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Abstract

Using the differential equations, we obtain a more flexible expres-
sion for the Riemann Zeta function on the right half-plan except the
point s = 1. Thanks to the Riemann functional equation, we obtain
an approach to prove that the Zeta function does not vanish at any
point s of the critical strip such that 1 — 2%R(s) # 0.
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1 Main results

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

S

+oo
¢(s) :=— - s/l w T {uldu, s#1, R(s) >0, I(s) e R*, (1)

1—s

where {u} is the fractional part of the real w. In order to simplify the
notation, denote B C C the right half-plan except the point s = 1, defined
as

B:i={scC: s#1, R(s)>0, S(s)e€RY,

In this manuscript, we denote (Bj)gen the Bernoulli numbers. We prove the
following theorem,
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Theorem 1. Consider the Zeta function given by the Equation (Il). For
every s € B we have

S ns(n)
S) = — + s—= 3 VnZO,
C( ) 1—3 ns(n)
where
- () n+l on+1-k 1 1
n) = -
Ns - Hn+1(]+s) (E—1)! nl(1+s)
S (2 —j+s) ST m+s) (- 1)
s[ 2n+1 n—1 1 2n—k ]
H”+1(j+s) i H?ill(n—l—Z—j—l—s) 7 k(]—l—s)
) 1—1—3—23[ gn+1 "z‘:l 1 on—k }
ns(n) := - - -
| s(l=s) UL G+s) (I (n+2—5+9) [T + )
_Z%[ 1 _ ﬂ+2—k;]
— Kl lin+2—-k)l(k—1+s) =0 n414s—3
— H;?;rll(n+2—j+s) = " (m + s)

+§+:12n+1—k (k— 1 1)
Hn+1(j+8)

k=1
1

I (1t

) /(]+oo(u + 1) 7250 (u + 1)du.

and where



2 Main Proposition

For every s € B, the Equation (1) is equivalent to,

) 1 /+°o w1 () du.
1

s 1—s
The aim is to studies the differential equation of solutions the functions

t
t > )s(z,t) :=t° [2 +/ u_l_s{u}du], zeC, t>1.
1

We focus only on the bounded solutions (there is a unique bounded solution.
All other solutions are oscillating and diverge to infinity in norm). More
precisely, the strategy to prove the Theorem[d] is to find the initial condition
zs € C such that sup;sy [¥s(2s,t)| < +00. Since sup;sg [¥s(2,1)] < +oo if
and only if z = — 1+°O u~*{u}du, we obtain zs = — 1+°° w5 {u}du.
For every s € B we consider the following differential equation

d -1 -1
—x = st t ot 2
So = st o+t {t), )

te[l,+o0)/N, z(l)=2z 2€C, x:[l,+00)—C.

Lemma 2. Let be s € B. For every z € C there exists a unique continuous
solution s(z,t) : [1,400) — C of the differential equation [2)). Further,

Vs(z,t) zts[z+/tu‘1‘s{u}du], vt > 1.

1

Proof. Let be s € B fixed. The function
¢
t— ts/ w T uldu, t > 1,
1

is C* on [1,+00)/N and continuous on [1,4+00). The Equation () is a

non-homogeneous linear differential equation. For every z € C the unique

continuous solution ¥(z,t) : [1,+00) — C such that 14(z,1) = z is given by
t

Yol ) = t° [z+/ w1 uddul, > 1.

