W Oukil 
  
Non trivial zeros of the Zeta function using the differential equations

Keywords: Zeta function, Non trivial zeros, Riemann functional equation, Bernoulli numbers, Differential equations. AMS subject classifications: 00A05 1 Main results

Using the differential equations, we obtain a more flexible representation of the Zeta function in the critical strip. Thanks to the Riemann functional equation, we obtain an approach to prove that the Zeta function does not vanish at any point s of the critical strip such that 1 -2ℜ(s) = 0.

Theorem 1. Consider the Zeta function given by the Equation [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function[END_REF]. For every real sequence (t n ) n ⊂ R + and for every s ∈ B we have

lim n→+∞ t n n (n -1)! V s [q(n, u)](t n ) + ζ(s) s + 1 1 -s V s [u n ](t n ) = 0,
where q(n, u) := -

n+1 k=1 B k k! n!u n-k+2 (n + 2 -k)! ∀n ≥ 1, ∀u ∈ R,
and where for every n ≥ 1 and every real polynomial u ∈ R → g n (u) of order less then n + 1, the complex function t ∈ R + → V s [g n (u)](t), is defined as

V s [g n (u)](t) := +∞ t (t + 1) 1+s (u + 1) n+2+s - t 1+s u n+2+s g n (u)du -t 1+s +∞ t (u + 1) n+s u n+2+s +∞ u g n-1 (v) (v + 1) n+1+s dvdu.
For the particular sequence (t n = n) n∈N * , the representation of the Zeta function given by the previous Theorem, can be written as

lim n→+∞ n n+1 η s (n) n! ζ(s) s + 1 1 -s + ηs (n) = 0,
where η s (n) := n j=1 n j (-1) j (n + 1) -j j + 1 + s

- n-1 j=0 n -1 j (-1) j j + 1 + s n-1-j k=0 n -1 -j k n -j-k j + k + 2 + s , ηs (n) = - n+1 k=1 B k k! n (n + 2 -k)! n-k+2 j=0 n -k + 2 j (-1) j (n + 1) 2-k-j k + j -1 + s + n+1 k=1 B k k! n 2-k (n + 2 -k)!(k -1 + s) + n k=1 B k k! 1 (n + 1 -k)! n-k+1 j=0 w n,k,j k + j + 1 + s n-k-j m=0 v n,k,j,m k + j + m + 1 + s , w n,k,j := n -k + 1 j (-1) j k + j + 1 , v n,k,j,m := n -k -j m n -k-j-m .
In the conclusion of this manuscript, we present the approach to prove that the Zeta function does not vanish at any point s ∈ B such that 1-2ℜ(s) = 0.

Main Proposition

For every s ∈ B, the Equation ( 1) is equivalent to,

ζ(s) s = - 1 1-s - +∞ 1 u -1-s {u}du.
The aim is to studies the differential equation of solutions the functions

t → ψ s (z, t) := t s z + t 1 u -1-s {u}du , z ∈ C, t ≥ 1.
We focus only on the bounded solutions (there is a unique bounded solution.

All other solutions are oscillating and diverge to infinity in norm). More precisely, the strategy to prove the Theorem 1, is to find the initial condition

z s ∈ C such that sup t≥1 |ψ s (z s , t)| < +∞. Since sup t≥1 |ψ s (z, t)| < +∞ if and only if z = - +∞ 1 u -1-s {u}du, we obtain z s = - +∞ 1
u -1-s {u}du. For every s ∈ B we consider the following differential equation

d dt x = st -1 x + t -1 {t}, (2) 
t ∈ [1, +∞)/N, x(1) = z, z ∈ C, x : [1, +∞) → C.
Lemma 2. Let be s ∈ B. For every z ∈ C there exists a unique continuous solution ψ s (z, t) : [1, +∞) → C of the differential equation (2). Further,

ψ s (z, t) = t s z + t 1 u -1-s {u}du , ∀t ≥ 1.
Proof. Let be s ∈ B fixed. The function 

t → t s t 1 u -1-s {u}du, t ≥ 1, is C ∞ on [1, +∞)/N
ψ s (z, t) = t s z + t 1 u -1-s {u}du , ∀t ≥ 1.
Proposition 3. Let be s ∈ B and consider the continuous solution ψ s (z, t) : [1, +∞) → C of the differential equation (2). Then sup t≥1 |ψ s (z, t)| < +∞ if and only if for every real sequence (t n ) n ⊂ R + the initial condition z ∈ C satisfies the following equation

lim n→+∞ t n n (n -1)! V s [q(n, u)](t n ) + zV s [u n ](t n ) = 0,
where q(n, u) and V s are defined as in the Theorem 1.

