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Abstract

Using the differential equations, we obtain a more flexible repre-

sentation of the Zeta function in the critical strip. Thanks to the

Riemann functional equation, we obtain an approach to prove that the

Zeta function does not vanish at any point s of the critical strip such

that 1− 2ℜ(s) 6= 0.
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1 Main results

Consider the representation of the Riemann Zeta function ζ defined by the
Abel summation formula [[1], page 14 Equation 2.1.5] as

ζ(s) := −
s

1− s
− s

∫ +∞

1
{u}u−1−sdu, ℜ(s) ∈ (0, 1), ℑ(s) ∈ R

∗, (1)

where {u} is the fractional part of the real u. In order to simplify the
notation, denote B ⊂ C the critical strip, defined as

B := {s ∈ C : ℜ(s) ∈ (0, 1), ℑ(s) ∈ R
∗},

In this manuscript, we denote (Bk)k∈N the Bernoulli numbers. We prove the
following theorem,
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2 W. Oukil

Theorem 1. Consider the Zeta function given by the Equation (1). For

every real sequence (tn)n ⊂ R+ and for every s ∈ B we have

lim
n→+∞

tnn
(n− 1)!

[

Vs[q(n, u)](tn) +
(ζ(s)

s
+

1

1− s

)

Vs[u
n](tn)

]

= 0,

where

q(n, u) := −
n+1
∑

k=1

Bk

k!

n!un−k+2

(n+ 2− k)!
∀n ≥ 1, ∀u ∈ R,

and where for every n ≥ 1 and every real polynomial u ∈ R 7→ gn(u) of order

less then n+ 1, the complex function t ∈ R+ 7→ Vs[gn(u)](t), is defined as

Vs[gn(u)](t) :=

∫ +∞

t

( (t+ 1)1+s

(u+ 1)n+2+s
−

t1+s

un+2+s

)

gn(u)du

− t1+s

∫ +∞

t

(u+ 1)n+s

un+2+s

∫ +∞

u

gn−1(v)

(v + 1)n+1+s
dvdu.

For the particular sequence (tn = n)n∈N∗ , the representation of the Zeta
function given by the previous Theorem, can be written as

lim
n→+∞

nn+1
[ηs(n)

n!

(ζ(s)

s
+

1

1− s

)

+ η̃s(n)
]

= 0,

where

ηs(n) :=

n
∑

j=1

(

n

j

)

(−1)j(n+ 1)−j

j + 1 + s

−

n−1
∑

j=0

(

n− 1

j

)

(−1)j

j + 1 + s

n−1−j
∑

k=0

(

n− 1− j

k

)

n−j−k

j + k + 2 + s
,

η̃s(n) =−

n+1
∑

k=1

Bk

k!

n

(n+ 2− k)!

n−k+2
∑

j=0

(

n− k + 2

j

)

(−1)j(n+ 1)2−k−j

k + j − 1 + s

+

n+1
∑

k=1

Bk

k!

n2−k

(n+ 2− k)!(k − 1 + s)

+

n
∑

k=1

Bk

k!

1

(n+ 1− k)!

n−k+1
∑

j=0

wn,k,j

k + j + 1 + s

n−k−j
∑

m=0

vn,k,j,m
k + j +m+ 1 + s

,

wn,k,j :=

(

n− k + 1

j

)

(−1)j

k + j + 1
, vn,k,j,m :=

(

n− k − j

m

)

n−k−j−m.
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In the conclusion of this manuscript, we present the approach to prove that
the Zeta function does not vanish at any point s ∈ B such that 1−2ℜ(s) 6= 0.

2 Main Proposition

For every s ∈ B, the Equation (1) is equivalent to,

ζ(s)

s
= −

1

1−s
−

∫ +∞

1
u−1−s{u}du.

The aim is to studies the differential equation of solutions the functions

t 7→ ψs(z, t) := ts
[

z +

∫ t

1
u−1−s{u}du

]

, z ∈ C, t ≥ 1.

We focus only on the bounded solutions (there is a unique bounded solution.
All other solutions are oscillating and diverge to infinity in norm). More
precisely, the strategy to prove the Theorem 1, is to find the initial condition
zs ∈ C such that supt≥1 |ψs(zs, t)| < +∞. Since supt≥1 |ψs(z, t)| < +∞ if

and only if z = −
∫ +∞

1 u−1−s{u}du, we obtain zs = −
∫ +∞

1 u−1−s{u}du.
For every s ∈ B we consider the following differential equation

d

dt
x = st−1x+ t−1{t}, (2)

t ∈ [1,+∞)/N, x(1) = z, z ∈ C, x : [1,+∞) → C.