1
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Proposition 3. Let be s € B and consider the continuous solu-
tion Ys(z,t) : [1,400) — C of the differential equation [2). Then
supssq [¥s(z,t)| < +oo if and only if the initial condition z € C satisfies
the following equation
_ 728(”)7 vn
7ls(n)
where (ns(n))nen and (fs(n))nen are defined as in the Theorem [l

>0,

Let us introduce the following notations,

Notation 4. Let ¢ : R — C be a continuous function, we denote the
function ®[g] : Ry — C as

D[g](t) ::/0 g(u)du, Yt >0,

Notation 5. For every k € N define the function p : R — R as

Paks1(t) i= (1) Z Wsin(j%t),
jez»
p2k(t) = (_1)k Z W(COS(]QT@ — 1),
jez»

Lemma 6. We have

/Ot ({u} - %)du =po(t), Vt>0,

and for every n € N* we have

n+1

n 1 n+2\ ,_

® [po](t)z—i(nJrQ),E Bk< N >t k2 4 pa(t), VE>0, Vn>1.
T k=2

Proof. Prove that

/Ot ({u} - %)du =po(t), Vt>0,

The function u — {u} is 1-periodic, then there exists a continuous 1-periodic
function p : R — R such that

t 1
/ (ubdu =t / (ubdu + p(t), V> 0.
0 0



Since

1 1 1
/ {u}du:/ udu= =,
0 0 2

t
1
/ fuldu = t5 +p(t), Vi 20
0

The function p is a piecewise C°°, continuous on R and 1-periodic. By
Dirichlet Theorem, the Fourier series

we get

n
n— Z ay exp(ik2mt),

k=—n

converge uniformly on Ry to the function ¢ — p(t), where (aj)r C C are the
Fourier coefficients of the function p.

t
/ ({v} — %)dv = Zaj exp(ij2nt), Vt>0.
0 ,
JjEZ

By definition of the Fourier coefficients we have

a; = /01 exp(—z’j27ru)(/0u ({v} — %)dv) du

1t 1
2/0 exp(—ij2mu)u(u — 1)du ek VjeZ”,
and .
1 1 1
0= J, o= 2 Gy

The function p satisfies

1 .
COEDY W(exp(zm) ~1) =po(t), VE=0.
JEZ*
Integrate successively to obtain

n

O pol(t) =

k=0

ck
(n—k)!

"R 4 pa(t), VE>0, Vo > 1,

where (cx)gen defined as

1
Cok+1 = 0 and Co — (—1)k Z '72]%1-1’ Vk 2 0.
. (G2m)2kry



6 W. OUKIL

By definition of the Bernoulli numbers (By)ken, we get

1 <n+2

O"[po](t) = ——— Y _ Bs L >t""“+2 +pu(t), VE>0, ¥n>1,
k=2

(n+2)!
O

Lemma 7. For every s € B, there exists a unique zs € C such that the
solution s(zs,t) : [1,400) — C of the differential equation [2)) satisfies
Sup;>q [9s(2s,t)| < +oo. Further,

+oo
zs = —/ w7 {u}du,
1

and
+o0

Vs(zs,t) = —ts/ w T ubdu, V> 1.
t

Proof. Let be s € B fixed. There is a unique bounded solution. All other
solutions are oscillating and diverge to infinity in norm. Let be z € C and
suppose that

sup |1s(z,t)] < +o0.

t>1

Since R(s) > 0, by the Lemma 2] we have

+o0o
sup i (ant)] < oo = [z + [ {ujdu] =0,
>1 1

Then oo
zs = —/ w1 {u}du.
1

Prove that sup;s [s(2s,t)| < +00. Since

+o0o
Zs +/ u_l_s{u}du‘ =0,
1

by consequence,

t +oo
Zs —1—/ w7 {u}du = —/ w i {uydu, V> 1.
1 t

By the Lemma 2] we get

+o0o
Ys(zs,t) = —ts/ w T {uydu, V> 1.
t

Then Sup;>1q ‘ws(zsa t)‘ < %%s) -



Proof of the Proposition[3. Let be s € B and consider the bounded contin-
uous solution s(zs,t) : [1,+00) — C defined in the Lemma [l In order to
simplify the notation, denote

Vs(t) = s(zs,t + 1), ¥Vt >0.

