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Introduction

In conventional bulge tests, the bulge is formed by applying a hydrostatic pressure loading on one side of a fully-clamped sheet specimen as described in Fig. 1. The periphery of the specimen is clamped between a bulge cell and a forming die, which is circular for equi-biaxial bulge tests. The bulge test is widely used to characterize the behavior of sheet materials subjected to biaxial tensile loading. The success of this method relies on two advantages of the set-up. First, during tests on highly ductile metals under bi-axial loading, necking occurs at higher strain than under uniaxial tension conditions. For example, [START_REF] Galpin | A hybrid method for detecting the onset of local necking by monitoring the bulge forming load[END_REF] and [START_REF] Chen | Material hardening of a high ductility aluminum alloy from a bulge test[END_REF] showed on DP450 steel and Al-6022 aluminum alloy respectively that the stress-strain response can be determined up to strain values significantly higher than for uniaxial tension. Second, the load is applied through a liquid, resulting in a simplification of the numerical model due to the absence of friction when compared to a punch test. In order to obtain stress-strain curves, the bulge pressure can be measured directly using a pressure sensor. However, the measurement of the 1 INTRODUCTION specimen's thickness and the radii of the curvature required for this purpose are not straightforward. While in the late 1940s, [START_REF]Plastic deformation of a circular diaphragm under pressure[END_REF] studied only the plasticity of materials in bulge tests at small strains, the theoretical and experimental analysis of the test have evolved significantly over the course of the last decades with improvements in measurement techniques and deeper understanding of the problem.

Based on a von Mises criterion in the context of membrane theory, [START_REF] Hill | A theory of the plastic bulging of a metal diaphragm by lateral pressure[END_REF] proposed the first theoretical analysis of a bulge test. Using the kinematic hypothesis that each material point has a circular path, [START_REF] Hill | A theory of the plastic bulging of a metal diaphragm by lateral pressure[END_REF] derived the first equations relating the curvature radius, as well as the thickness at the apex, to the dome height and the geometrical dimensions of the test. This paved the way for the direct evaluation of the flow-stress from pressure and dome height measurements. In order to improve the accuracy of the predicted flow-curve, numerous authors proposed modified versions of the initial equations, some of them requiring an initial guess of the Swift hardening parameter. A comparison of the major explicit equations is given by [START_REF] Koç | An experimental study on the comparative assessment of hydraulic bulge test analysis methods[END_REF] who concluded that Kruglov's method for thickness and Panknin's method for bulge radius calculation are the best combination for predicting flow stress at both ambient and elevated temperature. At the same time, [START_REF] Bambach | Comparison of the identifiability of flow curves from the hydraulic bulge test by membrane theory and inverse analysis[END_REF] tested various direct methods for the re-identification of initial numerical results using Voce's flow behavior. He concluded that direct methods were unable to recover the initial parameters, while inverse analysis was successful provided that the starting point of the identification was obtained from the most accurate direct methods. [START_REF] Reis | Inverse identification of the swift law parameters using the bulge test[END_REF] proposed an inverse identification based on the pressure vs. dome height data of a circular bulge of almost isotropic material, but the method was found to be efficient for Swift's behavior only. Recently, 1 INTRODUCTION Pereira et al. (2020) performed a more complete inverse analysis based on circular and elliptical bulges, using pressure vs. dome height data in the identification of Swift-Voce mixed behavior and Hill'48 anisotropy, which avoids the hypothesis of equi-biaxial stress state. They also underlined the high computational cost of accurately calculating the curvature radius and surface strains for further comparison to experimental measurements.

Recently, stereo Digital Image Correlation (DIC) methods have been used

to study the displacement fields, resulting in new approaches for the calculation of surface strains and curvatures. [START_REF] Vucetic | Round robin test on determination of a biaxial true stress -true strain curves from bulge test[END_REF] presented the advantages of using stereo digital image correlation methods at a round-robin organized by International Deep Drawing Research Group (IDDRG) prior to the development of the ISO-16808 standard. [START_REF] Mulder | Accurate determination of flow curves using the bulge test with optical measuring systems[END_REF] have described the through thickness evolution of the mechanical fields and improved the post processing of stereo-DIC data by introducing average values through the thickness. The extensive use of bulge tests eventually resulted in their standardization in the ISO 16808:2014 standard. Most of the above studies were performed at low strain rates, and the direct analyses were performed under membrane theory conditions. In all these works, it is emphasized that the hypothesis is only valid for die opening diameter (D) to initial specimen thickness (t 0 ) ratios greater than 100 (ISO 16808:2014). When performing bulge tests with smaller specimen diameters of about 100mm, e.g. on machines that were initially meant for the determination of Forming Limit Diagram (FLD) in punch stretching tests or to save material, classic membrane theory limits the applicability to sheet thickness of less than 1mm. [START_REF] Lemoine | Flow curve determination at large plastic strain levels: limitations of the membrane theory in the analysis REFERENCES of the hydraulic bulge test[END_REF] studied those limitations and proved that in the case of IF and HSLA isotropic steels, the stress errors obtained increase significantly when D/t 0 decreases to less than 100, and can 1 INTRODUCTION reach up to 15% for D/t 0 = 50.

For diameter to initial specimen thickness ratios of D/t 0 < 100, the material is no longer in a membrane state, the stresses can therefore no longer be assumed to be constant through the thickness and the bending strain is no longer negligible. Since it is not easily possible to obtain displacement and strain field measurements from the sheet face in contact with the liquid, all estimates have to be based on outer surface measurements. Correcting these adverse effects was one of the main goals of the studies mentioned above.

For example, by performing three-point apex curvature displacement measurements, [START_REF] Atkinson | Accurate determination of biaxial stress-strain relationships from hydraulic bulge tests of sheet metals[END_REF] calculated the bi-axial stress using an effective radius of curvature value between the outer and inner radii at the apex of the bulge, along with thickness calculations based on Hill's special solution [START_REF] Hill | A theory of the plastic bulging of a metal diaphragm by lateral pressure[END_REF]). Based on numerical analyses of bulge tests, [START_REF] Yoshida | Evaluation of stress and strain measurement accuracy in hydraulic bulge test with the aid of finite-element analysis[END_REF] showed the effect of small die opening diameter to specimen initial thickness (D/t 0 ) ratios as low as 33. He suggested calculating the equivalent strain at the apex based on the middle layer to account for the bending strain. Assuming a uniform deformation around the bulge apex, he obtained the radius of curvature of the middle layer by subtracting half the thickness from the radius of curvature of the outer surface. Then he estimated the logarithmic hoop strain in the middle layer from the change of the arc length in the middle layer. These assumptions are also used in the ISO 16808:2014 standard for the evaluation of the bending strain. This method for estimating the mid-plane radius of curvature has been used by many authors such as [START_REF] Min | Accurate characterization of biaxial stress-strain response of sheet metal from bulge testing[END_REF] and [START_REF] Mulder | Accurate determination of flow curves using the bulge test with optical measuring systems[END_REF], while [START_REF] Vucetic | Round robin test on determination of a biaxial true stress -true strain curves from bulge test[END_REF] previously pointed out that this equation for the middle layer radius of curvature "gives over-estimated results for the real radius and corresponding imprecise true plastic strain values when bending is concerned".

