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Abstract

Using the differential equations, we obtain a more flexible expres-
sion for the Riemann Zeta function on the right half-plan except the
point s = 1. Thanks to the Riemann functional equation, we suggest
that the point s € C such that R(s) € (0,271] is a non-trivial zero
of the function ¢ implies |s2['(s)| > [(1 — s)?T'(1 — s)|, where T is the
Gamma function.
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1 Main results

Consider the representation of the Riemann Zeta function ¢ defined by the
Abel summation formula [[I], page 14 Equation 2.1.5] as

C(s) := 1 i o S/1+00 u T ubdu, s # 1, R(s) >0, I(s) €R*, (1)

where {u} is the fractional part of the real w. In order to simplify the
notation, denote B C C the right half-plan except the point s = 1, defined

as
B:={seC: s#1, R(s)>0, S(s)e R},

In this manuscript, we denote (Bj)gen the Bernoulli numbers. We prove the
following theorem,
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Theorem 1. Consider the Zeta function given by the Equation (). For
every s € B we have

S 1 .. n
T 7, (TG + ) nsto),

where

T (u42)"s [T g(n—1,v)
o(n) = " dvd
1s(n) /n (u+ 1)n+2+s AH (v + 1)ntits vau

n+1 400
—n—1—s n+s Q(n B 17 U)
—(n+1)""! /n (u—+1)"F /u dedu

+00
+ / (u+1)"""27 (q(n,u) —q(n,u+ 1)>du, Vn > 1,

and where

2 Main Proposition

For every s € B, the Equation (1) is equivalent to,

¢(s) o /+0<> w7 {u}du.
1

s 1—s

The aim is to studies the differential equation of solutions the functions
¢
t— Ps(z,t) :=1t° [z +/ u_l_s{u}du}, ze€C, t>1.
1

We focus only on the bounded solutions (there is a unique bounded solution.
All other solutions are oscillating and diverge to infinity in norm). More
precisely, the strategy to prove the Theorem [ is to find the initial condition
zs € C such that sup;>; [¢hs(zs,t)| < 4o00. Since sup;>; [¢s(z,t)| < +oo if
and only if z = — 1+°° u~17*{u}du, we obtain z; = — 1+°O w3 {u}du.
For every s € B we consider the following differential equation

d -1
E:E—St x4+t {t}, (2)

te[l,+o0)/N, z(l)=2 2z€C, x:[l,+00)—C.



Lemma 2. Let be s € B. For every z € C there exists a unique continuous
solution Ys(z,t) : [1,4+00) — C of the differential equation 2l). Further,
¢
hs(z,t) =t° [z —1—/ u_l_s{u}du], vt > 1.

1

Proof. Let be s € B fixed. The function
¢
t tS/ w I {uldu, t > 1,
1

is C* on [1,400)/N and continuous on [1,+00). The Equation (@) is a
non-homogeneous linear differential equation. For every z € C the unique
continuous solution vs(z,t) : [1,400) — C such that ¢s(z,1) = z is given by

t
Ys(z,t) =t° {z —|—/ w T uldul, V> 1.
1
U

Proposition 3. Let be s € B and consider the continuous solu-
tion g(z,t) : [1,+00) — C of the differential equation @). Then
sup;sq [¥s(z,t)| < +oo if and only if the initial condition z € C satisfies
the following equation

so= 1 tm (I (k+ 1+ 5))nin).

n—-+00
where (ns(n))nen is defined as in the Theorem [l
Let us introduce the following notations,

Notation 4. Let ¢ : R — C be a continuous function, we denote the
function ®[g] : R4 — C as

D[g|(t) ::/0 g(u)du, Vt>0,

Notation 5. For every k € N define the function py : R — R as

par1(t) == (—1)F Z G2myes

1

)2k+3
jezr

1

)

par(t) = (—1)* Z W(cos(ﬂﬂt) - 1),

JEZ*

sin(j2nt),
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Lemma 6. We have

¢ 1
| (= 3)du=m(o), veo,
0 2
and for every n € N* we have

n+1
" [po](t) = R — > By <nz2

R L (1), VE>0, Vi > 1.

k=2
Proof. Prove that

/Ot (tu) - %)du —po(t), VE> 0,

The function u — {u} is 1-periodic, then there exists a continuous 1-periodic
function p : R — R such that

t 1
/ (u}du =t / {uydu + p(t), V> 0.
0 0

1 1 1
/ {u}du:/ udu= =,
0 0 2

t
1
/ fuddu = t3 +p(t), V>0
0

The function p is a piecewise C'°; continuous on R and 1-periodic. By
Dirichlet Theorem, the Fourier series

Since

we get

n
n— Z ay exp(ik27t),

k=—n

converge uniformly on Ry to the function t — p(t), where (ay)r C C are the
Fourier coefficients of the function p.

