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Abstract

In 2015, M. Canadell and R. de la Llave consider a time-dependent per-
turbation of a vector field having an invariant torus supporting quasiperiodic
solutions. Under a smallness assumption on the perturbation and assum-
ing the perturbation decays (when t → +∞) exponentially fast in time,
they proved the existence of motions converging in time (when t→ +∞) to
quasiperiodic solutions associated with the unperturbed system (asymptot-
ically quasiperiodic solutions).

In this paper, we generalize this result in the particular case of time-
dependent Hamiltonian systems. The exponential decay in time is relaxed
(due to the geometrical properties of Hamiltonian systems) and the small-
ness assumption on the perturbation is removed.

1 Introduction

The Kolmogorov-Arnold-Moser (KAM) theory [Kol54, Arn63, Mos62] shows the
persistence of quasiperiodic solutions in nearly integrable Hamiltonian systems.
This theory is interesting, especially for the applications in classical problems
in Celestial Mechanics, such as the n-body problem. This work analyses non-
autonomous perturbations of Hamiltonians having an invariant torus supporting
quasiperiodic solutions. We assume that the perturbation satisfies good decay
properties when t → +∞. In this case, we are not looking for quasiperiodic
solutions but different types of orbits converging in time (when t → +∞) to
quasiperiodic solutions.

To be more precise, let us introduce the definition of analytic asymptotic KAM
torus. Let B ⊂ Rn be a ball centred at the origin and P equal to Tn × B or Tn.
Moreover, for a given υ ≥ 0, we introduce the following interval Jυ = [υ,+∞) ⊂ R.
We consider time-dependent real analytic vector fields X t and X t

0 on P , for all
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t ∈ Jυ, and a real analytic embedding ϕ0 from Tn to P such that

lim
t→+∞

|X t −X t
0|s = 0, (1.1)

X0(ϕ0(q), t) = ∂qϕ0(q)ω for all (q, t) ∈ Tn × Jυ, (1.2)

where ω ∈ Rn and | · |s is the analytic norm (see Appendix B). For the sake of
clarity, we specify that ∂qϕ0(q)ω is the element of R2n having j component equal
to (

∂qϕ0(q)ω
)
j

= ∂qϕ0,j(q) · ω,

for all j = 1, ..., 2n where ϕ0 = (ϕ0,1, ..., ϕ0,2n). In words, we are considering a
time-dependent vector field X t converging in time to a vector field X t

0 having an
invariant torus supporting quasiperiodic dynamics with frequency vector ω.

Definition 1.1. We assume that (X,X0, ϕ0) satisfy (1.1) and (1.2). A family
of real analytic embeddings ϕt : Tn → P is an analytic asymptotic KAM torus
associated to (X,X0, ϕ0) if there exist 0 < s′ ≤ s and υ′ ≥ υ ≥ 0 such that

lim
t→+∞

|ϕt − ϕ0|s′ = 0,

X(ϕ(q, t), t) = ∂qϕ(q, t)ω + ∂tϕ(q, t),

for all (q, t) ∈ Tn × Jυ′. When P is a symplectic manifold with dimP = 2n, then
we say that ϕt is Lagrangian if ϕt(Tn) is Lagrangian for all t ∈ Jυ′.

Roughly speaking, an analytic asymptotic KAM torus is a family of embeddings
ϕt converging in time to the invariant torus ϕ0 associated with X0. Moreover, the
dynamics on this family of embeddings converge to the quasiperiodic solutions
associated with X0 on ϕ0. The previous definition is due to M. Canadell and R. de
la Llave (see [CdlL15]). In their paper, they use the expression non-autonomous
KAM torus. We prefer analytic asymptotic KAM torus to point out the asymptotic
properties of this family of embeddings. Hence, the following definition is quite
natural

Definition 1.2. We assume that (X,X0, ϕ0) satisfy (1.1) and (1.2). An integral
curve g(t) of X is an asymptotically quasiperiodic solution associated to (X,X0, ϕ0)
if there exists q ∈ Tn in such a way that

lim
t→+∞

|g(t)− ϕ0(q + ω(t− t0))| = 0.

It is straightforward to see that if there exists an analytic asymptotic KAM
torus associated to (X,X0, ϕ0), then we have the existence of asymptotically
quasiperiodic solutions associated to (X,X0, ϕ0). We refer to Section 3 for a more
detailed explanation and a series of remarks about the previous definitions always
due to M. Canadell and R. de la Llave.

The first result about the existence of an analytic asymptotic KAM torus asso-
ciated with a suitable time-dependent Hamiltonian is due to A. Fortunati and S.
Wiggins [FW14]. They consider a real analytic time-dependent Hamiltonian H t as
the sum between an integrable Hamiltonian h plus a time-dependent perturbation
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f t. They assume h to be non-degenerate and the perturbation decays exponen-
tially fast in time (|f t|s →t→+∞ 0). Suppose the perturbation is sufficiently small.
Then, for each invariant torus associated with h supporting quasiperiodic dynam-
ics with a diophantine frequency vector, they prove the existence of an analytic
asymptotic KAM torus associated to (XH , Xh, ϕ0). For clarity, XH and Xh are
the Hamiltonian systems associated with the Hamiltonians H and h.

About one year later, M. Canadell and R. De la Llave [CdlL15] publish a result
which generalises the one of Fortunati-Wiggins. In this paper, they work with
finitely differentiable time-dependent vector fields. For this reason, let us introduce
the definition of Cσ-asymptotic KAM torus, which is the finitely differentiable
version of Definition 1.1.

Given σ ≥ 0 and a positive integer k ≥ 0, we consider time-dependent vector
fields X t and X t

0 of class Cσ+k on P , for all t ∈ Jυ, and an embedding ϕ0 from Tn
to P of class Cσ such that

lim
t→+∞

|X t −X t
0|Cσ+k = 0, (1.3)

X0(ϕ0(q), t) = ∂qϕ0(q)ω for all (q, t) ∈ Tn × Jυ, (1.4)

where ω ∈ Rn, Cσ is the space of the Hölder functions and | · |Cσ is the Hölder
norm (see Appendix A).

Definition 1.3. We assume that (X,X0, ϕ0) satisfy (3.1) and (3.2). A family
of Cσ embeddings ϕt : Tn → P is a Cσ-asymptotic KAM torus associated to
(X,X0, ϕ0) if there exists υ′ ≥ υ ≥ 0 such that

lim
t→+∞

|ϕt − ϕ0|Cσ = 0,

X(ϕ(q, t), t) = ∂qϕ(q, t)ω + ∂tϕ(q, t),

for all (q, t) ∈ Tn × Jυ′. When P is a symplectic manifold with dimP = 2n, then
we say that ϕt is Lagrangian if ϕt(Tn) is Lagrangian for all t.

In the work of Canadell-de la Llave, P is a smooth manifold. They consider
a time-dependent vector field X t converging exponentially fast in time to an au-
tonomous vector field X0 having an invariant torus ϕ0 supporting quasiperiodic
solutions of frequency vector ω ∈ Rn. They do not assume any non-degeneracy
hypothesis on X0 or arithmetic conditions on the frequency vector ω. On the
other hand, they need to assume a certain control on the normal dynamics on the
invariant torus ϕ0. Then, they prove the existence of a Cσ-asymptotic KAM torus
associated to (X,X0, ϕ0).

In this paper, we generalize the previous result in the particular case of finitely
differentiable (or real analytic) Hamiltonian systems. We consider a time-dependent
Hamiltonian as a time-dependent perturbation of a Hamiltonian having a La-
grangian invariant torus supporting quasiperiodic solutions. The exponential de-
cay in time is replaced by a more general condition (verified for a suitable polyno-
mial decay in time) and the smallness assumption on the perturbation is removed.
Under these hypotheses, we prove the existence of a Cσ-asymptotic KAM torus
(or an analytic asymptotic KAM torus).
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The advantage of working with Hamiltonian systems is that the normal dynam-
ics to the Lagrangian invariant torus associated with the unperturbed system are
easy to control. This allows us to relax the hypothesis of exponential decay in time.
Concerning the smallness condition over the perturbation, we approach the prob-
lem from another point of view. We study our system for all time t large enough so
that the perturbative terms are sufficiently small and we find the existence of an
analytic (or Cσ) asymptotic KAM torus defined for all t large. Therefore, we will
see that if we prove the existence of an analytic (or Cσ) asymptotic KAM torus
defined for all t large, then we can extend the set of definition for all t (see Section
3). The following section contains the main results of this work. But, first, just a
few remarks.

At this point, it seems reasonable to wonder when we have the existence of bi-
asymptotically quasiperiodic solutions. That is, orbits converging to quasiperiodic
dynamics of a specific frequency vector ω+ ∈ Rn in the future (t → +∞) and to
quasiperiodic dynamics of frequency vector ω− ∈ Rn in the past (t → −∞). It is
the subject of another work [Sca22a].

The interest in these kinds of perturbations is not artificial. These types of
systems would be interesting in astronomy. In a further paper [Sca22b], we study
the example of a planetary system perturbed by a comet coming from and going
back to infinity, asymptotically along a hyperbolic Keplerian orbit.

2 Results

This section is divided into two subsections. This is because we prove the same
results in the finitely differentiable and analytical case. We look at time-dependent
perturbations of suitable time-dependent Hamiltonians and constant vector fields
on the torus. We recall that B ⊂ Rn is a ball around the origin and, for given
υ ≥ 0, we have the following interval Jυ = [υ,+∞) ⊂ R. In this work, we consider
time-dependent Hamiltonians of the form

H : Tn ×B × J0 → R, H(q, p, t) = h(q, p, t) + f(q, p, t),

where h is in the ω-Kolmogorov normal form, with ω ∈ Rn. This means that, for
all (q, t) ∈ Tn × J0

h(q, 0, t) = c, ∂ph(q, 0, t) = ω,

for some c ∈ R. Letting ϕ0 be the following trivial embedding ϕ0 : Tn → Tn × B
with ϕ0(q) = (q, 0), then ϕ0 is a Lagrangian invariant torus for Xh supporting
quasiperiodic dynamics with frequency vector ω. We define Kω as the set of the
Hamiltonians h : Tn ×B × J0 → R in the ω-Kolmogorov normal form.

On the other hand, we consider time-dependent vector fields on the torus Z in
such a way that

Z : Tn × J0 → Rn, Z(q, t) = ω + P (q, t)

with ω ∈ Rn.

4



We introduce the following notation, which we will use in the rest of this work.
For every functions f defined on Tn × B × Jυ and for fixed t ∈ Jυ, let f t be the
function defined on Tn ×B such that

f t(q, p) = f(q, p, t)

for all (q, p) ∈ Tn ×B. In addition, for fixed p ∈ B, let fp be the function defined
on Tn × Jυ such that

fp(q, t) = f(q, p, t)

for all (q, t) ∈ Tn × Jυ. In accordance with the above notations, for fixed (p, t) ∈
B × Jυ, f tp is the function defined on Tn such that

f tp(q) = f(q, p, t)

for all q ∈ Tn.