Let us introduce the following notations, 

p 2k+1 (t) := (-1) k j∈Z * 1 (j2π) 2k+3 sin(j2πt), p 2k (t) := (-1) k j∈Z * 1 (j2π) 2k+2 cos(j2πt) -1 , Lemma 6. We have t 0 {u} - 1 2 du = p0 (t) := j∈Z * 1 (j2π) 2 exp(ij2πt) -1 , ∀t ≥ 0,
and for every n ∈ N * we have

Φ n [p 0 ](t) = - 1 (n + 2)! n+1 k=2 B k n + 2 k t n-k+2 + p n (t), ∀t ≥ 0, ∀n ≥ 1.
Proof. Prove that

t 0 {u} - 1 2 du = p0 (t), ∀t ≥ 0,
The function u → {u} is 1-periodic, then there exists a continuous 1-periodic function p : R → R such that

t 0 {u}du = t 1 0 {u}du + p(t), ∀t ≥ 0. Since 1 0 {u}du = 1 0 u du = 1 2 , we get t 0 {u}du = t 1 2 + p(t), ∀t ≥ 0.
The function p is a piecewise C ∞ , continuous on R and 1-periodic. By Dirichlet Theorem, the Fourier series

n → n k=-n a k exp(ik2πt),
converge uniformly on R + to the function t → p(t), where (a k ) k ⊂ C are the Fourier coefficients of the function p.

t 0 {v} - 1 2 dv = j∈Z a j exp(ij2πt), ∀t ≥ 0.
By definition of the Fourier coefficients we have

a j = 1 0 exp(-ij2πu) u 0 {v} - 1 2 dv du = 1 2 1 0 exp(-ij2πu)u(u -1)du = 1 (2jπ) 2 , ∀j ∈ Z * ,
and

a 0 = 1 2 1 0 u(u -1)du = - 1 12 = - j∈Z * 1 (j2π) 2 .
The function p satisfies

p(t) = j∈Z * 1 (j2π) 2 exp(ij2πt) -1 = p0 (t), ∀t ≥ 0.

Integrate successively to obtain

Φ n [p 0 ](t) = n k=0 c k (n -k)! t n-k + p n (t), ∀t ≥ 0, ∀n ≥ 1,
where (c k ) k∈N defined as

c 2k+1 = 0 and c 2k = (-1) k j∈Z * 1 (j2π) 2(k+1) , ∀k ≥ 0.
By definition of the Bernoulli numbers (B k ) k∈N , we get 

Φ n [p 0 ](t) = - 1 (n + 2)! n+1 k=2 B k n + 2 k t n-k+2 + p n (t), ∀t ≥ 0,
z s = - +∞ 1 u -1-s {u}du.
Proof. Let be s ∈ B fixed. There is a unique bounded solution. All other solutions are oscillating and diverge to infinity in norm. Let be z ∈ C and suppose that sup

t≥1 |ψ s (z, t)| < +∞.
Since ℜ(s) ∈ (0, 1), by the Lemma 2, we have

sup t≥1 |ψ s (z, t)| < +∞ =⇒ z + +∞ 1 u -1-s {u}du = 0, Then z s = - +∞ 1 u -1-s {u}du.
Prove that sup t≥1 |ψ s (z s , t)| < +∞. Since

z s + +∞ 1 u -1-s {u}du = 0,
by consequence,

z s + t 1 u -1-s {u}du = - +∞ t u -1-s {u}du, ∀t > 1.
By the Lemma 2, we get

ψ s (z s , t) = -t s +∞ t u -1-s {u}du, ∀t ≥ 1.
Then

sup t≥1 |ψ s (z s , t)| ≤ 1 ℜ(s) .
Proof of the Proposition 3. Let be s ∈ B and consider the bounded continuous solution ψ s (z s , t) : [1, +∞) → C defined in the Lemma 7. In order to simplify the notation, denote ψs (t) := ψ s (z s , t + 1), ∀t ≥ 0.