/Ot <{v} — %)dv = Z ajexp(ij2mt), Vit > 0.

jez

By definition of the Fourier coefficients we have

aj = /01 exp(—z’j27ru)(/0u ({v} — %)dv)du

1t 1
== —ij2 —1)du = Vjezr
2Aem(wﬂwwu = g W e L




and

The function p satisfies

pt) =Y L(exp(z‘j%t) - 1) = po(t), Vt>0.

9)2
e (g2m)
Integrate successively to obtain
n
Ck;

®"[po](£) = ) e k),t"—’“ +pa(t), VE>0,Vn>1,
k=0 ’

where (cx)gen defined as

1

Cokt1 =0 and cop = (—1)F Z
jez*

By definition of the Bernoulli numbers (By)ken, we get

O [po](t) = ———= > Bx f

1 M 4
(n+2)! (

>t"‘k+2 +pult), V>0, Vn>1,
k=2

O

Lemma 7. For every s € B, there exists a unique zs € C such that the
solution s(zs,t) : [1,4+00) — C of the differential equation ([2)) satisfies
sup;sg [¥s(zs, )| < +o0. Further,

+00
zs = —/ w7 {u}du.
1

Proof. Let be s € B fixed. There is a unique bounded solution. All other
solutions are oscillating and diverge to infinity in norm. Let be z € C and
suppose that

sup |[¢s(z,t)| < +o0.

t>1

Since R(s) > 0, by the Lemma [ we have

+oo
suplvu(a,t)] < oo = [o+ [ (updu| =0,
t>1 1
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therefore .
zs = —/ w7 {u}du.
1

Prove that sup,> [1s(zs, )| < +o0. Since

“+o0o
2s +/ u_l_s{u}du‘ =0,
1

by consequence,

t +oo
Zs —1—/ w7 {u}du = —/ w i {uydu, V> 1.
1 t

By the Lemma 2] we get

+o0o
Ys(zs,t) = —ts/ w T uydu, V> 1.
t

Then Sup¢>1 |1)[)s(zsv t)| < %%s) -

Proof of the Proposition[3. Let be s € B and consider the bounded contin-
uous solution ¢(zs,t) : [1,+00) — C defined in the Lemma [7l In order to
simplify the notation, denote

Vs(t) == s(zs,t + 1), Vt>0.

Using the fact ¢t — 1)4(zs,t) is solution of the differential equation (2]). By
definition of ® in the Notation Hl we get

(t+ 1)%@“[%]@) =(n+1+ )" [](t) (3)

tTL
—I—ZSE—I—h(n,t), YVt >0, Vn>0,
g+l .

¢n+1[¢8](0) = 07 VTL 2 07

where the function pq is defined in the Notation[fl Integrate , for every n > 0
and t > 0 we have

O™ [y ](t) = (t+ 1) 1 / t(u+1)—"—2—s zs“—T + h(n,u)|du.  (4)
0 n!



Since sup,>q [1s(v)| = sup,> |¥s(2s,v)| < 400, then for every fixed n > 0
we have
tn+1

0] < @O sup ()] = s (e, )], Ve 20,

The Equation (I2)) implies

+o00 u™
/ (u+1)""727 [28—' +h(n,u)|du =0, Vn >0,
0 n:

in other words

S R /+oo(u +1)7" 2 h(n,u)du, Yn >0 (5)

TRHTE R o, n =0
To know, the previous equality allows us to obtain the representation
of the Zeta function obtained by the Euler-Maclaurin formula. Let be
1s(0,t) : [1,400) — C the unique continuous solution of the differential
equation (2)) of initial condition |1(0,1)| = 0. We recall that ¢ — 15(z,t) is
defined in the Lemma 2l for every initial condition z € C. In order to simplify
the notation, denote

Yo.s(t) == s(0,t +1), Vt>0.