Lemma 2. Let be s ∈ B. For every z ∈ C there exists a unique continuous

solution ψs(z, t) : [1,+∞) → C of the differential equation (2). Further,

ψs(z, t) = ts
[

z +

∫ t

1
u−1−s{u}du

]

, ∀t ≥ 1.

Proof. Let be s ∈ B fixed. The function

t 7→ ts
∫ t

1
u−1−s{u}du, t ≥ 1,

is C∞ on [1,+∞)/N and continuous on [1,+∞). The Equation (2) is a
non-homogeneous linear differential equation. For every z ∈ C the unique
continuous solution ψs(z, t) : [1,+∞) → C such that ψs(z, 1) = z is given by

ψs(z, t) = ts
[

z +

∫ t

1
u−1−s{u}du

]

, ∀t ≥ 1.
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Proposition 3. Let be s ∈ B and consider the continuous solu-

tion ψs(z, t) : [1,+∞) → C of the differential equation (2). Then

supt≥1 |ψs(z, t)| < +∞ if and only if for every real sequence (tn)n ⊂ R+

the initial condition z ∈ C satisfies the following equation

lim
n→+∞

tnn
(n− 1)!

(

Vs[q(n, u)](tn) + zVs[u
n](tn)

)

= 0,

where q(n, u) and Vs are defined as in the Theorem 1.

Let us introduce the following notations,

Notation 4. Let g : R+ → C be a continuous function, we denote the
function Φ[g] : R+ → C as

Φ[g](t) :=

∫ t

0
g(u)du, ∀t ≥ 0,

Notation 5. For every k ∈ N define the function pk : R → R as

p2k+1(t) := (−1)k
∑

j∈Z∗

1

(j2π)2k+3
sin(j2πt),

p2k(t) := (−1)k
∑

j∈Z∗

1

(j2π)2k+2

(

cos(j2πt) − 1
)

,

Lemma 6. We have
∫ t

0

(

{u} −
1

2

)

du = p̃0(t) :=
∑

j∈Z∗

1

(j2π)2

(

exp(ij2πt) − 1
)

, ∀t ≥ 0,

and for every n ∈ N∗ we have

Φn[p̃0](t) = −
1

(n+ 2)!

n+1
∑

k=2

Bk

(

n+ 2

k

)

tn−k+2 + pn(t), ∀t ≥ 0, ∀n ≥ 1.

Proof. Prove that

∫ t

0

(

{u} −
1

2

)

du = p̃0(t), ∀t ≥ 0,

The function u 7→ {u} is 1-periodic, then there exists a continuous 1-periodic
function p : R → R such that

∫ t

0
{u}du = t

∫ 1

0
{u}du + p(t), ∀t ≥ 0.
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Since
∫ 1

0
{u}du =

∫ 1

0
u du =

1

2
,

we get
∫ t

0
{u}du = t

1

2
+ p(t), ∀t ≥ 0.

The function p is a piecewise C∞, continuous on R and 1-periodic. By
Dirichlet Theorem, the Fourier series

n 7→

n
∑

k=−n

ak exp(ik2πt),

converge uniformly on R+ to the function t 7→ p(t), where (ak)k ⊂ C are the
Fourier coefficients of the function p.

∫ t

0

(

{v} −
1

2

)

dv =
∑

j∈Z

aj exp(ij2πt), ∀t ≥ 0.

By definition of the Fourier coefficients we have

aj =

∫ 1

0
exp(−ij2πu)

(

∫ u

0

(

{v} −
1

2

)

dv
)

du

=
1

2

∫ 1

0
exp(−ij2πu)u(u − 1)du =

1

(2jπ)2
, ∀j ∈ Z

∗,

and

a0 =
1

2

∫ 1

0
u(u− 1)du = −

1

12
= −

∑

j∈Z∗

1

(j2π)2
.

The function p satisfies

p(t) =
∑

j∈Z∗

1

(j2π)2

(

exp(ij2πt) − 1
)

= p̃0(t), ∀t ≥ 0.