Using the fact t → ψ s (z s , t) is solution of the differential equation (2). By definition of Φ in the Notation 4, we get

(t + 1) d dt Φ n+1 [ ψs ](t) = (n + 1 + s)Φ n+1 [ ψs ](t) (3) 
+ h s (n, t), ∀t ≥ 0, ∀n ≥ 1, Φ n+1 [ ψs ](0) = 0, ∀n ≥ 1, h s (n, t) := 1 2 t n+1 (n + 1)! + z s t n n! + Φ n [p 0 ](t), ∀t ≥ 0, ∀n ≥ 1,
where the function p0 is defined by the Lemma 6. The previous differential equation can be written as

d dt Φ n+1 [ ψs ](t) = (n + 1 + s)t -1 Φ n+1 [ ψs ](t) (4) 
+ t -1 h s (n, t) - d dt Φ n+1 [ ψs ](t) , ∀t > 0, ∀n ≥ 1.
Integrate the differential equation (3), for every n ≥ 1 and t ≥ 0 we have

Φ n+1 [ ψs ](t) = (t + 1) n+1+s t 0 (u + 1) -n-2-s h s (n, u)du. ( 5 
)
Integrate the differential equation (4), for every n ≥ 1 and t ≥ 1 we get

Φ n+1 [ ψs ](t) = t n+1+s Φ n+1 [ ψs ](1) (6) 
+ t n+1+s t 1 u -n-2-s h s (n, u) - d dt Φ n+1 [ ψs ](u) du. Since d dt Φ n+1 [ ψs ](t) = Φ n [ ψs ](t), ∀n ≥ 1, ∀t > 0,
the Equation ( 6) is equivalent to

Φ n+1 [ ψs ](t) = t n+1+s Φ n+1 [ ψs ](1) (7) 
+ t n+1+s t 1 u -n-2-s h s (n, u) -Φ n [ ψs ](u) du.
Since sup t≥0 | ψs (t)| = sup t≥1 |ψ s (z s , t)| < +∞, then for every fixed n ≥ 1 we have

Φ n+1 [ ψs ](t) ≤ Φ n+1 [1](t) sup t≥0 | ψs (t)| = t n+1 (n + 1)! sup t≥0 | ψs (t)|, ∀t ≥ 0, (8) 
Since ℜ(s) ∈ (0, 1) the Equations ( 5) and (7) implies

+∞ 0 (u + 1) -n-2-s h s (n, u)du = 0, ∀n ≥ 1 Φ n+1 [ ψs ](1) + +∞ 1 u -n-2-s h s (n, u) -Φ n [ ψs ](u) du = 0, ∀n ≥ 1,
by consequence, for every n ≥ 1 and t ≥ 1, the function t → Φ n+1 [ ψs ](t) given by the Equations ( 5) and ( 7) can be written as

Φ n+1 [ ψs ](t) = -(t + 1) n+1+s +∞ t (u + 1) -n-2-s h s (n, u)du, (9) 
Φ n+1 [ ψs ](t) = -t n+1+s +∞ t u -n-2-s h s (n, u) -Φ n [ ψs ](u) du. Implies ( t + 1 t ) 1+s +∞ t h s (n, u) (u + 1) n+2+s du = +∞ t h s (n, u) -Φ n [ ψs ](u) u n+2+s du.
Use the Equation (9), to obtain

( t + 1 t ) 1+s +∞ t h s (n, u) (u + 1) n+2+s du = +∞ t h s (n, u) u n+2+s du (10) 
+ +∞ t (u + 1) n+s u n+2+s +∞ u h s (n -1, v) (v + 1) n+1+s dvdu.
By the notation of h s and by the Lemma 6, we have

h s (n, u) = p n (u) + 1 n! z s u n + q(n, u) . ( 11 
)
where in order to simplify the notation, we denoted q(n, u) the following polynomial

q(n, u) := 1 2 n!u n+1 (n + 1)! - n! (n + 2)! n+1 k=2 B k n + 2 k u n-k+2 .
or since B 1 = -1 2 , the function q s can be written as

q(n, u) := - n! (n + 2)! n+1 k=1 B k n + 2 k u n-k+2 = - n+1 k=1 B k k! n!u n-k+2 (n + 2 -k)!
.