Using the fact ¢ — 14(zs,t) is solution of the differential equation (2. By
definition of ® in the Notation [, we get

SO = (04 1+ )8 [g](0) )
+ hs(n,t), Vt>0, VYn>1,

In 1[1/18](0) 07 v 2 17
LA : +z = + ®"[pol(t), Vt>0, Vn>0
2 (’I’L ])' Sn' 0 I - 9 - Y

where the function pg is defined in the Notation (Bl By the Lemma [B] we
have

(t+1)

hs(n,t) ==

un

hs(n,u) = pp(u) + 2T q(n,u). (4)

where p,, are given by the Notation [Bl and where in order to simplify the
notation, we denoted ¢(n,u) the following polynomial

1yttt A )
P B n— k+2
an.u) 2(n—|—1)!+(n—|—2'z ’“< k >

or since By = —%, the function g5 can be written as

= e —_— 5
a(n.u) n+2'Z < > Zk' TR
In order to simplify the notation, denote

0s(n,t) == "] (¢ + 1) — @" T [y] (1), ¥n 20, ¥t > 0.
From the Equation (3]), the periodicity of the function p,, implies

D samt) = (n+ 1+ )5, (n, 1) + (41— 1)

(t+ 1)dt

—q(n,t+1) +q(n,t)
d
— — O™yt +1), VEt>0, Vn>1,

dt
8s(n,0) = ®"M[y)(1), Vn>1.
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Since p
2 W) = "), vE>0, v >0,
the previous differential Equation can be written as
d -
200, 8) = (E+ 17| (n 4+ 14+ )0, (1) + By, 8) = @[] (¢ + 1)] ,
hs(n,t) = %((t F 1) — ") — q(n,t+ 1) + q(n,t), V>0, ¥n > 1,

6s(n,0) = d" T[] (1), Vn > 1. (6)

Integrate , for every n > 1 and ¢t > 0 we have

su(n,t) = (4 1y @iy 4 [l — @)

0 (’LL—l— 1)n+2+s du. (7)

Since sup, > |1s(v)| = sup,>1 [¥s(2s,v)| < 400, then for every fixed n > 1
we have
tn+1

2" al(0)] < @) sup ()] = gy sup o)l Ve 20,

Using the last inequality and the notation of ds(n,t) we get

i< [ e (su )

v>0

t 1 n+l _ tn+1
- (7)1—1—1)1 Slilg\ws(v)!, Yt >0, VYn>0.

Since R(s) > 0 then

lim [(t+1)"""'%6,(n,t)| =0, ¥Yn>0.

t——+o0

The Equations (7)) implies

+oo T n.u) — " U
(I)nﬂ[ﬂ)s](l) + /0 hs(n, (?)L n (f)n[f;l(s + 1)du =0, Yn>0. (8

Use a successive integration by parts formula, for every n > 0 we have
R CAICRR VI S o (9 [)
n+2+s P4 = Z k+1 Iy
o (u+1) ;5 (n+2—j+s)
n 1
I (j+1+s

(9)

k=0

“+oo
) /0 (1 1) "2, (u + 1),



The Equation (B]) implies

20" [1),](1) = (n+ 14 5)@" 1] (1) + hs(n, 1), ¥n >0,

then
. on+1 n+1 on+1-k
(1) = ———p (1) =Y ———— A (k—1,1). (10
el0) = g e ) = 2 gy - LD A0

By the Notation B, we have pg(1) = 0 for every k € N, then

1
ho(k,1) = 277 —a(k,1), Yk €N,

By the notation of the function hg, the Equation (I0), can be written as

2n+1

n+1 —
o0 =

¥s(1)

ntl 2n+1—k 1

— - ZS
= (j + ) [ (k=1

—qlk - 1,1)].