Using the fact ¢ — 15(0, ) is solution of the differential equation ([2). As in
the Equation (B]), we get

(t+ 1)%4”“[1/)0,4(75) = (n 4+ 1+ 8)@" o5 (1) + h(n, 1), (6)

" [1hos](0) =0, Vn > 0,Vtzeqo,

where we recall that

1 tn+1 "

Integrate the last differential equation,

t
O g o) (t) = (¢ + 1) T / (u+1)"""2"*h(n,u)du, Vt>0, Yn>D0.
0

which can be written as

(I)n+1 Wo,s] (t)

“+oo
(t 4 1)nHits / (u+1)"""2" h(n, u)du
0

“+oo
(b4 1y / (1) "2 h(n, w)du, V>0, Vn> 0.
t
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The Equation (Bl implies
2

TSR g

(I)n+l [1/}0,8] (t) =

+oo
—(t+ 1)"+1+8/ (u+ 1)"""27h(n, u)du.
t

In order to simplify the notation, denote
Ss(n,t) := ®" oo o) (t + 1) — " [ehg 5](t), Yn >0, Vt>0. (8)
By the Lemma [6] we have
h(n,u) = pn(u) = q(n, u). (9)

where p,, are given by the Notation [b] and where in order to simplify the
notation, we denoted ¢(n,u) the following polynomial

1yt 1 YN /n+2
= —— B n—k+2
a(n,u) 2(n+1)!+(n+2)!kz_2 ’“( 2 )“

or since By = —%, the function ¢ can be written as

n+1 n+1 n+2—k
o 1 n+2 n—k+2 % u +
aln,u) = (n—|—2)!kzlek< k >“ _;; ARCET TR

From the Equation (@), the periodicity of the function p,, implies

(t+ 1)iés(n,t) = (n 41+ 8)6s(n,t) —q(n,t +1) 4+ q(n,t)

dt
— %@““[%,s](t +1), Vt>0, V¥n>0,
5s(n,0) = "y (1), Vn > 0.
Since p
E‘Dnﬂ[?ﬂo,s](ﬂ = ®"[thos)(t), Vt>0, Vn=0,
the previous differential Equation can be written as
d

o(nyt) = (¢ + 1) [(n+ 1+ 8)8,(n, 1) + (1) — "ot + 1),
g(n,t) :=q(n,t) —q(n,t+1), V¥t >0, Vn >0,
5s(n,0) = " ahg ] (1), Vn > 0. (11)

dt



Integrate , for every n > 0 and ¢ > 0 we have

% = @ (1) + | 5(”’“>(;+¢:)[ﬁ;£“+ Yau. (1)

Since sup,sq | (v 4+ 1) 71 ()] = sup,s; [0, (0,v)| < +00, then for
every fixed n > 0 we have

" o,s)(1)| < (¢ + 1T (t) sup (v + 1) o s(v)]  (13)

v>0
n+1
=(t+ 1)%(5) CE] SI>111) ]v_%(s)ws(o,v)], YVt >0,

By the notation of ds in the Equation (8) and by the definition of ® in the
Notation 4 we have

t+1
Sa(n,t) = /t B [0 (w)du, Vn >0, V> 0. (14)

The Equation (I3]) implies

gm0l = [ o)

< (t+2)"0) % sup oy (0,0)], Yt >0, Vn>0.

By consequence

lim |(t41)""" %6, (n,t)| =0, VYn>0.

t—+o00

From the Equations (I2]) we obtain

R

0 (’LL + 1)n+2+s

du=0, Vn>0. (15)

and the function ¢ — d5(n,t) can be written as

ds(n,t) 0 G(n,u) — ®"tho 5] (u + 1)
e E TR

By the the Equation (I4]), for every n > 1 and ¢ > 0, the last equality implies

t+1 o0 G(n, u) — P 4] (u
[ ol =~ e [T A - f’l)[fff’gli L
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The Equation ([7) implies