By the notation of the function h s and the Equation (11), for every real sequence (t n ) n ⊂ R + the equation ( 10) can be written as

(t n + 1) 1+s n! +∞ tn z s u n + q(n, u) (u + 1) n+2+s du = t 1+s n n! +∞ tn z s u n + q(n, u) u n+2+s du (12) + ǫ s (n) + t n 1+s (n -1)! +∞ tn (u + 1) n+s u n+2+s +∞ u z s v n-1 + q(n -1, v) (v + 1) n+1+s dvdu.
where in order to simplify the notation, for every n ≥ 1 we denoted

ǫ s (n) := -(t n + 1) 1+s +∞ tn (u + 1) -n-2-s p n (u)du + t n 1+s +∞ tn u -n-2-s p n (u)du + t n 1+s +∞ tn (u + 1) n+s u n+2+s +∞ u (v + 1) -n-1-s p n-1 (v)dvdu.
We have

|ǫ s (n)| ≤ (t n + 1) 1+ℜ(s) 2 + 1 n + ℜ(s) +∞ tn u -n-2-ℜ(s) du max v∈[0,1] |p n (v)| = t -n n n + 1 + ℜ(s) 1 + 1 n 1+ℜ(s) 2 + 1 n + ℜ(s) max v∈[0,1] |p n (v)|, ∀n ≥ 1.
By the Notation 5, we have lim n→+∞ max v∈[0,1] |p n (v)| = 0, we deduce that

lim n→+∞ |nt n n ǫ s (n)| = 0.
Using the last limit, the Equation (12) implies

lim n→+∞ t n n (n -1)! z s V s [u n ](t n ) + V s [q(n, u)](t n ) = 0,
where for every n ≥ 1 and every real polynomial u ∈ R → g n (u) of order less then n + 1, the function t → V s [g n (u)](t), is defined as

V s [g n (u)](t) := +∞ t (t + 1) 1+s (u + 1) n+2+s - t 1+s u n+2+s g n (u)du -t 1+s +∞ t (u + 1) n+s u n+2+s +∞ u g n-1 (v) (v + 1) n+1+s dvdu. Then V s [u n ](n) = n j=1 (-1) j n j (n + 1) -j j + 1 + s - n-1 j=0 
(-1) j n -1 j

1 j + 1 + s n-1-j k=0 n -1 -j k n -j-k j + k + 2 + s
and by the notation of q(n, u) given by the Equation (13) 

V s [q(n, u)](n) = - n+1 k=1 B k k! n (n + 2 -k)! n-k+2 j=0 (-1) j n -k + 2 j (n + 1) 2-k-j k + j -1 + s + n+1 k=1 B k k! n 2-k (n + 2 -k)!(k -1 + s) + n k=1 B k k! 1 (n + 1 -k)!

Conclusion

In this conclusion, we present the approach to prove that the Zeta function does not vanish at any point s ∈ B such that 1 -2ℜ(s) = 0. Let be s ∈ B and suppose that |ζ(s)| = 0. By Theorem 1, we have 

Notation 4 .

 4 Let g : R + → C be a continuous function, we denote the function Φ[g] : R + → C as Φ[g](t) := t 0 g(u)du, ∀t ≥ 0, Notation 5. For every k ∈ N define the function p k : R → R as

  k,j,m k + j + m + 1 + s where w n,k,j := n -k + 1 j (-1) j k + j + 1 , v n,k,j,m := n -k -j m n -k-j-m .

lim n→+∞ n n+1 η s (n) n! + ( 1 -

 1 s)η s (n) = 0, Thanks to the Riemann functional equation, the point 1 -s is also a zero of the function ζ, thenlim n→+∞ n n+1 η 1-s (n) n! + sη 1-s (n) = 0,

  ∀n ≥ 1, Lemma 7. For every s ∈ B, there exists a unique z s ∈ C such that the solution ψ s (z s , t) : [1, +∞) → C of the differential equation (2) satisfies sup t≥1 |ψ s (z s , t)| < +∞. Further,
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Proof of the Theorem 1. Let be s ∈ B. By the Equation (1) we have,

Thanks to the Main Proposition 3 and the Lemma 7 we get

where we recall that

and where for every n ≥ 1 and every real polynomial

We can apply following integration for every arbitrary sequence (t n ) n ⊂ R + . Consider the particular case where t n = n for every n ≥ 1. By change of variable, we have

Thanks to the Binomial theorem, we have

For ℑ(s) = 0, by taking the imaginary part of the subtraction, can be written as

where by using the definition of the Bernoulli numbers, the quantity of f s (n) is defined as an alternating series. Using the monotonicity of the absolute value of the general term, we obtain lim n→+∞ n n+1 f s (n) = 0.