EXPERIMENTAL BULGE TEST SET-UP

The aim of the present study is to develop a new methodology of direct identification of the stress and strain response for bulge tests with small die opening diameter to initial specimen thickness ratios of D/t 0 < 100 using outer surface 3D-DIC measurements. Accurate estimates of the bending strain, the thickness and the radii of curvature at the apex of the bulge are obtained from a parametric numerical study and validated experimentally.

Using a new algorithm, an accurate picture of the bi-axial behavior of the investigated sheet metal is proposed and experimentally validated on various bulge size ratios, paving the way for a significant reduction in the computational cost of the parameter identification by performing a hybrid numerical and experimental inverse analysis.

Experimental bulge test set-up

All experiments are performed using a 300mm long hollow cylindrical bulging cell shown in Fig. 1. The bulging-cell is clamped to the load-cell of a 500kN capacity universal tensile machine, the piston of which is used to push the fluid towards the specimen, which is deformed plastically. Grooved clamping surfaces are chosen to avoid the use of draw-beads. Bulge diameters ranging from D = 50mm up to D = 200mm are used with a r die = 7mm corner radius. The inner pressure P is measured via a pressure sensor attached to the cell wall. A redundant measurement is performed using the load cell of the universal tensile machine. The outer surface of the bulge is tracked using stereo DIC from which the outer radius of curvature of the bulge ρ out and outer surface displacement and strain field values are obtained. Two digital 5M px cameras equipped with 35mm macro lenses are used, resulting in a pixel size of about 80µm (31µm) in the case of the 200mm diameter die and the 62mm die, respectively.

EXPERIMENTAL BULGE TEST SET-UP

In order to quantify the anisotropy effects, experimental values of the outer radius of curvature and membrane strains are systematically calculated along the rolling and the transverse directions of the sheet. For all the materials and for thickness strain greater than 0.05, the discrepancy in radius of curvature is lower than 1.5%. The four materials tested in this study are a 1.2mm thick and a 1.0mm thick AA2024-T3 aluminum alloy, a 0.8mm thick DP450 dual phase steel (see [START_REF] Grolleau | Loading of mini-nakazima specimens with a dihedral punch: Determining the strain to fracture for plane strain tension through stretch-bending[END_REF]), and a 1.5mm thick DC01 deep drawing steel (see [START_REF] Guzmán | Damage characterization in a ferritic steel sheet: Experimental tests, parameter identification and numerical modeling[END_REF]).

Bending strain measurements are performed using two 5mm grid length high-elongation foil strain gauges glued to the inner and outer surfaces at the center of the bulging area. The inner gauge is connected electrically to the conditioner via specially designed watertight through-hull and enameled wires, while the bounds are insulated electrically using a soft silicone varnish. Post mortem apex thickness and radius of curvature measurements are performed on interrupted tests, after elastic spring-back. A 1µm resolution dial thickness gauge is used for the thickness measurements and a contactless laser scanner mounted on a coordinate measuring machine is used for curvature radius measurements. The accuracy of the latter device is about 25µm when measuring a 50mm diameter calibration sphere, and the acquisition step distance of the cloud acquired is 0.3mm.

DIRECT STRESS AND STRAIN CALCULATION

Direct stress and strain calculation

Standard equations according to ISO 16808:2014 are laid out in Appendix A. From these equations, it is concluded that an accurate stress calculation depends on an accurate evaluation of the pressure, the curvature radius and the thickness. At the same time the strain can be obtained from DIC measurements.

For small bulge diameter to initial thickness ratios, when D/t 0 < 100, the stress and strain begin to be interrelated and can no longer be treated separately, as the thickness is affected by the bending strain. In theses cases, ISO standard recommends checking the relative magnitude of the outer bending 8 strain εbend to surface strains values with the following equation:

εbend ≈ -2 ln 1 - t 0 exp(ε 33 ) 2ρ out (1) = 2 ln ρ out ρ out -t/2 (2)
where ε 33 is the logarithmic Hencky thickness strain, t the actual thickness at apex, and ρ out the outer surface curvature. 

At small values of D t 0 , due to the bending of the specimen, stresses σ ij (τ ) and strains ε ij (τ ) depend on the out-of-plane coordinate τ , see Figs. (2,3) causing the membrane hypothesis to be no longer valid. In line with [START_REF] Mulder | Accurate determination of flow curves using the bulge test with optical measuring systems[END_REF], averaged quantities y av are defined as the average value of the function y(τ ) over the thickness. Assuming an anti-symmetric evolution of the bending strain, the average strain ε av ij can be expressed as a function of the total and bending outer strains:

ε av ij = ε ij -ε bend ij (4)
Taking account for elastic correction presented appendix Appendix B, the 3 DIRECT STRESS AND STRAIN CALCULATION average thickness strain ε av 33 and average thickness plastic strain ε p,av 33 read:

ε av 33 = -(ε 11 + ε 22 ) ε33 + ε bend 11 + ε bend 22 ε bend + 2 1-2ν E σ av B + 1-2ν E σ av 33 Elastic correction
(5)

ε p,av 33 = ε av 33 --2ν E σ av B + 1 E σ av 33 ε e,av 33 (6) 
And the current thickness t at the apex of the bulge reads:

t = t 0 • 1 t τ =+t/2 τ =-t/2 ε 33 (τ )dτ ≈ t 0 • exp(ε av 33 ) (7)
Three terms can be distinguished in Eq.5.

1. ε33 , corresponds to the ISO 16808:2014 standard value of the thickness strain assessed from the in-plane strains as determined on the outer surface in Eq.A.1.

2. ε bend 33 , is the bending strain component. In the context of DIC measurements, this component has to be evaluated on the basis of outer measurements and known material properties.

3. the elastic correction, which is a function of elastic parameters and two stresses, the average bi-axial stress σ av B and the average out-of-plane stress σ av 33 .