2.1 Finitely Differentiable case

Here, we are interested in Hölder’s classes of functions Cσ. We refer to Appendix A
for a very brief introduction. More specifically, in order to quantify the regularity of
smooth functions, we introduce the following space. Given positive real parameters
σ ≥ 0 and υ ≥ 0, we have the following definition

Definition 2.1. Let Sυσ be the space of functions f defined on Tn × B × Jυ such
that f ∈ C(Tn ×B × Jυ) and, for all t ∈ Jυ, f t ∈ Cσ(Tn ×B).

We use this notation also for functions defined on Tn×Jυ, this will be specified
by the context. Furthermore, for a positive integer k ≥ 0, we have the following
space of functions

Definition 2.2. Let S̄υσ,k be the space of functions f such that

f ∈ Sυσ+k and ∂i(q,p)f ∈ Sυσ+k−i

for all 0 ≤ i ≤ k.

In the above definition, ∂i(q,p) stands for the partial derivatives of order i with

respect to the variables q and p. Conventionally f = ∂0(q,p)f . In other words,

f ∈ S̄υσ,k if f ∈ Sυσ+k and ∂i(q,p)f ∈ C(Tn × B × Jυ) for all 0 ≤ i ≤ k. That is,

f t ∈ Cσ+k(Tn × B) for all t ∈ Jυ and the partial derivatives of f with respect
to (q, p) are continuous until the order k. It is straightforward to verify that
S̄υσ,0 = Sυσ .

In order to measure the decay in time of the perturbations, we introduce posi-
tive, decreasing, integrable functions u on J0 and we denote

ū(t) =

∫ +∞

t

u(τ)dτ

for all t ∈ J0.
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Now, we have everything we need to state the following theorem. Given ω ∈ Rn

and σ ≥ 1, we consider a time-dependent Hamiltonian H of the form

H : Tn ×B × J0 −→ R
H(q, p, t) = h(q, p, t) + f(q, p, t),

h ∈ Kω
f0, (∂pf)0 , ∂

2
pH ∈ S̄0

σ,2

sup
t∈J0
|f t0|Cσ+2 <∞, sup

t∈J0
|∂2pH t|Cσ+2 <∞,

| (∂qf)t0 |Cσ+1 ≤ a(t), | (∂pf)t0 |Cσ+2 ≤ b(t) for all t ∈ J0,

(∗A)

where a, b are positive, decreasing, integrable functions on J0.
We assume that there exists υ ≥ 0, such that a and b satisfy the following

conditions {
ā(t) ≤ Λb(t)

ā(t)b(t) ≤ Λa(t)b̄(t)
(#)

for all t ∈ Jυ and a suitable constant Λ.

Theorem A. Let H be as in (∗A) with a and b satisfying (#). Then, there exist
h̃ ∈ Kω and a Lagrangian Cσ-asymptotic KAM torus ϕt associated to (XH , Xh̃, ϕ0).

We begin with two examples of functions a and b satisfying (#). First, we
consider the case of exponential decay. Let a and b be the following functions

a(t) = e−λ1t, b(t) = e−λ2t,

for some positive parameters λ1 ≥ λ2 > 0. It is straightforward to see that (#) is
verified for all t ∈ J0 and Λ ≥ max{λ2

λ1
, 1
λ1
}.

The following example is more interesting than the previous one. It is about
polynomial decay. We consider

a(t) =
1

tl+1
, b(t) =

1

tl
,

for a positive real parameter l > 1. This couple of functions satisfy (#) for all
t ∈ J1 with Λ = 1.

The previous theorem proves the existence of a Cσ-asymptotic KAM torus ϕt

of the form

ϕt(q) = (q + ut(q), vt(q))

for all q ∈ Tn and t sufficiently large, where id+ut is a diffeomorphism of the torus
for all fixed t. Furthermore, we also obtain some information about the decay in
time of u and v. More specifically

|ut|Cσ ≤ Cb̄(t), |vt|Cσ ≤ Cā(t),

for all t large enough and for a suitable constant C.
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Concerning time-dependent perturbations of constant vector fields on the torus,
given σ ≥ 1 and ω ∈ Rn, we consider the following time-dependent vector field

Z : Tn × J0 −→ Rn

Z(q, t) = ω + P (q, t)

P ∈ S̄0
σ,1,

|P t|Cσ+1 ≤ P(t) for all t ∈ J0,

(ZA)

where P is a positive, decreasing, integrable function on J0.

Corollary A. Let Z be as in (ZA). Then, there exists a Cσ-asymptotic KAM
torus ψt associated to (Z, ω, Id).

We observe that if P is not integrable on J0, then, in general, it does not exist
a Cσ-asymptotic KAM torus associated to (Z, ω, Id). Let Ẑ be a time-dependent
vector field on T1 × J0 of the form

Ẑ(q, t) = ω + P̂ (t),

where ω ∈ R and P̂ (t) > 0 for all t > 0. We assume that∫ +∞

t0

P̂ (τ)dτ = +∞,

for all t0 ≥ 0. Let ψt
t0,Ẑ

be the flow at time t with initial time t0 of Ẑ. Then, for

all q ∈ Tn and t > 0

ψt0+t
t0,Ẑ

(q) = q + ωt+

∫ t0+t

t0

P̂ (τ)dτ

and hence, for all q ∈ Tn∣∣∣ψt0+t
t0,Ẑ

(q)− q − ωt
∣∣∣ =

∫ t0+t

t0

P̂ (τ)dτ.

Therefore, taking the limit for t→ +∞, the right-hand side of the latter diverges
to +∞. This means that does not exist an asymptotic quasiperiodic solution asso-
ciated to (Ẑ, ω, Id) and thus does not exist a Cσ-asymptotic KAM torus associated
to (Ẑ, ω, Id) (we refer to Proposition 3.4).

2.2 Real analytic case

As mentioned above, we state the real analytic version of the previous results. For
some s > 0, we define complex domains

Tns = {q ∈ Cn/Zn : | Im(q)| ≤ s}, Bs = {p ∈ Cn : |p| ≤ s},

and, given υ ≥ 0, we introduce the following space of functions.

7



Definition 2.3. Let Aυs be the space of the functions f defined on Tns × Bs × Jυ
such that f ∈ C(Tns ×Bs × Jυ) and, for all t ∈ Jυ, f t is real analytic on Tns ×Bs.

We refer to the same notation for maps defined on Tns × Jυ. For all k ∈ Z2n

with |k| ≥ 1, we let
∂k(q,p) = ∂k1q1 ...∂

kn
qn ∂

kn+1
p1

...∂k2npn

where |k| = |k1| + ... + |k2n|. The following proposition concerns an important
property of each f ∈ Aυs that we will widely use in the rest of this work.

Proposition 2.1. Let f ∈ Aυs , then, for all k ∈ Z2n with |k| ≥ 1, ∂k(q,p)f ∈ Aυs′ for
all 0 < s′ < s.

Proof. For all t ∈ Jυ, ∂k(q,p)f t is real analytic on Tns ×Bs and hence on Tns′×Bs′ . It

remains to prove that ∂k(q,p)f ∈ C(Tns′ × Bs′ × Jυ). For all (q1, p1, t1), (q1, p1, t1) ∈
Tns′ ×Bs′ × Jυ, by Cauchy’s inequality

|∂k(q,p)f(q1, p1, t1)− ∂k(q,p)f(q2, p2, t2)| ≤ |∂k(q,p)f(q1, p1, t1)− ∂k(q,p)f(q1, p1, t2)|
+ |∂k(q,p)f(q1, p1, t2)− ∂k(q,p)f(q2, p2, t2)|

≤ k1!...k2n!

(s− s′)|k|
|f t1 − f t2 |s

+
∣∣∂k(q,p)f t2(q1, p1)− ∂k(q,p)f t2(q2, p2)∣∣

and hence, by the continuity of f with respect to t and the continuity of ∂k(q,p)f

with respect to (q, p), we have the claim.

Given ω ∈ Rn and a positive real parameter s0 > 0, we consider the following
time-dependent Hamiltonian H

H : Tn ×B × J0 −→ R
H(q, p, t) = h(q, p, t) + f(q, p, t),

h ∈ Kω
h, f ∈ A0

s0

supt∈J0 |f
t
0|s0 <∞, supt∈J0 |∂

2
pH

t|s0 <∞
| (∂qf)t0 |s0 ≤ a(t), | (∂pf)t0 |s0 ≤ b(t), for all t ∈ J0

(∗B)

where a, b are positive, decreasing, integrable functions on J0.

Theorem B. Let H be as in (∗B) with a and b satisfying (#). Then, there
exist h̃ ∈ Kω and a Lagrangian analytic asymptotic KAM torus ϕt associated to
(XH , Xh̃, ϕ0).

Similarly to Theorem A, we prove the existence of an analytic asymptotic KAM
torus ϕt of the form

ϕt(q) = (q + ut(q), vt(q))

for all q ∈ Tn and t sufficiently large, where id + ut is a diffeomorphism of the
torus for all fixed t. Furthermore, for a suitable constant C

|ut| s
4
≤ Cb̄(t), |vt| s

4
≤ Cā(t),
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for all t large enough. The proof of this theorem is essentially the same as that of
Theorem A with suitable minor modifications.

Also in this case, we prove an analogous result regarding real analytic time-
dependent perturbations of constant vector fields on the torus. Let Z be a non-
autonomous vector field on Tn × J0 of the form

Z : Tn × J0 −→ Rn,

Z(q, t) = ω + P (q, t)

P ∈ A0
s0
,

|P t|s0 ≤ P(t) for all t ∈ J0

(ZB)

where ω ∈ Rn and 0 < s0 < 1. We assume that P is a positive, decreasing,
integrable function on J0.

Corollary B. Let Z be as in (ZB). Then, there exists an analytic asymptotic
KAM torus ψt associated to (Z, ω, Id).

Proof. The proof is a straightforward application of Theorem B. We consider the
Hamiltonian H defined on Tn ×B × J0 of the form

H(q, p, t) = ω · p+ P (q, t) · p.

The latter satisfies the hypotheses of Theorem B. Then, there exist h̃ ∈ Kω and
an analytic asymptotic KAM torus ϕt associated to (XH , Xh̃, ϕ0), where ϕ0 is the
trivial embedding previously introduced. Moreover, ϕt = (id + ut, vt) and, for all
fixed t, id + ut is a diffeomorphism of the torus. This concludes the proof of this
theorem with ψt = id + ut.

We point out that the previous argument does not work for Corollary A without
asking P ∈ S̄0

σ,2, hence a more regular perturbation. For this reason, the proof of
Corollary A is given in Section 5.