= +oo (u + 2)n+s 1 t+1
s ~ Y du—(t+1)" 1S 1)*+s4d
ngl(kﬂ)[/t (u+ 1)nr2+s Y (t+1) /t (u+ 1) du
t+1
=(t+1)1s / w4 1)"*s v+ 1)1 h(n — 1,v)dvdu
t

( )
“+oo
— / (u+1)7"7275 (u 4 2)" TS v+ 1) h(n — 1, v)dvdu
t

+oo
|
“+oo
|
u+1
—+00
— / (u+1)"""275G(n,u)du, Yn>1, ¥Vt >0.
t

In particular, for every n > 1 we have

Zs [/-ﬁ-oo (’LL + 2)n+s du 1 ((TL + 2>n+1+s B 1):|
I (k+s) Ly (U + 1)nt2ts n+l4+s\\n+1
=(n41)"1 / (u+1) "+s/ (v+ 1) h(n — 1,v)dvdu

+00 4
- / (u+1)""275 (1 + 2) ”+s/ (v41)"""%h(n — 1,v)dvdu

+oo
- / (u+1)"""275G(n, u)du.

Using the notation of h given by the Equation (0), we have obtained

1

=T )

<H"+1(/<: + s)) [ns(n) - es(n)], vn > 1.
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where

n+ 2\ n+l+s O (ut2)mhs

© (u+2)nts *® g(n—1,v)
s = ’ dvd
ns(n) /n (U+1)"25/u+1 (U+1)"1svu

n+1 400
—n—1-—s n+s q\n — 1’U

“+oo
+ / (u+ 1)_”_2_35(71, u)du,

) /n+°° (u 4 2+ [m ()

(u + 1)n+2+5 41 (’U + 1)n+1+5

n+1 400
—n—1-—s n-+s Pn—-1\V

By the notation of p, in the Notation we  have
SUP, >0 MaXye(o1] |Pn (V)| < +o0. By Stirling formula, we get

lim (Hﬁ*%k—%sn\%(nﬂ::&

n——+o0o

For the limit of (n + 2 + s)ws(n), we have

>n+1+s

>>dv

ws(n) =— /1+oo v 2 exp(v1)dv + exp(1 <

T n(n s
e
1))

2 (o

:emﬂDPewmp«n+1ln<
Ly eyt
Ty (e (o (2)
o TR (M2 g (o (222) o)

+ /1+OO v 2 eXP(U_l)((ZZ i i)s — 1>dv.
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Use the Taylor formula, we get

+o0
ll)rf (n+2+ s)ws(n) = (% —s)exp(l) + (1 +s) / v~ 2exp(v)dv
n [e.e] 1
+o0 3 [t
+ s/ v 3 exp(v™)dv — 5/ v exp(v™)dv
1 1
— 4

By consequence

1
2z = —— lim (H;;ig(k +1+ S))ns(n)-

n——+o0o

]

3 Proof of the Theorem [I]

Proof of the Theorem[1. Let be s € B. By the Equation (IJ) we have,

4’(8) 1 _ /+OO —1—s
. + = /) u {u}du.
Thanks to the Main Proposition Bl and the Lemma [7l we get
¢(s) 1 ( n+1 )
S + 1= 4nEToo 70 (B + 14 5) )ns(n).

]

4 Conclusion
Let be s € B such that ®(s) € (0,1) and suppose that |((s)] = 0. By
Theorem [I, we have

s
1—5’

lim (Hgig(k + s))ns(n) — 4

n——+o0o

(16)

Thanks to the Riemann functional equation, the point 1 — s is also a zero of
the function ¢, then

: n+2 1-s
lim (Hk:(](k: +1-— s))nl_s(n) =—4 . (17)

n—-+o00 S
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The terms 7, (n) are integrable for every n > 1 and « € B. For 2R(s) < 1,
we suggest that

R(s)
lim | Teln) e
n——+oo nt— (s) nl_s(n)
The Equations (I6]) and (I7) implies
s k+s ns(n)
_5 =y n+2 s ‘
‘(1—8)2‘ n—lg-loo ( kzok’—l—l—s)nl_s(n)
nl=s k+s I'(l1-ys)
= nSteo | s R0k 41— I(s) I

where I' is the Gamma function.
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