The bi-axial stress σ B is generally calculated using Laplace-Young's equilibrium (Eq.8 and Fig. 3) in a 2θ sector of the dome, taking into consideration the bulging pressure P acting on the radius ρ p , and the resulting membrane stress σ B acting on a given radius ρ c . To the best of the authors knowledge, so far in literature, all calculations have been based on the assumption of a single center of curvature for the apex dome, i.e. O in = O avg = O out 3 DIRECT STRESS AND STRAIN CALCULATION (Fig. 2 and3). However various definitions of both radii have already been considered:

-in ISO-16808, the external radius of curvature in eq.A.3 for both radii

ρ c = ρ p = ρ out = ρ(t/2) is used, -Ranta-Eskola (1979) make use of ρ c = ρ p = ρ out -0.6 • t,
-many authors (e.g. [START_REF] Mulder | Accurate determination of flow curves using the bulge test with optical measuring systems[END_REF]; [START_REF] Vucetic | Round robin test on determination of a biaxial true stress -true strain curves from bulge test[END_REF] and [START_REF] Reis | On the determination of the work hardening curve using the bulge test[END_REF]) use a mid-plane radius which is assumed to be ρ c = ρ p = ρ out -t/2 in the context of the SCC hypothesis adopted in Eq.3,

- [START_REF] Vucetic | Numerical validation of analytical biaxial true stress-true strain curves from the bulge test[END_REF] kept this definition for ρ c = ρ out -t/2, and employed a modified pressure balance value ρ p = ρ in = ρ out -t, which was later adopted by [START_REF] Min | Accurate characterization of biaxial stress-strain response of sheet metal from bulge testing[END_REF] and [START_REF] Yoshida | Evaluation of stress and strain measurement accuracy in hydraulic bulge test with the aid of finite-element analysis[END_REF]. For large diameter to thickness ratios D/t 0 > 200, giving a minimum curvature radius of about 100mm, the use of any curvature radius for both ρ c and ρ p leads to negligible discrepancies in the bi-axial stress values. On the contrary, the effect becomes significant for smaller values of D/t 0 < 100, which can lead to curvature radii as small as 50mm. The effect of the radius considered in Eq.8 on the bulge stress value is presented in Fig. 4 as a function of the mid plane curvature radius. The evolution is plotted as the relative difference to the ISO stress value σ B = P ρ out /(2t), in the case of a 1.mm thick sheet specimen. Note that due to the proportional relationship, using a different thickness t ∈ [0.5 : 3mm] would result in a change of the relative difference by factor t. With a single curvature radius, a change from outer radius to mid-plane radius only leads to a small drop in the stress of about 0.5% if the radius of curvature is kept above 100mm (Eq.9 and solid red line in Fig. 4). When decreasing the curvature radius significantly below 100, the discrepancy between the models increases. For example, for a mid plane radius of 25mm the error between the SCC cases varies from 2 to 6% when using mid plane curvature radius and Vucetic equations respectively. However, as already pointed-out by Peters et al.

ρ avg ρ in t/2 -t/2 τ O ρ out Standard hypothesis ρ out -ρ avg = t/2 ρ avg ρ in t/2 -t/2 τ O avg O in O out ρ out Real configuration ρ out -ρ avg > t/2 t ρ p 1 2 3 θ ρ c O σ B t/2 -t/2 τ P Laplace-Young's equilibrium
(2011), the thickness gradient around the bulge apex significantly affects the through thickness evolution of the curvature ρ(τ ), giving different mid-plane radii ρ(0) from the outer radius minus half the thickness ρ(0) = ρ(t/2) -t/2.

In other words, the different curvature radii ρ(τ ) have different centers along the e 3 axis in Fig. 2. This hypothesis motivates the development of a new approach for calculating the curvature radius ρ(τ ) and the identification of the radius of curvature value to be used in Eq.9, which will ensure a more accurate calculation of the average bi-axial stress σ av B .
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Figure 4: Evolution of the relative difference between the bulge stress values, taking the ISO calculation with the outer radius as the reference term σ B = P ρ out /(2t). The thickness is t = 1mm. Red curves, which are labeled SCC, refer to the single center of curvature hypothesis ρ av = ρ out -t/2. Black curves, which are labeled (f (t/t 0 ) = 1), are based on a unit normalized curvature radii difference value, ρ av = ρ out -t.

Numerical model for the bulge-test

The evaluation of the three components of the averaged thickness strain (i.e. the ε bend 33 , bending strain, the average bi-axial stress σ av B and the average out-of-plane stress σ av 33 ) and the radius of curvature is assessed in numerical simulations based on a large range of materials and geometric parameters.

Simulations are performed with the LS-DYNA finite element software using an implicit formulation. Axisymmetric linear elements are used to model the specimen and the rigid die. After a thorough sensitivity analysis, the mesh of the specimen is chosen to be nine elements over the thickness. As described 4 NUMERICAL MODEL FOR THE BULGE-TEST in Fig. 5, the periphery of the specimen is clamped and hydrostatic pressure is applied to its inner surface, with a proportional evolution along ca. 500 time steps. The strains occurring at the summit on the outer and inner surfaces are calculated using the length of the element edge ε 11 = ln l l 0 , while the bending strain is determined using classical methods:

ε bend 11 = 1/2 ε out 11 -ε in 11 (11)
The thickness t is defined as the distance between the outer point and the inner point at the summit. The thickness is assumed to decrease during the test, as expressed by t ≤ t 0 . For practical reasons, the total thickness strain ε t will therefore be calculated as the absolute value of the thickness strain ε t = -ln(t/t 0 ). The stresses are calculated from the elements located along the symmetry axis. (1952) or [START_REF] Voce | The relationship between stress and strain for homogeneous deformation[END_REF] hardening laws: of degree 2 to 8 is used to fit the nodal positions as a function of the radial coordinate x. The curvature radius at the apex, ρ(0), is then calculated using

σ = K • (ε 0 + ε p ) n Swift hardening (12) σ = σ 0 + B • 1 -e -C•
ρ(0) = (1 + (y (0)) 2 )
3 2 /y (0). An alternative method consists of calculating the radius of the circle with its center on the y axis and intersecting the two extrema, the axial point (x = 0) and the last point (x = x M ) on the surface belonging to the given interpolation window. This approach corresponds to the use of a spherometer.

