
∫ +∞

t

u−1−xdu
]

≤
1

x
. (11)

Let ψτ,x(t) : [1,+∞) → C be the unique continuous solution of the differen-
tial equation (2). By Lemma 3 and the Equation (11) we have,

sup
t≥1

|ψτ,x(t)| < +∞,

Thanks to the Main Proposition 4 we get 2x ≤ 1.
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