3 Asymptotic KAM tori

We recall the definition of Cσ-asymptotic KAM torus. Let P be equal to Tn × B
or Tn. Given σ ≥ 0 and a positive integer k ≥ 0, we consider time-dependent
vector fields X t and X t

0 of class Cσ+k on P , for all t ∈ Jυ, and an embedding ϕ0

from Tn to P of class Cσ such that

lim
t→+∞

|X t −X t
0|Cσ+k = 0, (3.1)

X0(ϕ0(q), t) = ∂qϕ0(q)ω for all (q, t) ∈ Tn × Jυ, (3.2)

with ω ∈ Rn.

Definition (Definition 1.3). We assume that (X,X0, ϕ0) satisfy (3.1) and (3.2).
A family of Cσ embeddings ϕt : Tn → P is a Cσ-asymptotic KAM torus associated
to (X,X0, ϕ0) if there exists υ′ ≥ υ ≥ 0 such that

lim
t→+∞

|ϕt − ϕ0|Cσ = 0, (3.3)

X(ϕ(q, t), t) = ∂qϕ(q, t)ω + ∂tϕ(q, t), (3.4)

9



for all (q, t) ∈ Tn × Jυ′. When P is a symplectic manifold with dimP = 2n, then
we say that ϕt is Lagrangian if ϕt(Tn) is Lagrangian for all t.

In what follows, we analyze a series of properties of Cσ-asymptotic KAM tori.
Similar results are obviously true in the case of analytic asymptotic KAM tori.

We observe that we can rewrite (3.4) in terms of the flow of X. In fact, let
ψtt0,X be the flow at time t with initial time t0 of X and ψtt0,ω(q) = q + ω(t − t0)
for all q ∈ Tn and t, t0 ∈ Jυ′ .

Proposition 3.1. If the flow ψtt0,X is defined for all t, t0 ∈ Jυ′, then (3.4) is
equivalent to

ψtt0,X ◦ ϕ
t0(q) = ϕt ◦ ψtt0,ω(q), (3.5)

for all t, t0 ∈ Jυ′ and q ∈ Tn.

Proof. In this proof, we denote the time dependence by indexes. We assume (3.4)
and we prove (3.5). For fixed t0, let ϕ−t0 be the inverse map of ϕt0 . It suffices to
show that ψtt0,X and ϕt ◦ ψtt0,ω ◦ ϕ

−t0 verify the same differential equation. For all
x ∈ ϕt0(Tn)

d

dt

(
ϕt ◦ ψtt0,ω ◦ ϕ

−t0(x)
)

= ∂qϕ
t
(
ψtt0,ω

(
ϕ−t0(x)

))
ψ̇tt0,ω

(
ϕ−t0(x)

)
+ ∂tϕ

t
(
ψtt0,ω

(
ϕ−t0(x)

))
= ∂qϕ

t
(
ψtt0,ω

(
ϕ−t0(x)

))
ω + ∂tϕ

t
(
ψtt0,ω

(
ϕ−t0(x)

))
= X t ◦ ϕt ◦ ψtt0,ω ◦ ϕ

−t0(x),

where ψ̇tt0,ω stands for the derivative with respect to t of ψtt0,ω, it is obviously equal
to ω. The last equality is a consequence of (3.4). This concludes the first part of
the proof.

Now, we assume (3.5) and we prove (3.4). We fix t0 ∈ Jυ′ , for all t ∈ Jυ′ and
x ∈ ϕt0(Tn)

d

dt

(
ϕt ◦ ψtt0,ω ◦ ϕ

−t0(x)
)

= ψ̇tt0,X(x) = X t ◦ ψtt0,X(x) = X t ◦ ϕt ◦ ψtt0,ω ◦ ϕ
−t0(x).

On the other hand, by the chain rule

d

dt

(
ϕt ◦ ψtt0,ω ◦ ϕ

−t0(x)
)

= ∂qϕ
t
(
ψtt0,ω

(
ϕ−t0(x)

))
ω + ∂tϕ

t
(
ψtt0,ω

(
ϕ−t0(x)

))
.

We know that ϕt0 is an embedding, then there exists q ∈ Tn such that ϕt0(q) = x.
Thanks to the above equations

X t ◦ ϕt ◦ ψtt0,ω(q) = ∂qϕ
t
(
ψtt0,ω(q)

)
ω + ∂tϕ

t
(
ψtt0,ω(q)

)
for all q ∈ Tn and for all t ∈ Jυ′ . Letting t = t0 we have the claim.

By the latter, it is straightforward to see that (3.4) is trivial.

Proposition 3.2. If ψtt0,X is defined for all t, t0 ∈ Jυ′, it is always possible to find
a family of embeddings satisfying (3.4)
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Proof. Let ϕ̂ : Tn → P be an embedding then, for all t, t0 ∈ Jυ′ and q ∈ Tn, we
consider

ϕt(q) = ψtt0,X ◦ ϕ̂(q − ω(t− t0)).

The latter is a family of embeddings satisfying (3.5). Indeed, by the above defi-
nition of ϕt we have that ϕt0(q) = ϕ̂(q) for all q ∈ Tn. Then, by construction, ϕt

satisfies (3.5) and thus (3.4).

Another important consequence of (3.5) is the following.

Proposition 3.3. We assume that ψtt0,X is defined for all t, t0 ∈ R. If there exists
a Cσ-asymptotic KAM torus ϕt defined for all t ≥ υ′, then we can extend the set
of definition for all t ∈ R.

Proof. For all q ∈ Tn, we consider

φt(q) =

{
ϕt(q) for all t ≥ υ′

ψtυ′,X ◦ ϕυ
′
(q − ω(t− υ′)) for all t ≤ υ′.

(3.6)

This is a family of embeddings which verify (3.3) and (3.4).

Unfortunately, we can not deduce any asymptotic information for the family
of embeddings (3.6) when t→ −∞.

Now, concerning the dynamics associated to a Cσ-asymptotic KAM torus, we
recall the definition of asymptotically quasiperiodic solution and discuss some prop-
erties of these motions.

Definition (Definition 1.2). We assume that (X,X0, ϕ0) satisfy (1.1) and (1.2).
An integral curve g(t) of X is an asymptotically quasiperiodic solution associated
to (X,X0, ϕ0) if there exists q ∈ Tn in such a way that

lim
t→+∞

|g(t)− ϕ0(q + ω(t− t0))| = 0.

The following proposition proves that if ϕt is a Cσ-asymptotic KAM torus asso-
ciated to (X,X0, ϕ0), then each initial point ϕt0(q) gives rise to an asymptotically
quasiperiodic solution associated to (X,X0, ϕ0).

Proposition 3.4. Let ϕt be a Cσ-asymptotic KAM torus associated to (X,X0, ϕ0).
Then, for all q ∈ Tn and t0 ∈ Jυ,

g(t) = ψtt0,X ◦ ϕ
t0(q)

is an asymptotically quasiperiodic solution associated to (X,X0, ϕ0).

Proof. Thanks to (3.5)

g(t) = ψtt0,X ◦ ϕ
t0(q) = ϕt(q + ω(t− t0))

and hence, by (3.3), we have the claim.

11



We conclude this section with an important property concerning the case when
X and X0 are Hamiltonian vector fields. Let P = Tn×B and we assume ϕt to be
a Cσ-asymptotic KAM torus associated to (X,X0, ϕ0). In the particular case of
Hamiltonian systems, if the autonomous KAM torus ϕ0 is Lagrangian, then ϕt is
Lagrangian for all t. M.Canadell and R. de la Llave prove it in the discrete case.
Here, we prove it in the continuous case.

Proposition 3.5. Let ϕt be a Cσ-asymptotic KAM torus associated to (X,X0, ϕ0).
If ϕ0 is Lagrangian, then ϕt is Lagrangian for all t ∈ Jυ′.

Proof. Let α = dp ∧ dq be the standard symplectic form on Tn × B. For all fixed
t, t0 ∈ Jυ′ , the map ψtt0,X is a symplectomorphism. This means that (ψtt0,X)∗α = α
for all fixed t, t0 ∈ Jυ′ . By (3.5), for all t0 ∈ Jυ′ and t ≥ 0

ψt0+tt0,X
◦ ϕt0 = ϕt0+t ◦ ψt0+tt0,ω (3.7)

and, taking the pull-back with respect to the standard form α on both sides of the
latter, we obtain

(ϕt0)∗(ψt0+tt0,X
)∗α = (ψt0+tt0,ω )∗(ϕt0+t)∗α.

We know that ψt0+tt0,X
is symplectic then, replacing (ψt0+tt0,X

)∗α = α on the left hand
side of the above equation, we have

(ϕt0)∗α = (ψt0+tt0,ω )∗(ϕt0+t)∗α.

We want to prove that ((ϕt0)∗α)q = 0 for all q ∈ Tn, where ((ϕt0)∗α)q stands for
the symplectic form calculated on q ∈ Tn. The idea consists in verifying that,
for all fixed q ∈ Tn, the limit when t → +∞ on the right-hand side of the above
equation converges to zero. Then, taking the limit for t → +∞ on both sides of
the latter, we have the claim.

We introduce the following notation

ϕt(q) = (U t(q), V t(q)), ϕ0(q) = (U0(q), V0(q))

for suitable families of functions U t, V t : Tn → Rn and U0, V0 : Tn → Rn. One
can see that, for all q ∈ Tn(

(ψt0+tt0,ω )∗(ϕt0+t)∗α
)
q

=
∑

1≤i<j≤n

αt0+tij (q)dqi ∧ dqj,

where for all 1 ≤ i < j ≤ n

αt0+ti,j (q) =
(
∂qiV

t0+t · ∂qjU t0+t − ∂qjV t0+t · ∂qiU t0+t
)
◦ ψt0+tt0,ω (q).

We observe that, for all q ∈ Tn and for all fixed 1 ≤ i < j ≤ n

∂qiV0(q) · ∂qjU0(q)− ∂qjV0(q) · ∂qiU0(q) = 0

because ϕ0 is Lagrangian. Then,∣∣αt0+ti,j

∣∣
C0 ≤

∣∣∂qiV t0+t · ∂qjU t0+t − ∂qjV t0+t · ∂qiU t0+t
∣∣
C0

=
∣∣(∂qiV t0+t · ∂qjU t0+t − ∂qjV t0+t · ∂qiU t0+t

)
−
(
∂qiV0 · ∂qjU0 − ∂qjV0 · ∂qiU0

)∣∣
C0

≤
∣∣∂qiV t0+t · ∂qjU t0+t − ∂qiV0 · ∂qjU0

∣∣
C0 +

∣∣∂qjV t0+t · ∂qiU t0+t − ∂qjV0 · ∂qiU0

∣∣
C0 ,
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and we can estimate each term in the last line of the latter by∣∣V t0+t
∣∣
C1

∣∣U t0+t − U0

∣∣
C1 + |U0|C1

∣∣V t0+t − V0
∣∣
C1

multiplied by a suitable constant C. This concludes the proof of this proposition
because, by (3.3), the latter converges to 0 if t→ +∞.