An example of the evolution of the inner (points) and outer (solid lines) radii of curvature, calculated as a function of the interpolation window size

x M , are presented in Fig. 7. Here, a small opening diameter to initial thickness ratio D = 50mm, t 0 = 1mm, D/t 0 = 50, a die radius r die = 7mm and a Swift hardening behavior that mimics the behavior of aluminum alloy (the Alalloy in table 1) at a thickness strain of about 0.3 are chosen. The first point worth noting is that the difference between the inner and outer radii is almost constant irrespective of the method and the size of the interpolation window used. In Fig. 7 the values of the inner radii (points) are shifted vertically by 1.5mm. Irrespective of the window size and the interpolation method used, they match the outer radius curves (solid lines) well. The second point worth noting concerns the evolution of the radius for an increasing window size. The radius diverges for all methods used, with the exception of the polynomial functions of degree 6 or 8. However, the latter function results in instability of 5 NEW BULGE TEST EVALUATION APPROACH the radius, as seen at a window size about 6mm. For this reason a polynomial function of degree 6 is chosen hereafter. A similar evolution is observed for larger diameters and other material behaviors tested. However, the third observation is that the optimal window size depends on the bulge opening diameter D and can also be influenced by the behavior of the material. To address this, a systematic check of the convergence of the method is carried out. Based on the numerical results, a window size x M = D/3 suffices to achieve convergence. Figure 7: Estimated inner (points, shifted vertically by 1.5mm) and outer (solid lines) radii of curvature as a function of the size of the interpolation window in the case of various even polynomial functions of degree 2, 4, 6 (in blue) and 8, and that of a simple circle centered on the y axis and including extreme points. The chosen parameters are E = 75GP a, K = 720M P a, n = 0.16, t 0 = 1mm, D = 50mm, r die = 7mm, ε t = 0.3.

New bulge test evaluation approach

Numerical study of the curvature

From the close to 100 numerical simulation performed, a linear evolution of the curvature radius as a function of the through thickness coordinate is consistently observed. This means that the mid-plane curvature radius ρ(0) 5 NEW BULGE TEST EVALUATION APPROACH corresponds to the average curvature radius ρ av , calculated from:

ρ av = ρ out + ρ in 2 (14) 
A comparison between the FEA average curvature radius ρ av and the standard SCC hypothesis radius (ρ out -t/2) as a function of the total thickness strain is presented in Fig. 8. This example corresponds to the one already used in the previous section 4.1. In this case, the difference between the outer and mid-plane curvature radii of is found to be about twice the standardly assumed value of t/2. Focusing on the evolution of the average curvature radius as a function of the thickness, we study the normalized curvature radii difference f ρ (t/t 0 ), equal to the difference between the outer and mid-plane curvature radii normalized by the thickness:

f ρ (t/t 0 ) = ρ out -ρ av t = ρ out -ρ in 2 • t (15)
The evolution of the function f ρ (t/t 0 ) is presented in Fig. 9 for various bulge diameter to initial sheet thickness ratios D/t 0 , and the same set of material parameters (Al-alloy, see table 1). For small strains, when the thickness ratio t/t 0 ≈ 1., the signal to noise ratio of f ρ (t/t 0 ) is worst. However, as soon as t/t 0 ≤ 0.97 (corresponding to a thickness strain ε t > 0.03), all curves fall together on an almost linear function of the thickness ratio and the mean difference between outer and mid-plane radii is about 0.9 • t. In contrast, the standard single center of curvature hypothesis would result in a constant value of (ρ out -ρ av )/t = 0.5. Figure 9: Results of the numerical simulation: normalized curvature radii difference f ρ as a function of the thickness ratio t/t 0 , with various bulge diameter to initial sheet thickness ratios D/t 0 . Results are obtained in the case of the generic Al. alloy parameters (Al-alloy, see table 1). Common modeling parameters used are E = 75GP a, K = 720M P a, n = 0.16, r die = 7mm.

Figures 10 summarizes the influence of the behavior law parameters on the curvature showing the evolution of the normalized curvature radii difference f ρ (t/t 0 ). In the case of the Swift hardening, the evolution of f ρ is found to be a linear function of the thickness ratio t/t 0 . Figures ( 10a and10c) show that for the Swift law, the only parameter influencing the evolution of f ρ is the 20 5 NEW BULGE TEST EVALUATION APPROACH hardening exponent n. For the Voce law, the only non-influencing parameter is the Young's modulus E and the evolution of f ρ is no longer linear, as shown in figures (10b and 10d). The above findings lead to a search for a linear correlation between the normalized curvature radii difference f ρ and the thickness ratio t/t 0 , with coefficients solely based on the Swift strain hardening parameter n:

ρ av = ρ out -f ρ (n, t/t 0 ) • t (16) f ρ (n, t/t 0 ) = α(n) • t t 0 + β(n) α(n) = -4.20 • n 2 + 4.00 • n -1.40 β(n) = 4.83 • n 2 -4.81 • n + 2.30
In order to identify the two coefficients α(n) and β(n) that define the evolution of the curvature radii through the thickness, for each of the ≈ 50 Swift hardening law simulations, a linear interpolation of f ρ as a function of the thickness ratio t/t 0 (compare Fig. 10) is performed. At any of the four given hardening values n i , the mean value α(n i ) (resp. β(n i )) is then calculated and the results are shown in Fig. 11. A quadratic interpolation function (solid line) is identified for both parameters. Its parameters are given in Eq.16, thereby fully defining f ρ (n, t/t 0 ). To illustrate the resulting interpolation accuracy, the interpolated values of f ρ (n, t/t 0 ) corresponding to 6 different thickness ratios are presented in Fig. 10c with cross points.

Experimental validation of the curvature radius calculation

To validate the numerical results, an experimental campaign is carried out on a 1.mm thick AA2024T3 aluminum alloy and a 0.8mm thick DP450 dual phase steel (see [START_REF] Grolleau | Loading of mini-nakazima specimens with a dihedral punch: Determining the strain to fracture for plane strain tension through stretch-bending[END_REF] for material details) with bulge opening diameter of 50mm and 100mm. The bulge test procedure is described in section 2. Since the current inner surface of the bulged specimen is not available for DIC measurements during the test, the outer and inner curvature radii are measured on a specimen from an interrupted test, after removing the specimen from the bulge device. In order to determine the effect of spring-back on the curvature measurements, a numerical simulation is performed. Herein the application of the linear evolution of the pressure is stopped once the final thickness strain measured in the interrupted experiment is reached. During the spring-back step, the evolution of the FEA normalized curvature radii difference f ρ (t/t 0 ) is measured. It amounts to only 1% to 3% for a D = 50mm bulge diameter, and less than 1% for a D = 100mm bulge diameter. Therefore the effect of the elastic spring-back is neglected in the calculation of the normalized curvature radii difference.

α(n)=-4.2n 2 +4n-1.4 β(n)=4.83n 2 -4.81n+2.3 α n [-] and β n [-] n [-] α(n i ) α(n) β(n i ) β(n)
FEA and experimental values are given in table 3, where the relative error is calculated taking the experimental value as the reference. The measurement accuracy of the coordinate measuring machine presented in section 2 resulted in a confidence threshold of the error of about 2%. It can be seen from this table that the absolute value of the error ranges from 1.4% to 12%.