Integrate successively to obtain

Φn[p̃0](t) =
n
∑

k=0

ck
(n− k)!

tn−k + pn(t), ∀t ≥ 0, ∀n ≥ 1,

where (ck)k∈N defined as

c2k+1 = 0 and c2k = (−1)k
∑

j∈Z∗

1

(j2π)2(k+1)
, ∀k ≥ 0.
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By definition of the Bernoulli numbers (Bk)k∈N, we get

Φn[p̃0](t) = −
1

(n+ 2)!

n+1
∑

k=2

Bk

(

n+ 2

k

)

tn−k+2 + pn(t), ∀t ≥ 0, ∀n ≥ 1,

Lemma 7. For every s ∈ B, there exists a unique zs ∈ C such that the

solution ψs(zs, t) : [1,+∞) → C of the differential equation (2) satisfies

supt≥1 |ψs(zs, t)| < +∞. Further,

zs = −

∫ +∞

1
u−1−s{u}du.

Proof. Let be s ∈ B fixed. There is a unique bounded solution. All other
solutions are oscillating and diverge to infinity in norm. Let be z ∈ C and
suppose that

sup
t≥1

|ψs(z, t)| < +∞.

Since ℜ(s) ∈ (0, 1), by the Lemma 2, we have

sup
t≥1

|ψs(z, t)| < +∞ =⇒
∣

∣

∣
z +

∫ +∞

1
u−1−s{u}du

∣

∣

∣
= 0,

Then

zs = −

∫ +∞

1
u−1−s{u}du.

Prove that supt≥1 |ψs(zs, t)| < +∞. Since

∣

∣

∣
zs +

∫ +∞

1
u−1−s{u}du

∣

∣

∣
= 0,

by consequence,

zs +

∫ t

1
u−1−s{u}du = −

∫ +∞

t

u−1−s{u}du, ∀t > 1.

By the Lemma 2, we get

ψs(zs, t) = −ts
∫ +∞

t

u−1−s{u}du, ∀t ≥ 1.

Then supt≥1 |ψs(zs, t)| ≤
1

ℜ(s) .
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Proof of the Proposition 3. Let be s ∈ B and consider the bounded contin-
uous solution ψs(zs, t) : [1,+∞) → C defined in the Lemma 7. In order to
simplify the notation, denote

ψ̃s(t) := ψs(zs, t+ 1), ∀t ≥ 0.

Using the fact t 7→ ψs(zs, t) is solution of the differential equation (2). By
definition of Φ in the Notation 4, we get

(t+ 1)
d

dt
Φn+1[ψ̃s](t) = (n+ 1 + s)Φn+1[ψ̃s](t) (3)

+ hs(n, t), ∀t ≥ 0, ∀n ≥ 1,

Φn+1[ψ̃s](0) = 0, ∀n ≥ 1,

hs(n, t) :=
1

2

tn+1

(n+ 1)!
+ zs

tn

n!
+ Φn[p̃0](t), ∀t ≥ 0, ∀n ≥ 1,

where the function p̃0 is defined by the Lemma 6. The previous differential
equation can be written as

d

dt
Φn+1[ψ̃s](t) = (n+ 1 + s)t−1Φn+1[ψ̃s](t) (4)

+ t−1
[

hs(n, t)−
d

dt
Φn+1[ψ̃s](t)

]

, ∀t > 0, ∀n ≥ 1.

Integrate the differential equation (3), for every n ≥ 1 and t ≥ 0 we have

Φn+1[ψ̃s](t) = (t+ 1)n+1+s

∫ t

0
(u+ 1)−n−2−shs(n, u)du. (5)

Integrate the differential equation (4), for every n ≥ 1 and t ≥ 1 we get

Φn+1[ψ̃s](t) = tn+1+sΦn+1[ψ̃s](1) (6)

+ tn+1+s

∫ t

1
u−n−2−s

[

hs(n, u)−
d

dt
Φn+1[ψ̃s](u)

]

du.

Since
d

dt
Φn+1[ψ̃s](t) = Φn[ψ̃s](t), ∀n ≥ 1, ∀t > 0,

the Equation (6) is equivalent to

Φn+1[ψ̃s](t) = tn+1+sΦn+1[ψ̃s](1) (7)

+ tn+1+s

∫ t

1
u−n−2−s

[

hs(n, u)− Φn[ψ̃s](u)
]

du.
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Since supt≥0 |ψ̃s(t)| = supt≥1 |ψs(zs, t)| < +∞, then for every fixed n ≥ 1 we
have

∣

∣

∣
Φn+1[ψ̃s](t)