4 Proof of Theorem A

This section is devoted to the proof of Theorem A. To this end, we expand the
Hamiltonian H in (∗A) in a small neighbourhood of 0 ∈ B,

h(q, p, t) = h(q, 0, t) + ∂ph(q, 0, t) · p+

∫ 1

0

(1− τ)∂2ph(q, τp, t)dτ · p2

f(q, p, t) = f(q, 0, t) + ∂pf(q, 0, t) · p+

∫ 1

0

(1− τ)∂2pf(q, τp, t)dτ · p2,

we can assume without loss of generality that h(q, 0, t) = 0 for all (q, t) ∈ Tn× J0.
Letting

ω = ∂ph(q, 0, t)

a(q, t) = f(q, 0, t)

b(q, t) = ∂pf(q, 0, t)

m(q, p, t) =

∫ 1

0

(1− τ)
(
∂2ph(q, τp, t) + ∂2pf(q, τp, t)

)
dτ

=

∫ 1

0

(1− τ)∂2pH(q, τp, t)dτ,

for a positive real parameter Υ ≥ 1, we can rewrite the Hamiltonian H in the
following form

H : Tn ×B × J0 −→ R
H(q, p, t) = ω · p+ a(q, t) + b(q, t) · p+m(q, p, t) · p2,
a, b, ∂2pH ∈ S̄0

σ,2,

supt∈J0 |a
t|Cσ+2 <∞, supt∈J0 |∂

2
pH

t|Cσ+2 ≤ Υ,

|∂qat|Cσ+1 ≤ a(t), |bt|Cσ+2 ≤ b(t), for all t ∈ J0

(∗∗A)

where a(t) and b(t) are the functions introduced in (∗A) satisfying (#). This
Hamiltonian is our new starting point. Furthermore, let h̃ be the following Hamil-
tonian

h̃(q, p, t) = h(q, p, t) +

∫ 1

0

(1− τ)∂2pf(q, τp, t)dτ · p2

for all (q, p, t) ∈ Tn×B×J0. Obviously h̃ ∈ Kω. Moreover, XH and Xh̃ verify (3.1).
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4.1 Outline of the Proof of Theorem A

We are looking for a Cσ-asymptotic KAM torus ϕt associated to (XH , Xh̃, ϕ0),
where H is the Hamiltonian in (∗∗A), h̃ is the Hamiltonian previously defined and
ϕ0 is the trivial embedding ϕ0 : Tn → Tn × B, ϕ0(q) = (q, 0). More specifically,
for given H, we are searching for υ′ ≥ 0 sufficiently large and suitable functions u,
v : Tn × Jυ′ → Rn such that

ϕ(q, t) = (q + u(q, t), v(q, t))

and in such a way that ϕ, u and v satisfy the following conditions

XH(ϕ(q, t), t)− ∂qϕ(q, t)ω − ∂tϕ(q, t) = 0, (4.1)

lim
t→+∞

|ut|Cσ = 0, lim
t→+∞

|vt|Cσ = 0, (4.2)

for all (q, t) ∈ Tn×Jυ′ . The parameter υ′ is free and it will be chosen large enough
in Lemma 4.3 below.

The proof rests on the implicit function theorem. To this end, we need to
introduce a suitable functional F given by (4.1). We consider

m̄(q, p, t)p =

(∫ 1

0

∂2pH(q, τp, t)dτ

)
p = ∂p

(
m(q, p, t) · p2

)
.

This is well defined because

∂p

(
m(q, p, t) · p2

)
= ∂p

(∫ 1

0

(1− τ)∂2pH(q, τp, t)dτ · p2
)

= ∂p

(∫ 1

0

(p− ξ)∂2pH(q, ξ, t)dξ

)
=

∫ 1

0

∂2pH(q, ξ, t)dξ =

(∫ 1

0

∂2pH(q, τp, t)dτ

)
p,

where the second equality of the latter is due to the change of variables ξ = τp.
Going back to the definition of the functional F , we observe that the Hamiltonian
system associated to the Hamiltonian H is equal to

XH(q, p, t) =

(
ω + b(q, t) + m̄(q, p, t)p

−∂qa(q, t)− ∂qb(q, t)p− ∂qm(q, p, t)p2

)
,

where we recall that H is the Hamiltonian defined by (∗∗A). We introduce

ϕ̃(q, t) = (q + u(q, t), v(q, t), t), ũ(q, t) = (q + u(q, t), t),

for all (q, t) ∈ Tn × Jυ′ . Composing the Hamiltonian system XH with ϕ̃, we can
write XH ◦ ϕ̃ in the following form

XH ◦ ϕ̃(q, t) =

(
ω + b ◦ ũ(q, t) + m̄ ◦ ϕ̃(q, t)v(q, t)

−∂qa ◦ ũ(q, t)− ∂qb ◦ ũ(q, t)v(q, t)− ∂qm ◦ ϕ̃(q, t) · v(q, t)2

)
14



for all (q, t) ∈ Tn × Jυ′ and moreover

∂qϕ(q, t)ω + ∂tϕ(q, t) =

(
ω + ∂qu(q, t)ω + ∂tu(q, t)
∂qv(q, t)ω + ∂tv(q, t)

)
for all (q, t) ∈ Tn × Jυ′ . We define

∇u(q, t)Ω = ∂qu(q, t)ω + ∂tu(q, t), ∇v(q, t)Ω = ∂qv(q, t)ω + ∂tv(q, t)

for all (q, t) ∈ Tn × Jυ′ . Then, we can rewrite (4.1) in the following form(
b ◦ ũ+ (m̄ ◦ ϕ̃) v − (∇u) Ω

−∂qa ◦ ũ− (∂qb ◦ ũ) v − (∂qm ◦ ϕ̃) · v2 − (∇v) Ω

)
=

(
0
0

)
. (4.3)

This is composed of sums and products of functions defined on (q, t) ∈ Tn × Jυ′ ,
we have omitted the arguments (q, t) in order to achieve a more elegant form. We
keep this notation for the rest of this proof. Over suitable Banach spaces, that we
will specify later, let F be the following functional

F(a, b,m, m̄, u, v) = (F1(b, m̄, u, v), F2(a, b,m, u, v))

with

F1(b, m̄, u, v) = b ◦ ũ+ (m̄ ◦ ϕ̃) v − (∇u) Ω,

F2(a, b,m, u, v) = ∂qa ◦ ũ+ (∂qb ◦ ũ) v + (∂qm ◦ ϕ̃) · v2 + (∇v) Ω.

The latter is obtained by (4.3) and we observe that for all m and m̄,

F(0, 0,m, m̄, 0, 0) = 0.

We can reformulate our problem in the following form. For fixed m and m̄ in a
suitable Banach space and for (a, b) sufficiently close to (0, 0), we are looking for
some functions u, v in such a way that F(a, b,m, m̄, u, v) = 0 and the asymptotic
conditions (4.2) are satisfied.

Concerning the associated linearized problem, the differential of F with respect
to the variables (u, v) calculated on (0, 0,m, m̄, 0, 0) is equal to

D(u,v)F(0, 0,m, m̄, 0, 0)(û, v̂) = (m̄0v̂ − (∇û) Ω, (∇v̂) Ω)

where, in according to the notation previously introduced, for all (q, t) ∈ Tn × Jυ′
we let m̄0(q, t) = m̄(q, 0, t).

The proof of this theorem is a straightforward application of the implicit func-
tion theorem if we assume the following norm

sup
t∈J0
|at|Cσ+2 + sup

t∈J0

|∂qat|Cσ+1

a(t)
, sup

t∈J0

|bt|Cσ+2

b(t)
,

to be sufficiently small. To avoid this smallness assumption, we study the problem
from another point of view. We are looking for a Cσ-asymptotic KAM torus
defined for t sufficiently large in such a way

|∂qat|Cσ+1 , |∂qbt|Cσ+1
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are sufficiently small. It suffices for proving the existence of functions (u, v) satis-
fying (4.1) and (4.2).

The following four sections are devoted to the proof of Theorem A. In the first,
we introduce suitable Banach spaces on which the previous functional is defined.
The second is dedicated to solving the homological equation, which is the main
tool to prove that D(u,v)F(0, 0,m, m̄, 0, 0) is invertible. In the penultimate section,
we verify that F is well-defined and satisfies the hypotheses of the implicit function
theorem. Finally, the last section concludes the proof of this theorem.

4.2 Preliminary Settings

Given positive real parameters σ ≥ 0, υ ≥ 0 and a positive integer k ≥ 0, we recall
that Sυσ and S̄υσ,k are respectively the spaces of functions defined by Definition 2.1
and Definition 2.2. We introduce the following norm that we will widely use in the
rest of this section. For every f ∈ Sυσ and for a positive real function u(t) defined
on Jυ, we define

|f |υσ,u = sup
t∈Jυ

|f t|Cσ
u(t)

. (4.4)

Furthermore, we recall that for all positive, decreasing, integrable functions u on
Jυ, we let ū be

ū(t) =

∫ +∞

t

u(τ)dτ

for all t ∈ Jυ.
Now, let σ ≥ 1, υ ≥ 0 and Υ ≥ 1 be the positive parameters introduced

in (∗∗A) and (#). For υ′ ≥ υ ≥ 0 that will be chosen later, we consider the
following Banach spaces (A, | · |), (B, | · |), (U , | · |), (V , | · |), (Z, | · |) and (G, | · |)
(see Appendix C)

A =
{
a : Tn × Jυ′ → R | a ∈ S̄υ′σ,2 and |a| = |a|υ′σ+2,1 + |∂qa|υ

′

σ+1,a <∞
}

B =
{
b : Tn × Jυ′ → Rn | b ∈ S̄υ′σ,2, and |b| = |b|υ′σ+2,b <∞

}
U =

{
u : Tn × Jυ′ → Rn | u, (∇u) Ω ∈ Sυ′σ

and |u| = max{|u|υ′σ,b̄, | (∇u) Ω|υ′σ,b} <∞
}

V =
{
v : Tn × Jυ′ → Rn | v, (∇v) Ω ∈ Sυ′σ

and |v| = max{|v|υ′σ,ā, | (∇v) Ω|υ′σ,a} <∞
}

Z =
{
z : Tn × Jυ′ → Rn | z ∈ Sυ′σ , and |z| = |z|υ′σ,b <∞

}
G =

{
g : Tn × Jυ′ → R | g ∈ Sυ′σ and |g| = |g|υ′σ,a <∞

}

where, in the definition of A, the norm |a|υ′σ+2,1 = supt∈Jυ′ |a
t|Cσ+2 . This means

that 1 stands for the function identically equal to 1 for all t ∈ Jυ′ . Let Mn be the
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set of the n-dimensional matrices. We introduce another Banach space (M, | · |)
in such a way that

M =
{
m : Tn ×B × Jυ′ →Mn |m ∈ S̄υ

′

σ,2 and |m| = |m|υ′σ+2,1 ≤ Υ
}

where Υ is the positive parameter in (∗∗A). Now, we have everything we need to
define more precisely the functional F introduced in the previous section. Let F
be the following functional

F : A× B ×M×M×U × V −→ Z × G

F(a, b,m, m̄, u, v) = (F1(b, m̄, u, v), F2(a, b,m, u, v))

with

F1(b, m̄, u, v) = b ◦ ũ+ (m̄ ◦ ϕ̃) v − (∇u) Ω,

F2(a, b,m, u, v) = ∂qa ◦ ũ+ (∂qb ◦ ũ) v + (∂qm ◦ ϕ̃) · v2 + (∇v) Ω.