It should be noted that the latter value is due to the small thickness strain of only about 5%. On the other hand, the use of the SCC hypothesis, which corresponds to a normalized curvature radii difference value of 0.5, leads to significantly larger error values ranging between -47% and -37%. 

Numerical study of the apex bulge stresses

The evaluation of the averaged thickness strain ε av 33 (Eq.7) requires the mean value of two stress quantities to be specified, i.e. the bi-axial stress σ B (or σ xx ) and the out-of-plane stress σ 33 (or σ zz ) .

As previously reported (e.g. see [START_REF] Mulder | Accurate determination of flow curves using the bulge test with optical measuring systems[END_REF]) the out-of-plane stress σ zz (τ ) is found to increase from minus the applied pressure -P , up to zero at the outer free surface of the bulge, resulting in an average value σ av zz = -P/2. Figure 12 shows the evolution of the out-of-plane stress as a function of the through thickness coordinate, ranging from -t/2 at the inner surface up to t/2 at the outer surface. The z-stress is plotted in blue on the second y-axis. For the generic aluminum alloy described in The bi-axial stress σ xx is plotted as solid black line in Fig. 12. Its evolution is almost linear for all simulations. As a consequence, the average bi-axial stress is equal to the mid-plane x-stress σ av B = σ xx (0), and this value is denoted with a short horizontal solid line. This is compared to the results obtained using ρ out , ρ av and ρ in FEA radius values in Eq.9, denoted by dashed lines. For this Al-alloy, and all the tested sets of parameters, the best agreement is obtained using the inner radius of curvature value in Eq.9, resulting in relative errors of 0.45% and 0.16%. The corresponding average bi-axial stress can be expressed using the normalized curvature radii difference and the experimentally measured outer radius of curvature:

σ av B = P • ρ in 2 • t = P • (ρ out -2 • f ρ • t) 2 • t (17)
A similar level of agreement is obtained with a modified version of Eq.10, using the FEA value of the average radius of curvature ρ av = ρ out -f ρ • t 5 NEW BULGE TEST EVALUATION APPROACH instead of using the SCC one ρ SCC av = ρ out -t/2. This assumption yields the new parameters ρ p = (ρ av -f ρ •t-t/2) and ρ c = (ρ out -f ρ •t) in Eq.10. These equations are compared in Fig. 4, assuming a constant value of f ρ = 1.0. It is therefore concluded that Eq.17 or 13) at the corresponding plastic strain ε p,av 33 (Eq.6). Based on the present numerical study, the best estimate of the average von Mises equivalent stress reads:

σ av V M = σ av B + P/2 (18)

Numerical study of the bending strain

Fig. 13 shows the evolution of the bending strain ε bend depending on the thickness strain ε t for various opening diameter to initial thickness ratios D/t 0 . A die radius of r die = 7mm and a Swift hardening that mimics aluminum alloy behavior (Al-alloy table 1) are chosen. The FEA values are indicated with solid lines, and data obtained with the ISO standard with dotted lines. This figure reveals the relative importance of the bending strain in comparison with the thickness strain. Even in the limit case D/t 0 = 100, at a thickness strain of 0.1, the bending strain already amounts to 10 percent of the thickness strain. This means that taking the bending strain into account is highly recommended even at small strain levels when performing small bulge tests with D/t 0 < 100. In addition, standard methods of estimation 5 NEW BULGE TEST EVALUATION APPROACH tend to underestimate the numerical bending strain by 10 to 15%. As shown in Fig. 14a, for a bulge size ratio D/t 0 = 41.7, the Young modulus (E) significantly affects the value of the bending strain when the Swift law is used. This effect is almost identical when a Voce law is used (not presented here). With the Swift law, see Fig. 14b, the yield stress (σ 0 ) has a negligible effect, with the exception of the lowest values σ 0 < 75M P a. 
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Figure 14: Evolution of the bending strain as a function of the thickness strain. Effect of the Young's modulus and elastic limit stress on the bending strain. Common modeling parameters are D = 50mm, t 0 = 1.2mm, r die = 7mm

The influence of the Swift law parameters on the bending strain is shown in Fig. 15 for a Young's modulus value of E = 75GP a. The effect of the plastic modulus K on the bending strain (fig. 15a) is small for a wide range of values of this parameter (500 to 2500 MPa) in comparison with the effect of the Young's modulus. For the smallest value of K = 100M P a, a significant influence on the bending strain can be observed, however this would lead to non-physical yield stress values lower than 60M P a for steels or aluminum alloys. The hardening coefficient n has a relatively small influence on the bending strain, as shown in Fig. 15b, and the bending increases slightly with n by a maximum about 8%. In the case of Voce hardening, the effects of the parameter B and C on the bending strain are negligible compared to the previously observed effect for Swift law. Figure 15: Evolution of the bending strain as function of the thickness strain. Influence of Swift law parameters on the bending strain: plastic modulus (15a) and hardening coefficient (15b). Common modeling parameters used here were E = 75GP a, D = 50mm, t 0 = 1.2mm, r die = 7mm

Novel bending strain calculation

From the numerical study, it is concluded that the Young's modulus E and the geometrical parameters (D and t 0 ) greatly influence the bending strain. For low yield stress materials σ 0 < 75M P a, the Swift hardening law is preferable to the Voce hardening law as the behavioral parameters affect the bending strain less. With regard to subsequently deriving a material and geometry independant master-curve, called the equalized bending strain ε equalized bend , we first introduce a corrected bulge opening diameter D c that accounts for the die fillet radius r die and reads:

D c = Dρ out ρ out + r die ( 19 
)
The effect of the Young's modulus is corrected using a simple linear dependency. Assuming that the minimum outer radius of curvature is ultimately equal to the current bulge opening radius (D c /2), the equation proposed here 29 5 NEW BULGE TEST EVALUATION APPROACH for the equalized bending strain ε equalized bend reads:

ε equalized bend = ε bend • D c t 0 - D c ρ out • E A = a • ln d • Dc+2•ρout 2•Dc ρout Dc + c b (20) 
where A, a, b, c, and d are fitting parameters. Fig. 16 shows the evolution of the equalized bending strain for a selected set of results obtained using the Swift hardening law leading to the largest discrepancies. The solid black line denote the identified master curve. The numerical results (in red) are labeled using the following rule The newly derived bending strain estimate reads:

D[mm] - E[GP a] -σ 0 [M P a] -K[M P a] -n.
ε bend = t 0 D c   
1.116 × ln 1.062 0.5 + ρout Dc ρout Dc -0.320

1.527 + D c ρ out E A    (21) 
The accuracy of the estimate can be seen from Fig. 13, which shows the evolution of the bending strain ε bend as a function of the thickness strain ε t at various values of the bulge ratio D/t 0 . The bending strain error is calculated as:

Error(%) = ε bend -ε F EA bend ε F EA bend • 100 (22)
At a bulge ratio value D/t 0 = 100, the ISO standard Eq.2 results in an average relative error (Eq.22) of 11% with ε 33 ∈ [0, 0.3], while an error of less than 1% is observed with the novel estimate. Similar results can be obtained with a smaller bulge ratio D/t 0 = 41.7. For the smallest bulge size ratio tested, i.e. D/t 0 = 25, the use of the novel estimate gives a relative error value of 9%, whereas the use of the ISO standard gives an error of 32%.