By consequence, for every n > 0, the Equations (§) and (@), implies

ontl n-l 1 on—k
ws(l) [Hn+1 . - Hk;—‘,—l 9 . H"_k - ]
j=1 (] + S) k=0 =1 (n + —J + S) =1 (] 4+ S)
n+1 _ ~
2n+1 k 1 +00 i -
o - alk—1.1)] +/ %du
k=1 HjZk (J + S) (k - 1) 0 (u + 1)
n—l n—k .
1 on—k—j 1
+ : - [zs . —q(j -1, 1)]
kZ:oH?ill(nH—Hs);ngz’;(mﬂ) G- 1)
1 +oo )
- - u—+ 1) Phs(u+ 1)du
H;»;1<y+1+s>/0 (Wt 70w+ 1)

= 0.

By the notation of the function A, in the Equation (6) and the notation of



10 W. OUKIL

the function ¢ ine the Equation ([f), for every n > 0 we get

on+1 n-l 1 on—k
bV - ]
) H?if(] +s) = H?ill(n +2—-j+5) H?:f(] + 5)
n—+1 _
, qk 1,1)]
I G +s) L (k1)
N 1 n+1 Bk Bk
z
"nl(1+s) Kkl (n+2—k)(k—1+5)
1
I ni: B nt2—k 1
k=1 k' =0 n+1+3—j
n—1 n—k
1 2"—k—] 1
+ . = [fe—r 0 - 11)
;Z;)Hfjll(n+2 j—i—s);ﬂﬁlzﬁ(m—i—s) (j—1)!
1 oo 9
- . u+1 “hs(u+ 1)du
G, DT

By the Lemma 2] and the notation of the function 1,, we have

14+s—2°

Ys(1) = P(zs,2) = 2° [zs + /12 u_l_s{u}du] = 2,2° + A9

We deduce that
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n+1 2n+1—k 1 1

Ns(n) = [kz Hm—l(‘7 +5) (k—1)! B nl(1+ S)}

n—1 n—k

on—k—j 1

kZ: 2 j+8);nnm—:’3(m+s)(j—l)!

) S{L_n_l L 2 ]
G +a) S+ 2+ ) TG +o)
Lps—2op ool L 2

1s(n) = S —s) [Hn+1(j+3)_kzon;?;l(nJrz—jJrS)H" k(JJrS)]

—Zﬂ[ 1 _ ”f2_k;.]

g ln+ 2=kl —1+s) 70 ntlts—j

n—1

1 R on—k—jg(; — 1,1
e ) D L L

o (n+2—j+s) = Hzlzkj(m—l— s)
+1 _
2n+1k k‘—ll
) e
H ACE)

k=1
1

- H?:l(j"Fl-l-S

“+oo
) /0 (u+ 1) (u + 1)du.

By the Lemma [7 and the notation of the function s, we have

+oo
Ps(u) = P(ze,u+1) = —(u+1)° /+1 v (wldw.

3 Proof of the Theorem 1]

Proof of the Theorem [ Let be s € B. By the Equation (I]) we have,
C(S) 1 /+oo —1-s
o = du.
S + T . u {u}du
Thanks to the Main Proposition ] and the Lemma [l we get
), 1 n)
s 1—s 7s(n)’

Vn > 0.



12 W. OUKIL

4 Conclusion

In this conclusion, we present the approach to prove that the Zeta function
does not vanish at any point s of the critical strip such that 1 — 2%(s) # 0.
Let be s € B such that (s) € (0,1) and suppose that |((s)] = 0. By
Theorem [I, we have

(1- 8)223 —1, VYn>0,

Thanks to the Riemann functional equation, the point 1 — s is also a zero of
the function ¢, then

?71—5(71)
fll—s(n)

s =1, VYn2>0,

For 1 — 2R(s) # 0, we suggest that

lim ((1 - 8)723(71) - s?l‘s(n)> #0,

n—-+o0 fs(n) —is(n)

in other words, we suggest that if lim,_, 4 Zi Ezg] # 0, then

im 5 s(n) (4 Dlms(n)
n——+o00 (1 — 8) ’17}1_3(71) (n + 1)!773(71)

1.
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