4.3 Homological Equation

Given σ ≥ 0, υ ≥ 0 and ω ∈ Rn, in this section, we solve the following equation
for the unknown κ : Tn × Jυ → R{

ω · ∂qκ(q, t) + ∂tκ(q, t) = g(q, t),

g ∈ Sυσ |g|υσ,g <∞,
(HEA)

where g(t) is a positive, decreasing, integrable function on Jυ and g : Tn×Jυ → R
is given.

Lemma 4.1 (Homological Equation). There exists a unique solution κ ∈ Sυσ
of (HEA) such that

lim
t→+∞

|κt|C0 = 0. (4.5)

Moreover,
|κ|υσ,ḡ ≤ |g|υσ,g.

Proof. Existence: Let us define the following transformation

h : Tn × Jυ → Tn × Jυ, h(q, t) = (q − ωt, t),

which is the key to solving the homological equation.
We claim that it is enough to prove the first part of this lemma for the much

simpler equation
∂tκ = g(q + ωt, t). (4.6)

As a matter of fact, if κ is a solution of the latter satisfying the asymptotic con-
dition (4.5), then χ = κ ◦ h is a solution of (HEA) satisfying the same asymptotic
condition and viceversa. For the sake of clarity, we prove this claim. Let κ be a
solution of (HEA) verifying the asymptotic condition (4.5), then

∂t(κ ◦ h−1) = ∂qκ ◦ h−1 · ω + ∂tκ ◦ h−1 = g ◦ h−1,

17



where the last equality is due to (HEA). This implies that κ = κ◦h−1 is a solution
of (4.6) and by

|κt|C0 = |
(
κ ◦ h−1

)t |C0 ≤ |κt|C0

κ = κ ◦ h−1 satisfies the asymptotic condition because κ does. Viceversa, let κ be
a solution of (4.6) satisfying the asymptotic condition (4.5), then

∂q(κ ◦ h) · ω + ∂t(κ ◦ h) = ∂qκ ◦ h · ω − ∂qκ ◦ h · ω + ∂tκ ◦ h = g.

By (4.6), we have the last equality of the latter. Hence, κ◦h is a solution of (HEA).
Moreover, thanks to

|κt|C0 = | (κ ◦ h)t |C0 ≤ |κt|C0

κ = κ ◦ h satisfies the asymptotic condition (4.5). This proves the claim.
For all q ∈ Tn a solution of (4.6) exists and

κ(q, t) = e(q) +

∫ t

υ

g(q + ωτ, τ)dτ

with a function e defined on the torus. We have to choose e in such a way that κ
satisfies the following asymptotic condition for all fixed q ∈ Tn

0 = lim
t→+∞

κ(q, t) = e(q) +

∫ +∞

υ

g(q + ωτ, τ)dτ.

There is only one possible choice for e, and that is

e(q) = −
∫ +∞

υ

g(q + ωτ, τ)dτ.

This implies that

κ(q, t) = −
∫ +∞

t

g(q + ωτ, τ)dτ

is the solution of (4.6) we are looking for. Therefore, e is well defined, indeed∣∣∣∣∫ +∞

υ

g(q + ωτ, τ)dτ

∣∣∣∣ ≤ |g|υσ,g ∫ +∞

υ

g(τ)dτ = |g|υσ,gḡ(υ) <∞.

Moreover,

|κt|C0 ≤
∫ +∞

t

|gτ |C0dτ ≤ |g|υσ,g
∫ +∞

t

g(τ)dτ = |g|υσ,gḡ(t),

since ḡ(t) converges to 0 when t → +∞, taking the limit for t → +∞ on both
sides of the latter, we have that |κt|C0 → 0 when t → +∞. This concludes the
first part of the proof because

κ(q, t) = κ ◦ h(q, t) = −
∫ +∞

t

g(q + ω(τ − t), τ)dτ

is the unique solution of (HEA) verifying (4.5) that we are looking for.
Regularity and Estimates : We observe that g ∈ Sυσ implies κ ∈ Sυσ and hence

κ = κ ◦ h ∈ Sυσ . Moreover, for all fixed t ∈ Jυ
|κt|Cσ ≤ |g|υσ,gḡ(t).

Multiplying both sides of the latter by 1
ḡ(t)

and taking the sup for all t ∈ Jυ, we
prove the second part of this lemma.
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4.4 Regularity of F
We recall the definition of the functional F ,

F : A× B ×M×M×U × V −→ Z × G

F(a, b,m, m̄, u, v) = (F1(b, m̄, u, v), F2(a, b,m, u, v))

with

F1(b, m̄, u, v) = b ◦ ũ+ (m̄ ◦ ϕ̃) v − (∇u) Ω,

F2(a, b,m, u, v) = ∂qa ◦ ũ+ (∂qb ◦ ũ) v + (∂qm ◦ ϕ̃) · v2 + (∇v) Ω.

Here, we verify that F satisfies the hypotheses of the implicit function theorem.
Using the properties in Proposition A.2 (see Appendix A) and (#), one can prove
that F is well defined, continuous and differentiable with respect to the variables
(u, v). Let D(u,v)F be the differential of F with respect to (u, v), we have that

D(u,v)F1(b, m̄, u, v)(û, v̂) = DuF1(b, m̄, u, v)û+DvF1(b, m̄, u, v)v̂

= (∂qb ◦ ũ) û+ vT (∂qm̄ ◦ ϕ̃) û+ vT (∂pm̄ ◦ ϕ̃) v̂

+ (m̄ ◦ ϕ̃) v̂ − (∇û) Ω (4.7)

D(u,v)F2(a, b,m, u, v)(û, v̂) = DuF2(a, b,m, u, v)û+DvF2(a, b,m, u, v)v̂

=
(
∂2qa ◦ ũ

)
û+ vT

(
∂2q b ◦ ũ

)
û+ (vT )2

(
∂2qm ◦ ϕ̃

)
û

+ (∂qb ◦ ũ) v̂ + (vT )2
(
∂2pqm ◦ ϕ̃

)
v̂ + 2vT (∂qm ◦ ϕ̃) v̂

+ (∇v̂) Ω, (4.8)

where T stands for the transpose of a vector and Du, Dv are respectively the
differentials with respect to u and v. Furthermore, one can show that D(u,v)F is
continuous. Now, we observe that this differential calculated on (0, 0,m, m̄, 0, 0)
is equal to

D(u,v)F(0, 0,m, m̄, 0, 0)(û, v̂) = (m̄0v̂ − (∇û) Ω, (∇v̂) Ω). (4.9)

In the following lemma, we verify that the latter is invertible for all fixed m,
m̄ ∈M. First, to avoid a flow of constants, let C(·) be constants depending on n
and the other parameters in brackets. On the other hand, C stands for constants
depending only on n.

Lemma 4.2. For all (z, g) ∈ Z ×G there exists a unique (û, v̂) ∈ U ×V such that

D(u,v)F(0, 0,m, m̄, 0, 0)(û, v̂) = (z, g).

Moreover, there exists a suitable constant C̄ such that

|û| ≤ C̄ΥΛ|g|υ′σ,a + |z|υ′σ,b, |v̂| ≤ |g|υ′σ,a, (4.10)

where we recall that |û| = max{|û|υ′
σ,b̄
, | (∇û) Ω|υ′σ,b} and |v̂| = max{|v̂|υ′σ,ā, | (∇v̂) Ω|υ′σ,a}.

Furthermore, Λ is the constant in (#) and Υ is defined in (∗∗A).
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Proof. The proof of this lemma rests on Lemma 4.1. Indeed, thanks to (4.9), we
can reformulate the problem in the following form. Given (z, g) ∈ Z × G, we are
looking for the unique solution (û, v̂) ∈ U × V of the following system{

(∇û) Ω = m̄0v̂ − z
(∇v̂) Ω = g.

(4.11)

By Lemma 4.1, the unique solution v̂ of the last equation of the latter system
exists and satisfies

|v̂|υ′σ,ā ≤ |g|υ
′

σ,a.

Moreover, by | (∇v̂) Ω|υ′σ,a = |g|υ′σ,a, we have the second estimate in (4.10)

|v̂| = max{|v̂|υ′σ,ā, | (∇v̂) Ω|υ′σ,a} ≤ |g|υ
′

σ,a. (4.12)

Now, it remains to solve the first equation of (4.11) where v̂ is known. For all fixed
t ∈ Jυ′ and thanks to property 2. of Proposition A.2, the first condition of (#)
and (4.12)

|(m̄0v̂ − z)t|Cσ
b(t)

≤ CΥ
|v̂t|Cσ
b(t)

+
|zt|Cσ
b(t)

≤ CΥΛ
|v̂t|Cσ
ā(t)

+
|zt|Cσ
b(t)

≤ CΥΛ|v̂|υ′σ,ā + |z|υ′σ,b ≤ CΥΛ|g|υ′σ,a + |z|υ′σ,b,

for a suitable constant C. Taking the sup for all t ∈ Jυ′ on the left-hand side of
the latter, we obtain

|m̄0v̂ − z|υ
′

σ,b ≤ CΥΛ|g|υ′σ,a + |z|υ′σ,b

and hence
| (∇û) Ω|υ′σ,b = |m̄0v̂ − z|υ

′

σ,b ≤ CΥΛ|g|υ′σ,a + |z|υ′σ,b.

Thanks to Lemma 4.1 the unique solution û of the first equation of (4.11) exists
verifying

|û|υ′σ,b̄ ≤ |m̄0v̂ − z|υ
′

σ,b(t) ≤ CΥΛ|g|υ′σ,a + |z|υ′σ,b.

This concludes the proof of this lemma with C̄ = C because

|û| = max{|û|υ′σ,b̄, | (∇û) Ω|υ′σ,b} ≤ CΥΛ|g|υ′σ,a + |z|υ′σ,b.