Fig. 17 shows the results from the numerical simulation based on three materials described in the literature for a small bulge ratio D/t 0 = 41.7 (D = 50mm, t 0 = 1.2mm and r die = 7mm). The evolution of the bending strain error from the present estimate is shown in black, while red denotes the ISO estimates. Irrespective of the material, the present estimate gives substantially better predictions of the bending strain than the ISO estimate, provided the thickness strain exceeds 0.05. Since the thickness strain is greater than 0.1, the error committed with the standard equation amounts to more than 10% in terms of the absolute value, and reaches values ranging between 18% and 33%. For thickness strains larger than 0.15, the novel estimate at Figure 17: Error between FEA bending strain value and estimated values obtained using various Swift model parameters (17a) and Voce model parameters (17b) (D/t 0 = 41.7), depending on the thickness strain. The ISO 16808 standard is used here outside the recommended validity range.

Experimental validation of the bending strain estimate

Two different materials are used for the validation of the bending strain estimate: a 1.5mm thick DC01 deep-drawing steel (see [START_REF] Guzmán | Damage characterization in a ferritic steel sheet: Experimental tests, parameter identification and numerical modeling[END_REF]) and a 1.2mm thick AA2024-T3 aluminum alloy (see [START_REF] Grolleau | Loading of mini-nakazima specimens with a dihedral punch: Determining the strain to fracture for plane strain tension through stretch-bending[END_REF]), both of which are bulged through a D = 62.mm opening diameter, giving bulge ratios of D/t 0 = 41.3 and D/t 0 = 51.7, respectively. Prior to bulge test with strain gages, tests are performed using stereo DIC in order to evaluate the anisotropy effects of the sheets on radius of curvature and strains.

For both material, the discrepancy in radius and strain between rolling and transverse direction is lower than 1.5% (2% respectively) for a thickness strain value above 0.05. The test is considered axysimmetric and mean values of outer radius is considered hereafter. The experimental results and the value of the bending strain obtained using the new estimate (Eq.21) are presented 6 APPLICATION OF THE RESULTS AND DISCUSSION in Fig. 18 in terms of the bending strain vs. the thickness strain. The experimental bending strain is calculated using Eq.11 and the two strain gauge measurements performed on the outer and inner surface are plotted in solid black lines. Blue dashed lines relate to the bending strain estimate presented in Eq.21 and the red dotted line, to the ISO 16808 estimate presented in Eq.2.

During these experiments, the outer strain gauge is prone to early debonding, so that the maximum plotted thickness strain reaches about 0.12. After the yielding of the materials, the relative difference between the new estimate bending strain and the experimental values is in the [0 : 3%] range, while the use of the ISO 16808 estimate results in a systematic error of more than than 6%. Figure 18: Bending strain as a function of the thickness strain. Experimental validation of the bending strain estimate for a DC01 steel and an AA2024 aluminum alloy subjected to bulge test.

Application of the results and discussion

An assessment of the new approach is carried out on three different examples, aiming at an accurate identification of the material behavior. The first example focuses on the bending strain estimate and its influence on 6 APPLICATION OF THE RESULTS AND DISCUSSION the thickness approximation, which is crucial for the final stress calculation.

The two last examples illustrate the use of the new approach for a direct identification of the behavior from numerical and experimental results.

Case 1: Here, the accuracy of the bending strain estimate is assessed. To this end, thickness t is calculated from Eqs.(5 and 7). The calculation uses the elastic material properties, the average numerical bi-axial σ F EA B stress value and the numerical out-of-plane σ F EA 33 stress value. This means that the results given in Fig. 19 are independent of the curvature radius estimate.

Figure 19a shows the evolution of the normalized thickness (t/t 0 ) depending on the normalized bulge height (h/D c ) with the same parameters as in section 4.1. As expected, for high D/t 0 > 100 values, the ISO formula (plotted with dots) yields accurate results, but for lower D/t 0 < 100 values, the ISO-based and FEA-based thickness ratio differ significantly. The proposed approach accurately match the FEA irrespective of the bulge size range. The relative error in the thickness is calculated as follows:

Error[%] = t approx -t F EA t F EA × 100 (23)
Figure 19b, the errors in the thickness calculations are plotted as a function of the thickness strain for the same material and various bulge size ratios.

The novel estimate (black) is always more accurate than the standard ISO predictions (red). Thickness calculations based on ISO formulas are sensitive to the value of the bulge ratio. At very low values of D/t 0 the error can reach up to 7%. Even for D/t 0 > 100, the error is higher than 1% which is due to the elastic strain not fully taken into account. For all cases, the new approach maintains an error of less than 0.7% at a maximum thickness strain ε t = 0.3

In Fig.(19c and 19d) Figure 19: Normalized thickness t/t 0 at two values of D/t 0 : FEA thickness value (continuous lines), standard estimate (dotted lines) and present estimate (dashed lines). The modeling parameters used here are E = 75GP a, K = 720M P a, n = 0.16, t 0 = 1mm, r die = 7mm (19a). Error between the FEA thickness value and the estimated values obtained with various geometries (19b), Swift models (19c) and Voce models (19d) (D/t 0 = 41.7). The ISO 16808 standard is used here outside the recommended range of validity.

APPLICATION OF THE RESULTS AND DISCUSSION

Case 2: The second example illustrates the ability to obtain an accurate behavior law identification using the new bending strain and curvature radius estimates from numerical results. Virtual bulge experiments are carried out, from which the nodal positions (u x , u y , y z ) and the pressure P are extracted using six different material behaviors and a small bulge size ratio D/t 0 = 41.7. The corresponding parameters are presented in table 1 andtable 2 for Swift and Voce law, respectively. In order to perform a realistic test of the approach, the true hardening behaviors are kept unknown during the identification process, but elastic parameters are presumably known. To calculate the normalized curvature radii difference f ρ , the inner radius ρ in and the stresses, the hardening parameter n has to be identified. Since the use of a single Swift hardening exponent for the whole test would lead to large discrepancy for non Swift hardening materials, the test duration is divided into N identical intervals. A piecewise identification is performed on each interval, using a quasi-Newton BFGS method with a Swift hardening law.