∣

∣

∣
≤ Φn+1[1](t) sup

t≥0
|ψ̃s(t)| =

tn+1

(n + 1)!
sup
t≥0

|ψ̃s(t)|, ∀t ≥ 0, (8)

Since ℜ(s) ∈ (0, 1) the Equations (5) and (7) implies

∫ +∞

0
(u+ 1)−n−2−shs(n, u)du = 0, ∀n ≥ 1

Φn+1[ψ̃s](1) +

∫ +∞

1
u−n−2−s

[

hs(n, u)− Φn[ψ̃s](u)
]

du = 0, ∀n ≥ 1,

by consequence, for every n ≥ 1 and t ≥ 1, the function t 7→ Φn+1[ψ̃s](t)
given by the Equations (5) and (7) can be written as

Φn+1[ψ̃s](t) = −(t+ 1)n+1+s

∫ +∞

t

(u+ 1)−n−2−shs(n, u)du, (9)

Φn+1[ψ̃s](t) = −tn+1+s

∫ +∞

t

u−n−2−s
[

hs(n, u)− Φn[ψ̃s](u)
]

du.

Implies

(
t+ 1

t
)1+s

∫ +∞

t

hs(n, u)

(u+ 1)n+2+s
du =

∫ +∞

t

hs(n, u)− Φn[ψ̃s](u)

un+2+s
du.

Use the Equation (9), to obtain

(
t+ 1

t
)1+s

∫ +∞

t

hs(n, u)

(u+ 1)n+2+s
du =

∫ +∞

t

hs(n, u)

un+2+s
du (10)

+

∫ +∞

t

(u+ 1)n+s

un+2+s

∫ +∞

u

hs(n− 1, v)

(v + 1)n+1+s
dvdu.

By the notation of hs and by the Lemma 6, we have

hs(n, u) = pn(u) +
1

n!

[

zsu
n + q(n, u)

]

. (11)

where in order to simplify the notation, we denoted q(n, u) the following
polynomial

q(n, u) :=
1

2

n!un+1

(n+ 1)!
−

n!

(n+ 2)!

n+1
∑

k=2

Bk

(

n+ 2

k

)

un−k+2.
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or since B1 = −1
2 , the function qs can be written as

q(n, u) := −
n!

(n+ 2)!

n+1
∑

k=1

Bk

(

n+ 2

k

)

un−k+2 = −

n+1
∑

k=1

Bk

k!

n!un−k+2

(n+ 2− k)!
.

By the notation of the function hs and the Equation (11), for every real
sequence (tn)n ⊂ R+ the equation (10) can be written as

(tn + 1)1+s

n!

∫ +∞

tn

zsu
n + q(n, u)

(u+ 1)n+2+s
du =

t1+s
n

n!

∫ +∞

tn

zsu
n + q(n, u)

un+2+s
du (12)

+ ǫs(n) +
tn

1+s

(n− 1)!

∫ +∞

tn

(u+ 1)n+s

un+2+s

∫ +∞

u

zsv
n−1 + q(n− 1, v)

(v + 1)n+1+s
dvdu.

where in order to simplify the notation, for every n ≥ 1 we denoted

ǫs(n) := −(tn + 1)1+s

∫ +∞

tn

(u+ 1)−n−2−spn(u)du

+ tn
1+s

∫ +∞

tn

u−n−2−spn(u)du

+ tn
1+s

∫ +∞

tn

(u+ 1)n+s

un+2+s

∫ +∞

u

(v + 1)−n−1−spn−1(v)dvdu.

We have

|ǫs(n)| ≤ (tn + 1)1+ℜ(s)
(

2 +
1

n+ ℜ(s)

)

∫ +∞

tn

u−n−2−ℜ(s)du
[

max
v∈[0,1]

|pn(v)|
]

=
t−n
n

n+ 1 + ℜ(s)

(

1 +
1

n

)1+ℜ(s)(

2 +
1

n+ ℜ(s)

)

max
v∈[0,1]

|pn(v)|, ∀n ≥ 1.

By the Notation 5, we have limn→+∞maxv∈[0,1] |pn(v)| = 0, we deduce that

lim
n→+∞

|ntnnǫs(n)| = 0.

Using the last limit, the Equation (12) implies

lim
n→+∞

tnn
(n− 1)!