4.5 Cσ-asymptotic KAM torus

In the previous section, we proved that the functional F satisfies the hypotheses
of the implicit function theorem. Here, we prove the existence of a Cσ-asymptotic
KAM torus associated to (XH , Xh̃, ϕ0) and we conclude the proof of Theorem A.

Let x = (a, b), where a and b are those defined by (∗∗A). Obviously (a, b) ∈
A× B and

|∂qa|υ
′

σ+1,a ≤ 1, |b|υ′σ+2,b ≤ 1. (4.13)
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We introduce the Banach space (Y , |·|) where Y = U×V and, for all y = (u, v) ∈ Y ,
|y| = max{|u|, |v|}. Let m, m̄ ∈M be as in (∗∗A) and we consider

F(x,m, m̄, y) = D(u,v)F(0, 0,m, m̄, 0, 0)y +R(x,m, m̄, y).

The aim is to find y ∈ Y in such a way that

F(x,m, m̄, y) = 0,

where we recall that we have fixed x, m and m̄. This is equivalent to find y ∈ Y
such that

y = −D(u,v)F(0, 0,m, m̄, 0, 0)−1R(x,m, m̄, y)

= y −D(u,v)F(0, 0,m, m̄, 0, 0)−1F(x,m, m̄, y).

This is well defined because we have already proved that D(u,v)F(0, 0,m, m̄, 0, 0)
is invertible (see Lemma 4.2). To this end, we introduce the following functional

L(x,m, m̄, ·) : Y −→ Y

in such a way that

L(x,m, m̄, y) = y −D(u,v)F(0, 0,m, m̄, 0, 0)−1F(x,m, m̄, y). (L)

This is well defined and, by the regularity of F , we deduce that L is continuous,
differentiable with respect to y = (u, v) with differential DyL continuous. The
proof is reduced to find a fixed point of the latter. For this purpose, we introduce
the following lemma.

Lemma 4.3. There exists υ′ large enough with respect to n, σ, Υ, Λ and b, such
that, for all y∗,y ∈ Y with |y∗| ≤ 1,

|DyL(x,m, m̄, y∗)y| ≤
1

2
|y|. (4.14)

Proof. The proof relies on Lemma 4.2. By (L), for all y∗,y ∈ Y

DyL(x,m, m̄, y∗)y

= D(u,v)F(0, 0,m, m̄, 0, 0)−1
(
D(u,v)F(0, 0,m, m̄, 0, 0)−D(u,v)F(x,m, m̄, y∗)

)
y.

We can reformulate this problem in terms of estimating the unique solution ŷ =
(û, v̂) ∈ Y of the following system

D(u,v)F(0, 0,m, m̄, 0, 0)ŷ =
(
D(u,v)F(0, 0,m, m̄, 0, 0)−D(u,v)F(x,m, m̄, y∗)

)
y. (4.15)

Therefore, it suffices to estimate the right-hand side of the latter and apply Lemma
4.2. First, let us introduce the following notation. We observe that y∗ = (u∗, v∗) ∈
Y and, for all (q, t) ∈ Tn × Jυ′ , we let

ũ∗(q, t) = (q + u∗(q, t), t), ϕ̃∗(q, t) = (q + u∗(q, t), v∗(q, t), t).
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Thanks to (4.9), the right-hand side of (4.15) is equal to

(
D(u,v)F(0, 0,m, m̄, 0, 0)−D(u,v)F(x,m, m̄, y∗)

)
y =

(
m̄0v − (∇u) Ω−D(u,v)F1(b, m̄, y∗)y

(∇v) Ω−D(u,v)F2(x,m, y∗)y

)

where, by (4.7) and (4.8),

m̄0v − (∇u) Ω−D(u,v)F1(b, m̄, y∗)y = (m̄0 − m̄ ◦ ϕ̃∗) v − (∂qb ◦ ũ∗)u
− vT∗ (∂qm̄ ◦ ϕ̃∗)u− vT∗ (∂pm̄ ◦ ϕ̃∗) v

(∇v) Ω−D(u,v)F2(x,m, y∗)y = −
(
∂2qa ◦ ũ∗

)
u− vT∗

(
∂2q b ◦ ũ∗

)
u

− (vT∗ )2
(
∂2qm ◦ ϕ̃∗

)
u− (∂qb ◦ ũ∗) v

− (vT∗ )2
(
∂2pqm ◦ ϕ̃∗

)
v − 2vT∗ (∂qm ◦ ϕ̃∗) v.

Thanks to property 2. of Proposition A.2, we can estimate the first member on
the left-hand side of the latter as follows∣∣∣(m̄0v − (∇u) Ω−D(u,v)F1(b, m̄, y∗)y

)t∣∣∣
Cσ
≤ C(σ)

( ∣∣∣(m̄t
0 − m̄ ◦ ϕ̃∗

)t∣∣∣
Cσ

∣∣vt∣∣
Cσ

+
∣∣(∂qb ◦ ũ∗)t∣∣Cσ ∣∣ut∣∣Cσ

+ |vt∗|Cσ
∣∣(∂qm̄ ◦ ϕ̃∗)t∣∣Cσ |ut|Cσ

+ |vt∗|Cσ
∣∣(∂pm̄ ◦ ϕ̃∗)t∣∣Cσ |vt|Cσ)

for all t ∈ Jυ′ . We point out that |y∗| = max{|u∗|, |v∗|} ≤ 1. Hence, we have
to find an upper bound for each member on the right-hand side of the previous
inequality. For all t ∈ Jυ′

∣∣(m̄0 − m̄ ◦ ϕ̃∗)t
∣∣
Cσ
|vt|Cσ ≤ C(σ)

(
|∂qm̄t(id + τu∗, τv∗)u

t
∗|Cσ

+ |∂pm̄t(id + τu∗, τv∗)v
t
∗|Cσ

)
|vt|Cσ

≤ C(σ)Υ
(
1 + b̄(υ′) + ā(υ′)

)
|ut∗|Cσ |vt|Cσ

+ C(σ)Υ
(
1 + b̄(υ′) + ā(υ′)

)
|vt∗|Cσ |vt|Cσ

≤ C(σ)Υ
(
|u∗|b̄(t) + |v∗|ā(t)

)
|v|ā(t)

≤ C(σ)ΥΛb̄(υ′)|y|b(t) + C(σ)ΥΛ2b(υ′)|y|b(t)

The first line of the latter is a consequence of the mean value theorem for a suitable
τ ∈ [0, 1]. Concerning the second inequality, it is due to properties 2. and 5. of
Proposition A.2. Moreover, we use also that, thanks to (#) and for υ′ large enough,
we may assume b̄(υ′) ≤ 1 and ā(υ′) ≤ Λb(υ′) ≤ 1. In the penultimate line on
the right-hand side of the previous inequalities, we apply the following estimate
1 + b̄(υ′) + ā(υ′) ≤ 3 for all t ∈ Jυ′ . In the last line, we use the first condition
in (#).

Similarly to the previous case, thanks to property 5. of Proposition A.2, the
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first condition in (#), (4.13) and b̄(υ′) ≤ 1, ā(υ′) ≤ 1, we obtain∣∣(∂qb ◦ ũ∗)t∣∣Cσ ∣∣ut∣∣Cσ ≤ C(σ)|b|υ′σ+2,bb(t)
(
1 + b̄(υ′)

)
|u|b̄(t)

≤ C(σ)b̄(υ′)|y|b(t)

|vt∗|Cσ
∣∣(∂qm̄ ◦ ϕ̃∗)t∣∣Cσ |ut|Cσ ≤ C(σ)|v∗|ā(t)Υ

(
1 + b̄(υ′) + ā(υ′)

)
|u|b̄(t)

≤ C(σ)ΥΛb̄(υ′)|y|b(t)

|vt∗|Cσ
∣∣(∂pm̄ ◦ ϕ̃∗)t∣∣Cσ |vt|Cσ ≤ C(σ)|v∗|ā(t)Υ

(
1 + b̄(υ′) + ā(υ′)

)
|v|ā(t)

≤ C(σ)ΥΛ2b(υ′)|y|b(t),

for all t ∈ Jυ′ . Now, for υ′ large enough, the previous estimates imply∣∣∣(m̄0v − (∇u) Ω−D(u,v)F1(b, m̄, y∗)y
)t∣∣∣

Cσ
≤ 1

4
|y|b(t)

for all t ∈ Jυ′ . Multiplying both sides of the latter by 1
b(t)

and taking the sup for
all t ∈ Jυ′ , we obtain

∣∣m̄0v − (∇u) Ω−D(u,v)F1(b, m̄, y∗)y
∣∣υ′
σ,b
≤ 1

4
|y|. (4.16)

Similarly to the previous case,∣∣∣((∇v) Ω−D(u,v)F2(x,m, y∗)y
)t∣∣∣

Cσ
≤ C(σ)

( ∣∣∣(∂2qa ◦ ũ∗)t∣∣∣
Cσ

∣∣ut∣∣
Cσ

+
∣∣vt∗∣∣Cσ ∣∣∣(∂2q b ◦ ũ∗)t∣∣∣Cσ ∣∣ut∣∣Cσ

+
∣∣vt∗∣∣2Cσ ∣∣∣(∂2qm ◦ ϕ̃∗)t∣∣∣Cσ |ut|Cσ

+
∣∣(∂qb ◦ ũ∗)t∣∣Cσ ∣∣vt∣∣Cσ

+
∣∣vt∗∣∣2Cσ ∣∣∣(∂2pqm ◦ ϕ̃∗)t∣∣∣Cσ ∣∣vt∣∣Cσ

+
∣∣vt∗∣∣Cσ ∣∣(∂qm ◦ ϕ̃∗)t∣∣Cσ ∣∣vt∣∣Cσ ),

for all t ∈ Jυ′ . Therefore, we have to estimate each member on the right-hand side
of the latter. We begin with the element in the second line. For all t ∈ Jυ′

|vt∗|Cσ
∣∣∣(∂2q b ◦ ũ∗)t∣∣∣

Cσ
|ut|Cσ ≤ C(σ)|vt∗|Cσ |b|υ

′

σ+2,bb(t)
(
1 + b̄(υ′)

)
|ut|Cσ

≤ C(σ)ā(t)|b|υ′σ+2,bb(t)|u|b̄(t)

≤ C(σ)Λb̄(υ′)2|y|a(t).

The first line of the above estimate is due to property 5. of Proposition A.2 and
b̄(υ′) ≤ 1. In the second line we use |vt∗|Cσ ≤ ā(t) and |ut|Cσ ≤ |u|b̄(t) for all
t ∈ Jυ′ . The last inequality is a consequence of the second condition of (#).