Following, a number of intervals N = 6, and a stopping tolerance of the identification δ n = 10 -4 are used. The following identification algorithm is employed: 6 APPLICATION OF THE RESULTS AND DISCUSSION the new approach (solid lines) and the ISO method (dashed lines). With the new algorithm, the error remains below 1.1%, while the ISO method results in an increasing error from 4% to 10% throughout the test. The individual contribution of each estimate is detailed in Figs. 20c and20d for AA 6022-TA and 22MnB5 alloys in the case of Voce hardening. Starting from ISO method (dashed red lines) which corresponds to the absence of any curvature or bending correction, the use of the ISO bending eq.2 (red dashed lines with circle points) leads to a slight reduction of the error lower than 1%. Starting from the new approach (solid lines), three different responses are calculated from modified versions of the proposed algorithm, i. without elastic correction (x points), ii. without bending estimate (+ points) and iii. without curvature radius estimate, i.e. assuming Single Center of Curvature hypothesis (* points). Neglecting the elastic correction leads to an almost constant error about 0.5%. Not using the bending estimate increases the error from 2 at test start to 4% at a thickness strain of 0.35, which represents about half the error of the ISO calculation. Finally, neglecting the curvature radius estimate increases the error with the thickness strain. At a thickness strain of 0.35, neglecting the curvature estimate represents about half the error of the ISO calculations. It is noteworthy that the effect is more pronounced, even at low strains, in the case of 22MnB5 due to its lower hardening rate.

Based on these two examples, it seems that bending and curvature radius estimates can have almost the same influence on the final accuracy of the calculated behavior. Case 3: The last example illustrates the use of the new identification method on experimental bulge test data of a 1.2mm thick AA2024T4 aluminum alloy and a 0.8mm thick DP450 dual phase steel. The bulge tests are performed using various bulge diameters, resulting in bulge size ratios from 41.7 to 166.7. The Lankford ratio of DP450 steel (respectively AA2024) are r 0 = 0.85, r 4 5 = 0.92 and r 9 0 = 1.0 (resp. r 0 = 0.66, r 4 5 = 0.97, r 9 0 = 0.55).

APPLICATION OF THE RESULTS AND DISCUSSION

For both materials, the discrepancy in radius between rolling and transverse direction is almost constant, i.e. lower than 1.5% for a thickness strain value above 0.05. When calculating the respective membrane stress along each direction, the discrepancy in stress is lower than 2% since the thickness strain value is above 0.05. The discrepancy in membrane strain evolves in a similar fashion in the case of the AA2024 aluminum alloy. However, for the DP450 steel it decreases from 8% to 2% for a thickness strain increase from 0.05 to 0.4. As far as the proposed analysis relies on equi-biaxial curvatures and membrane stresses, the test is considered axisymmetric and the mean value 7 CONCLUSIONS of the outer radius is considered hereafter. Figures 21a and21b show the identified von Mises stresses as a function of the thickness strain for the new methodolgy (black) and the ISO-analysis (red). For the largest bulge size ratios ( > 100), both approaches yield identical results. When using the largest bulge size ratios as reference, the error in the stress with ISO-analysis reaches approximately 42M P a irrespective of the material. This corresponds to a relative error in the stress of 7% for the AA2024 alloy and 5% for the DP450 steel. In contrast, with the newly developed algorithm, the results are almost independent of the bulge size ratio. All curves fall on top of each other and the discrepancy between the curves and their mean value is only ±0.9%

(maximum value 6M P a) for the AA2024 and ±1.2% (maximum value about 9M P a) for the DP450. It is concluded that when performing bulge tests with D/t 0 < 100, the new evaluation approach reduces the error in stress by a factor of up to 5 in comparison with the use of the ISO equations.

Conclusions

A new approach is developed to directly derive the material behavior from bulge tests at small die opening diameter to initial specimen thickness ratios D/t 0 < 100 using surface stereo DIC measurements. Based on more than 100 axisymmetric numerical simulations of various materials and geometries, and validation experiments, the following conclusions can be drawn:

-the curvature radius versus the through thickness ordinate confirms a linear through thickness evolution, and the centers of the outer, middle and inner surfaces at the apex are not the same, (A.4)

These equations require the bending strains to be negligible in comparison to the membrane strains, which is the case only at high bulge diameter to initial sheet thickness ratios D/t 0 > 100.

Appendix B. Elastic correction of surface strains

In order to determine the thickness and thickness strains accurately based on the isochore plastic strain hypothesis, the elastic part of the strain has to be taken into account. The elastic strain calculated from Hooke's law reads: 

ε e ij ( 

Figure 1 :

 1 Figure 1: View of the bulge test device. From top to bottom, the universal tensile machine's load cell, the set of two cameras, the bulge cell, and the bulging piston placed on top of the tensile machine's piston (a). CAD view of the device showing the bulging cell and the three bars, spacers used to support the load cell (b).

Figure 2 :

 2 Figure 2: Geometrical parameters of the bulge test.

Figure 3 :

 3 Figure3: Local geometries at the apex dome according to the standard hypotheses, the measurements presented in the present work and the one used for the application of Laplace-Young's equilibrium equation.

Figure 5 :

 5 Figure 5: Mesh of the bulge model in a deformed state. The geometry presented here corresponds to a bulge diameter D = 50mm, an initial thickness t 0 = 1.2mm and a die radius r die = 7mm.

  law, K ∈ [100 : 2500]M P a is the plastic modulus, ε 0 ∈ [0.0004 : 0.009] is the elastic limit strain and n ∈ [0.05 : 0.5] is the hardening coefficient. For the Voce law, σ 0 ∈ [50 : 1200]M P a is the yield stress, B = σ sat -σ 0 ∈ [50 : 700]M P a where σ sat is the saturation stress and C ∈ [1 : 250] is the saturation rate. A yield stress σ 0 = E K E 1 1-n can be calculated from the Swift parameters. This range of elastic and hardening parameters gives more than 100 different sets of parameters and covers a wide range of engineering materials, from soft aluminum alloys up to high strength steels. Two sets of parameters are used as examples in the following sections, corresponding to a High-Strength Steel and an Aluminum alloy. Their hardening curves are plotted in Fig.6 in dashed lines, along with the minimum and maximum hardening curves of the parametric study and 6 representative behavioral laws based on the literature. AA-1050-O and AA-6022-T4 (see Yoon et al. (2005)) aluminum alloys are chosen because of their low stress levels. The 22MnB5 steel (see Pack and Marcadet (2016)) has a very high stress level and the Ti6Al4V titanium alloy (see Verleysen and Galan-Lopez (2016)) has a high elastic limit and low hardening rate.