(

zsVs[u
n](tn) + Vs[q(n, u)](tn)

)

= 0,

where for every n ≥ 1 and every real polynomial u ∈ R 7→ gn(u) of order less
then n+ 1, the function t 7→ Vs[gn(u)](t), is defined as

Vs[gn(u)](t) :=

∫ +∞

t

( (t+ 1)1+s

(u+ 1)n+2+s
−

t1+s

un+2+s

)

gn(u)du

− t1+s

∫ +∞

t

(u+ 1)n+s

un+2+s

∫ +∞

u

gn−1(v)

(v + 1)n+1+s
dvdu.
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3 Proof of the Theorem 1

Proof of the Theorem 1. Let be s ∈ B. By the Equation (1) we have,

ζ(s)

s
+

1

1− s
= −

∫ +∞

1
u−1−s{u}du.

Thanks to the Main Proposition 3 and the Lemma 7 we get

lim
n→+∞

tnn
(n− 1)!

[

Vs[q(n, u)](tn) +
(ζ(s)

s
+

1

1− s

)

Vs[u
n](tn)

]

= 0,

where we recall that

q(n, u) := −

n+1
∑

k=1

Bk

k!

n!un−k+2

(n+ 2− k)!
∀n ≥ 1, ∀u ∈ R, (13)

and where for every n ≥ 1 and every real polynomial u ∈ R 7→ gn(u) of order
less then n+ 1, the function t 7→ Vs[gn(u)](t) ∈ C, is defined as

Vs[gn(u)](t) :=

∫ +∞

t

( (t+ 1)1+s

(u+ 1)n+2+s
−

t1+s

un+2+s

)

gn(u)du

− t1+s

∫ +∞

t

(u+ 1)n+s

un+2+s

∫ +∞

u

gn−1(v)

(v + 1)n+1+s
dvdu.

We can apply following integration for every arbitrary sequence (tn)n ⊂ R+.
Consider the particular case where tn = n for every n ≥ 1. By change of
variable, we have

Vs[gn(u)](n) = (n+ 1)1+s

∫ +∞

n+1
u−n−2−sgn(u− 1)du

− n1+s

∫ +∞

n

u−n−2−sgn(u)du

− n1+s

∫ +∞

n

(u+ 1)n+s

un+2+s

∫ +∞

u+1

gn−1(v − 1)

vn+1+s
dvdu

Thanks to the Binomial theorem, we have

(u− 1)n =

n
∑

j=0

(−1)j
(

n

j

)

un−j,
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Then

Vs[u
n](n) =

n
∑

j=1

(−1)j
(

n

j

)

(n+ 1)−j

j + 1 + s

−

n−1
∑

j=0

(−1)j
(

n− 1

j

)

1

j + 1 + s

n−1−j
∑

k=0

(

n− 1− j

k

)

n−j−k

j + k + 2 + s

and by the notation of q(n, u) given by the Equation (13)

Vs[q(n, u)](n) = −

n+1
∑

k=1

Bk

k!

n

(n+ 2− k)!

n−k+2
∑

j=0

(−1)j
(

n− k + 2

j

)

(n+ 1)2−k−j

k + j − 1 + s

+
n+1
∑

k=1

Bk

k!

n2−k

(n+ 2− k)!(k − 1 + s)

+

n
∑

k=1

Bk

k!

1

(n+ 1− k)!

n−k+1
∑

j=0

wn,k,j

k + j + 1 + s

n−k−j
∑

m=0

vn,k,j,m
k + j +m+ 1 + s

where

wn,k,j :=

(

n− k + 1

j

)

(−1)j

k + j + 1
, vn,k,j,m :=

(

n− k − j

m

)

n−k−j−m.

4 Conclusion

In this conclusion, we present the approach to prove that the Zeta function
does not vanish at any point s ∈ B such that 1 − 2ℜ(s) 6= 0. Let be s ∈ B
and suppose that |ζ(s)| = 0. By Theorem 1, we have

lim
n→+∞

nn+1
[ηs(n)

n!
+ (1− s)η̃s(n)

]

= 0,

Thanks to the Riemann functional equation, the point 1− s is also a zero of
the function ζ, then

lim
n→+∞

nn+1
[η1−s(n)

n!
+ sη̃1−s(n)

]

= 0,
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For ℑ(s) 6= 0, by taking the imaginary part of the subtraction, can be written
as

(1− 2ℜ(s)) lim
n→+∞

nn+1fs(n) = 0,

where by using the definition of the Bernoulli numbers, the quantity of fs(n)
is defined as an alternating series. Using the monotonicity of the absolute
value of the general term, we obtain limn→+∞ nn+1fs(n) 6= 0.
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