Thanks to property 5. of Proposition A.2, (#), (4.13) and b̄(υ′) ≤ 1, ā(υ′) ≤ 1,
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in the same way we have∣∣∣(∂2qa ◦ ũ∗)t∣∣∣
Cσ

∣∣ut∣∣
Cσ
≤ C(σ)|∂qa|υ

′

σ+1,aa(t)|u|b̄(t)

≤ C(σ)b̄(υ′)|y|a(t),∣∣vt∗∣∣2Cσ ∣∣∣(∂2qm ◦ ϕ̃∗)t∣∣∣Cσ |ut|Cσ ≤ C(σ)|v∗|2ā(t)2Υ|u|b̄(t)

≤ C(σ)ΥΛā(t)b(t)b̄(t)|u|
≤ C(σ)ΥΛ2b̄(υ′)2|y|a(t)∣∣(∂qb ◦ ũ∗)t∣∣Cσ ∣∣vt∣∣Cσ ≤ C(σ)|b|υ′σ+2,bb(t)|v|ā(t)

≤ C(σ)Λb̄(υ′)|y|a(t)∣∣vt∗∣∣2Cσ ∣∣∣(∂2pqm ◦ ϕ̃∗)t∣∣∣Cσ ∣∣vt∣∣Cσ ≤ C(σ)|v∗|2ā(t)2Υ|v|ā(t)

≤ C(σ)ΥΛ2b(t)2|v|ā(t)

≤ C(σ)ΥΛ3b(υ′)b̄(υ′)|y|a(t)∣∣vt∗∣∣Cσ ∣∣(∂qm ◦ ϕ̃∗)t∣∣Cσ ∣∣vt∣∣Cσ ≤ C(σ)|v∗|ā(t)Υ|v|ā(t)

≤ C(σ)ΥΛb(t)|v|ā(t)

≤ C(σ)ΥΛ2b̄(υ′)|y|a(t)

for all t ∈ Jυ′ . Then, for υ′ large enough∣∣∣((∇v) Ω−D(u,v)F2(x,m, y∗)y
)t∣∣∣

Cσ
≤ 1

4C̄ΥΛ
|y|a(t)

for all t ∈ Jυ′ . We recall that C̄ is the constant introduced in Lemma 4.2. Mul-
tiplying both sides of the latter by 1

a(t)
and taking the sup for all t ∈ Jυ′ , we

obtain ∣∣((∇v) Ω−D(u,v)F2(x,m, y∗)y
∣∣υ′
σ,a
≤ 1

4C̄ΥΛ
|y|. (4.17)

This concludes the proof of this lemma because, thanks to Lemma 4.2, the unique
solution of (4.15) exists and by (4.16), (4.17)

|û| ≤
∣∣m̄0v − (∇u) Ω−D(u,v)F1(b, m̄, y∗)y

∣∣υ′
σ,b

+ C̄ΥΛ
∣∣((∇v) Ω−D(u,v)F2(x,m, y∗)y

∣∣υ′
σ,a
≤ 1

2
|y|

|v̂| ≤
∣∣((∇v) Ω−D(u,v)F2(x,m, y∗)y

∣∣υ′
σ,a
≤ 1

4C̄ΥΛ
|y| ≤ 1

2
|y|.

We observe that the choice of the constant 1 in the ball |y∗| ≤ 1 is completely
arbitrary. One can choose another threshold provided to take υ′ sufficiently large.

Now, the previous lemma proves that L(x,m, m̄, ·) is a contraction of a com-
plete subset of Y . Then, there exists a unique fixed point y ∈ Y with |y| ≤ 1. This
concludes the proof of Theorem A.
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5 Proof of Corollary A

The proof is essentially the same as that of Theorem A. Because of that, we will not
give all the details. However, we will provide the necessary elements to reconstruct
the proof.

We are looking for a Cσ-asymptotic KAM torus ψt associated to (Z, ω, Id),
where Z is the vector field defined by (ZA). This means that, for given Z, we are
searching for υ′ ≥ 0 sufficiently large and a suitable function u : Tn × Jυ′ → Rn

such that

ψ(q, t) = q + u(q, t)

and, in addition, ψ and u satisfy

Z(ψ(q, t), t)− ∂qψ(q, t)ω − ∂tψ(q, t) = 0, (5.1)

lim
t→+∞

|ut|Cσ = 0 (5.2)

for all (q, t) ∈ Tn×Jυ′ . We will choose υ′ sufficiently large in Lemma 5.1. Similarly
to the proof of Theorem A, we introduce a suitable functional F given by (5.1).
To this end, we define

ψ̃(q, t) = (q + u(q, t), t),

for all (q, t) ∈ Tn × Jυ′ . The composition of Z with ψ̃ is equal to

Z ◦ ψ̃(q, t) = ω + P ◦ ψ̃(q, t)

and

∂qψ(q, t)ω + ∂tψ(q, t) = ω + ∂qu(q, t)ω + ∂tu(q, t)

for all (q, t) ∈ Tn × Jυ′ . We recall the notation introduced in the previous section

∇u(q, t)Ω = ∂qu(q, t)ω + ∂tu(q, t)

for all (q, t) ∈ Tn × Jυ′ . Then, we can rewrite (5.1) in the following form

P ◦ ψ̃ − (∇u) Ω = 0, (5.3)

where we have omitted the arguments (q, t).
Before the introduction of the functional F , let υ ≥ 0 and σ ≥ 1 be the positive

parameters defined in Corollary A. For υ′ ≥ υ ≥ 0 that will be chosen later, we
introduce the following Banach spaces (P , | · |), (U , | · |) and (Z, | · |)

P =
{
P : Tn × Jυ′ → Rn | P ∈ S̄υ′σ,1, and |P | = |P |υ′σ+1,P <∞

}
U =

{
u : Tn × Jυ′ → Rn | u, (∇u) Ω ∈ Sυ′σ

and |u| = max{|u|υ′σ,P̄, | (∇u) Ω|υ′σ,P} <∞
}

Z =
{
z : Tn × Jυ′ → Rn | z ∈ Sυ′σ , and |z| = |z|υ′σ,P <∞

}
25



Let F be the following functional

F : P × U −→ Z

F(P, u) = P ◦ ψ̃ − (∇u) Ω.

This is obtained by (5.3) and we observe that

F(0, 0) = 0.

We can reformulate our problem in the following form. For P ∈ P sufficiently
close to 0, we are looking for u ∈ U in such a way that F(P, u) = 0.

Concerning the associated linearized problem, the differential of F with respect
to the variable u calculated in (0, 0) is equal to

DuF(0, 0)û = − (∇û) Ω.

The functional F is well defined, continuous, differentiable with respect to u
with DuF(P, u) continuous. Moreover, as a straightforward consequence of Lemma
4.1, DuF(0, 0) is invertible. Then, F satisfies the hypotheses of the implicit func-
tion theorem.

Now, similarly to the proof of Theorem A, we fix P as in Corollary A and we
introduce the following functional

L(P, ·) : U −→ U

in such a way that
L(P, u) = u−DuF(0, 0)−1F(P, u).

We recall that P is fixed and the proof of Corollary A is reduced to find a fixed
point of the latter. To this end, we have the following lemma

Lemma 5.1. There exists υ′ large enough with respect to n, σ and P, such that,
for all u∗,u ∈ U with |u∗| ≤ 1,

|DuL(P, u∗)u| ≤
1

2
|u|.

Therefore, L(P, ·) is a contraction of a complete subset of P and this concludes
the proof of Corollary A.

6 Proof of Theorem B

The proof of this theorem is extremely similar to that of Theorem A. We expand
the Hamiltonian H in (∗B) in a small neighbourhood of 0 ∈ B. Then, thanks to
Proposition 2.1 and for a positive parameter Υ ≥ 1, we can rewrite the Hamiltonian
H in the following form

H : Tn ×B × J0 −→ R
H(q, p, t) = ω · p+ a(q, t) + b(q, t) · p+m(q, p, t) · p2,
a, b, ∂2pH ∈ A0

s,

supt∈J0 |a
t|s <∞, supt∈J0 |∂

2
pH

t|s ≤ Υ,

|∂qat|s ≤ a(t), |bt|s ≤ b(t), for all t ∈ J0

(∗∗B)
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where s = s0
2

and | · |s is the analytic norm. Furthermore, a(t) and b(t) are the
functions introduced in (∗B) satisfying (#) and A0

s is the space of functions defined
in Definition 2.3.

We consider the following Hamiltonian

h̃(q, p, t) = h(q, p, t) +

∫ 1

0

(1− τ)∂2pf(q, τp, t)dτ · p2.

for all (q, p, t) ∈ Tn ×B × J0. It is obvious that h̃ ∈ Kω and XH , Xh̃ verify (1.1).

6.1 Preliminary Settings

We are looking for an analytic asymptotic KAM torus ϕt associated to (XH , Xh̃, ϕ0),
where H is the Hamiltonian in (∗∗B), h̃ is the Hamiltonian previously defined and
ϕ0 the trivial embedding ϕ0 : Tn → Tn × B, ϕ0(q) = (q, 0). More specifically, for
given H, we are searching for υ′ ≥ 0 sufficiently large and suitable functions u,
v : Tn × Jυ′ → Rn such that

ϕ(q, t) = (q + u(q, t), v(q, t))

and in such a way that ϕ, u and v satisfy

XH(ϕ(q, t), t)− ∂qϕ(q, t)ω − ∂tϕ(q, t) = 0, (6.1)

lim
t→+∞

|ut| s
2

= 0, lim
t→+∞

|vt| s
2

= 0, (6.2)

for all (q, t) ∈ Tn × Jυ′ . Similarly to Theorem A, we will choose υ′ large enough
in Lemma 6.4 (υ′ will be already required large in Lemma 6.2).

To this end, we introduce a special norm and suitable Banach spaces. Given
s > 0 and υ ≥ 0, for every f ∈ Aυs and for positive real functions u(t) defined on
Jυ, we consider the following norm

|f |υs,u = sup
t∈Jυ

|f t|s
u(t)

.

It is the analytic version of the norm defined in the finitely differentiable case
by (4.4).

Let υ ≥ 0, s > 0 and Υ ≥ 1 be the positive parameters introduced by (∗∗B)
and (#). For υ′ ≥ υ ≥ 0 that will be chosen later, we consider the following
Banach spaces (A, | · |), (B, | · |), (U , | · |), (V , | · |), (Z, | · |), (G, | · |) and (M, | · |).
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A =
{
a : Tn × Jυ′ → R | a ∈ Aυ′s and |a| = |a|υ′s,1 + |∂qa|υ

′

s,a <∞
}

B =
{
b : Tn × Jυ′ → Rn | b ∈ Aυ′s , and |b| = |b|υ′s,b <∞

}
U =

{
u : Tn × Jυ′ → Rn | u, (∇u) Ω ∈ Aυ′s

2

and |u| = max{|u|υ′s
2
,b̄, | (∇u) Ω|υ′s

2
,b} <∞

}
V =

{
v : Tn × Jυ′ → Rn | v, (∇v) Ω ∈ Aυ′s

2

and |v| = max{|v|υ′s
2
,ā, | (∇v) Ω|υ′s

2
,a} <∞

}
Z =

{
z : Tn × Jυ′ → Rn | z ∈ Aυ′s

2
, and |z| = |z|υ′s

2
,b <∞

}
G =

{
g : Tn × Jυ′ → R | g ∈ Aυ′s

2
and |g| = |g|υ′s

2
,a <∞

}
M =

{
m : Tn ×B × Jυ′ →Mn |m ∈ Aυ

′

s and |m| = |m|υ′s,1 ≤ Υ
}

The risk of mixing the Banach space A with the space of functions Aυs is small.
Concerning A, we have that |a|υ′s,1 = supt∈Jυ′ |a

t|s, similarly for M. Regarding
the last Banach space M, we recall that Mn is the set of n-dimensional matrices.
These are the analytic version of the Banach spaces introduced in the finitely
differentiable case (see Section 4.2).