Figure 6 :

 6 Figure 6: Minimum and maximum Swift (black line) and Voce (blue line) hardening curves used in the parametric study. Dashed lines, denoted HS-Steel and Al-alloy, correspond to two typical types of behavior deduced from the batch of parameters. The grey lines gives 6 different behavior laws based on the literature.

Figure 10 :

 10 Figure 10: Results of the numerical simulation: normalized curvature radii difference f ρ versus thickness ratio t/t 0 . Influence of the Swift (a, c) and Voce (b, d) hardening parameters. Figure 10c shows selected values of the identified function f ρ (n, t/t 0 ), plotted with (+) points. Common modeling parameters used are D = 50mm, D/t 0 = 41.7, r die = 7mm.

Figure 11 :

 11 Figure 11: Evolution of the linear interpolation parameters of the normalized curvature radii difference f ρ as function of Swift hardening exponent n.

Figure 12 :

 12 Figure 12: Through thickness evolution of the stress in the case of (a) D = 50mm and (b) D = 100mm bulge diameter. The modeling parameters used in both cases were E = 75GP a, K = 720M P a, n = 0.16, t 0 = 1mm, r die = 7mm.

  gives an accurate estimate of the average bulge stress σ av B . Assuming isotropic J2-plasticity material behavior and the equi-biaxial stress state, the von Mises equivalent stress σ = |σ xx -σ zz | can be calculated: it is plotted as solid red line in Fig.12. The average von Mises equivalent stress is obviously equal to the average bi-axial stress minus the average out-of-plane stress σ av V M = (σ av B -σ av 33 ). It is worth noting that the average von Mises equivalent stress σ av V M differs only by few tenth of percent from the theoretical stress calculated using the hardening law (equations 12

Figure 13 :

 13 Figure13: Evolution of the bending strain at the summit of the bulge: FEA value (continuous lines), values based on standard methods (dotted lines) and the present estimate (dashed lines). Modeling parameters used E = 75GP a, K = 720M P a, n = 0.16, t 0 = 1.2mm, r die = 7mm.

Figure 16 :

 16 Figure 16: Equalized bending strain as a function of the geometrical ratio ρ out /D c in the case of various parameter sets D[mm] -E[GP a] -σ 0 [M P a] -K[M P a] -n[-]

  The fitting parameters are identified from the whole set of numerical simulations, resulting in the following set of parameters A = 2000GP a, a = 1.116, b = 1.527, c = -0.320 and d = 1.062. 30 5 NEW BULGE TEST EVALUATION APPROACH

Figure 20 :Figure 21 :

 2021 Figure20: Evolution of the error in the von Mises equivalent stress depending on the thickness strain, based on numerical results in the case of Swift and Voce hardening (a and b). Effect of the use of the ISO bending correction on ISO results, and the non use of each of the proposed estimates on the results of the new approach in the case of the 6022-T4 Al. alloy and the 22MnB5 steel with a Voce hardening (c and d). The ISO 16808 standard is used here outside the recommended validity range, except when D/t 0 > 100.

-

  a new set of estimates is proposed, comprising a curvature radius, a bending strain and a Laplace-Young equation at the inner radius. Estimates are function of the elastic parameters and the initial thicknessAPPENDIX B ELASTIC CORRECTION OF SURFACE STRAINSIn order to calculate the plastic strain, the membrane elastic strain is calculated using Hooke's law and subtracted from the previous membrane strains. The thickness plastic strain reads εp 33 = -ε 11 -ε 22 +

  where E is the Young's modulus and ν is the Poisson's ratio. During the equi-biaxial bulge test of an isotropic material, the in-plane stresses and strains are balanced at the apex, giving σ 11 = σ 22 = σ B and ε 11 = ε 22 (σ 12 = σ 23 = σ 13 = 0 and ε 12 = ε 23 = ε 13 = 0). The application of Eq.1+νE σ B (τ ) -ν E (2σ B (τ ) + σ 33 (τ )) = 1-ν E σ B (τ ) -ν E σ 33 (τ ) ε e 33 (τ ) = 1+ν E σ 33 (τ ) -ν E (2σ B (τ ) + σ 33 (τ )) = 1 E σ 33 (τ ) -2ν E σ B (τ ) (B.2)

Table 1 :

 1 Swift law parameters

	Material	E [GPa]	ε 0 [-]	K [MPa] n [-]
	AA-1050-O	72.	0.0005	132	0.285
	Ti6Al4V	114.	0.0085	1563.	0.179
	22MnB5	210.	0.000037	2458	0.117
	Al-alloy	75.	0.002	720.	0.16
	HS-steel	210.	0.007	2500.	0.1

Table 2 :

 2 Voce law parameters 

	Material	E [GPa] σ 0 [MPa] B [MPa] C [-]
	AA-6022-T4	72.	162.	234.	6.75
	Ti6Al4V	114.	1008.	389.	4.75
	22MnB5	210.	921.	662.	208.

Table 3 :

 3 Experimental and FEA evaluation of the normalized curvature radii difference (ρ out -ρ in )/2t in the case of AA2024 aluminum alloy and DP450 steel using D = 50 and D = 100 bulge diameters.

	ρ exp out -ρ exp in 2•t exp	error

D [mm] t [mm] ρ out [mm] ρ in [mm] f ρ (n, t/t 0 )

table 1

 1 

	, all stress

  , the errors in the thickness calculations are shown

	6 APPLICATION OF THE RESULTS AND DISCUSSION
	for three engineering materials described in the literature which are approx-
	imated by a Swift or a Voce hardening, see tables 1 and 2. For all cases, the
	new approach maintains an error of less than 1.5% at a maximum thickness
	strain ε t = 0.35, while the ISO standard gives errors that rapidly exceed 3%
	in all cases presented in figures 19c and 19d.
		1.05 1		FEA Present approx.	
		0.95			ISO	
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The results of the behavior law identification are presented in Figs. 20a and20b for Swift and Voce hardening, respectively. The error in the von Mises equivalent stress is shown as a function of the thickness strain for APPENDIX A STANDARD EQUATIONS ACCORDING TO ISO 16808:2014 of the sheet, the bulge geometrical parameters, and the measured outer radius of curvature, outer strains and the bulging pressure, -an algorithm is proposed in order to extend the applicability of the previous estimates to any type of hardening, -the newly-proposed method leads to an accurate estimation of the biaxial behavior for bulge size ratio as small as 42, and recovers the standard results of ISO 16808:2014 for large bulge size ratios above 100. 

Appendix