Now, let us introduce the following subspace X of A× B ×M×M×U × V ,
in such a way that

X = {(a, b,m, m̄, u, v) ∈ A× B ×M×M×U × V :

|∂qa|υ
′

s,a ≤ 1, |b| ≤ 1, |m| ≤ Υ, |m̄| ≤ Υ, |u| ≤ 1, |v| ≤ 1}.

Let F be the following functional

F : X −→ Z × G (6.3)

F(a, b,m, m̄, u, v) = (F1(b, m̄, u, v), F2(a, b,m, u, v))

with

F1(b, m̄, u, v) = b ◦ ũ+ (m̄ ◦ ϕ̃) v − (∇u) Ω,

F2(a, b,m, u, v) = ∂qa ◦ ũ+ (∂qb ◦ ũ) v + (∂qm ◦ ϕ̃) · v2 + (∇v) Ω.

Similarly to Section 4.1, this functional is obtained by (6.1). Therefore, con-
trary to the proof of Theorem A, we have to define F on a suitable subspace X of
A×B×M×M×U ×V . This is because we have to control the domain of ana-
lyticity of the components of F . We have to verify that F satisfies the hypotheses
of the implicit function theorem.

6.2 Homological Equation

Given s > 0, υ ≥ 0 and ω ∈ Rn, we are looking for a solution of the following
equation for the unknown κ : Tns × Jυ → R{

ω · ∂qκ(q, t) + ∂tκ(q, t) = g(q, t),

g ∈ Aυs , |g|υs,g <∞
(HEB)
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where g(t) is a positive, decreasing, integrable function on Jυ and g : Tns ×Jυ → R
is given.

Lemma 6.1 (Homological Equation). There exists a unique solution κ ∈ Aυs
of (HEB) such that

lim
t→+∞

|κt|C0 = 0.

Moreover,
|κ|υs,ḡ ≤ |g|υs,g.

Proof. The proof of this lemma is essentially the same as that of Lemma 4.1.
Existence: Let us define the following transformation

h(q, t) = (q − ωt, t),

then h : Tns × Jυ → Tns × Jυ because ω ∈ Rn, t ∈ Jυ ⊂ R and thus q − ωt ∈ Tns
if and only if q ∈ Tns . The fact that t is real and not complex is of fundamental
importance. This ensures that the latter transformation is well-defined.

It is enough to prove the first part of this lemma for the much simpler equation

∂tκ = g(q + ωt, t).

The unique solution of the above equation satisfying the asymptotic condition is

κ(q, t) = −
∫ +∞

t

g(q + ωτ, τ)dτ

and hence

κ(q, t) = κ ◦ h(q, t) = −
∫ +∞

t

g(q + ω(τ − t), τ)dτ

is the unique solution of (HEB) that we are looking for.
Regularity and Estimates : g ∈ Aυs implies κ ∈ Aυs and hence κ = κ ◦ h ∈ Aυs .

Moreover, for all fixed t ∈ Jυ

|κt|s ≤ |g|υs,gḡ(t).

We prove the second part of this lemma by multiplying both sides of the latter by
1

ḡ(t)
and taking the sup for all t ∈ Jυ.

6.3 Regularity of F
We begin this part with the following quantitative lemma. It is of fundamental
importance to prove that F (see (6.3)) is well defined. The following lemma
imposes the first restriction on υ′. We will take a stronger one after.

Lemma 6.2. For υ′ large enough with respect to s, Λ and b, if (u, v) ∈ U × V
satisfies the following estimates |u| ≤ 1 and |v| ≤ 1, then

sup
t∈Jυ′
|ut| s

2
≤ s

8
, sup

t∈Jυ′
|vt| s

2
≤ s

8
.
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Proof. If |u| ≤ 1 and |v| ≤ 1, then by (#)

|ut| s
2
≤ b̄(t) ≤ b̄(υ′), |vt| s

2
≤ ā(t) ≤ Λb(t) ≤ Λb(υ′).

for all t ∈ Jυ′ . Now, for υ′ large enough, we have the claim.

Thanks to the previous lemma, the properties in Appendix B and (#), one can
prove that F is well defined. Moreover, similarly to Theorem A, it is continuous,
differentiable with respect to the variables (u, v) and D(u,v)F is continuous. We
recall that D(u,v) stands for the differential with respect to (u, v). Furthermore,
D(u,v)F calculated on (0, 0,m, m̄, 0, 0) is equal to

D(u,v)F(0, 0,m, m̄, 0, 0)(û, v̂) = (m̄0v̂ − (∇û) Ω, (∇v̂) Ω),

where, for all (q, t) ∈ Tn × Jυ′ , m̄0(q, t) = m̄(q, 0, t). As one can expect, for all
fixed m, m̄ ∈ M, D(u,v)F(0, 0,m, m̄, 0, 0) is invertible. More specifically, we have
the following lemma

Lemma 6.3. For all (z, g) ∈ Z ×G there exists a unique (û, v̂) ∈ U ×V such that

D(u,v)F(0, 0,m, m̄, 0, 0)(û, v̂) = (z, g).

Moreover, for a suitable constant C̄

|û| ≤ C̄ΥΛ|g|υ′s
2
,a + |z|υ′s

2
,b, |v̂| ≤ |g|υ′s

2
,a.

Proof. The proof is essentially the same as that of Lemma 4.2. It relies on Lemma
6.1.

6.4 Analytic asymptotic KAM torus

Let a and b be the functions introduced by (∗∗B). It is straightforward to verify
that (a, b) ∈ A× B and

|∂qa|υ
′

s,a ≤ 1, |b|υ′s,b ≤ 1. (6.4)

We introduce the Banach space (Y , |·|), such that Y = U×V and for all y = (u, v) ∈
Y , |y| = max{|u|, |v|}. Following the lines of the differentiable case (Section (4.5)),
we fix m, m̄ ∈ M as in (∗∗B), we let x = (a, b) and we introduce the following
functional

L(x,m, m̄, ·) : Y −→ Y

in such a way that

L(x,m, m̄, y) = y −D(u,v)F(0, 0,m, m̄, 0, 0)−1F(x,m, m̄, y). (L)

This is well defined and, by the regularity of F , we deduce that L is continuous,
differentiable with respect to y = (u, v) with differential DyL continuous. The
proof is reduced to find a fixed point of the latter. For this purpose, we state the
following lemma, which is the analytic version of Lemma 4.3.
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Lemma 6.4. There exists υ′ large enough with respect to s, Υ, Λ and b, such
that, for all y∗,y ∈ Y with |y∗| ≤ 1,

|DyL(x,m, m̄, y∗)y| ≤
1

2
|y|.

Proof. The proof of this lemma is extremely similar to that of Lemma 4.3. For
this reason, it is omitted.

The above lemma proves that L(x,m, m̄, ·) is a contraction and this concludes
the proof of Theorem B.

A Hölder classes of functions

This part is dedicated to a very brief introduction to Hölder classes of functions
Cσ. Let D be an open subset of Rn. For integers k ≥ 0, we denote by Ck(D) the
spaces of functions f : D → R with continuous partial derivatives ∂αf ∈ C0(D)
for all α ∈ Nn with |α| = α1 + ...+ αn ≤ k. We define the norm

|f |Ck = sup
|α|≤k
|∂αf |C0 ,

where |∂αf |C0 = supx∈D |∂αf(x)| denotes the sup norm. For σ = k + µ, with
k ∈ Z, k ≥ 0 and 0 < µ < 1, the Hölder spaces Cσ(D) are the spaces of functions
f ∈ Ck(D) such that |f |Cσ <∞, where

|f |Cσ = sup
|α|≤k
|∂αf |C0 + sup

|α|=k

|∂αf(x)− ∂αf(y)|
|x− y|µ

. (A.1)

In the case of functions f = (f1, ..., fn) with values in Rn, we set |f |Cσ = max1≤i≤n |fi|Cσ .
Moreover, in agreement with the convention made above, if M = {mij}1≤i,j≤n is a
n× n matrix, we set |M |Cσ = max1≤i,j≤n |mij|Cσ .

In what follows, we have some properties of these norms that we widely use
in this work. First, we recall that C(·) stands for constants depending on n and
other parameters into brackets.

Proposition A.1. For all f ∈ Cσ1(Rn), then

|f |σ1−σ0Cσ ≤ C(σ1)|f |σ1−σCσ0 |f |
σ−σ0
Cσ1 for all 0 ≤ σ0 ≤ σ ≤ σ1.

Proof. We refer to [Hö76] for the proof.

Furthermore, we have the following Proposition.

Proposition A.2. We consider f , g ∈ Cσ(D) and σ ≥ 0.

1. For all β ∈ Nn, if |β|+ s = σ then
∣∣∣ ∂|β|

∂x1β1 ...∂xnβn
f
∣∣∣
Cs
≤ |f |Cσ .

2. |fg|Cσ ≤ C(σ) (|f |C0|g|Cσ + |f |Cσ |g|C0).
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Now we consider composite functions. Let z be defined on D1 ⊂ Rn and takes its
values on D2 ⊂ Rn where f is defined.

If σ < 1, f ∈ C1(D2), z ∈ Cσ(D1) then f ◦ z ∈ Cσ(D1)

3. |f ◦ z|Cσ ≤ C(|f |C1|z|Cσ + |f |C0).

If σ < 1, f ∈ Cσ(D2), z ∈ C1(D1) then f ◦ z ∈ Cσ(D1)

4. |f ◦ z|Cσ ≤ C(|f |Cσ |∇z|σC0 + |f |C0).

If σ ≥ 1 and f ∈ Cσ(D2), z ∈ Cσ(D1) then f ◦ z ∈ Cσ(D1)

5. |f ◦ z|Cσ ≤ C(σ)
(
|f |Cσ |∇z|σC0 + |f |C1|∇z|Cσ−1 + |f |C0

)
.

Proof. The proofs of the properties contained in this proposition are similar to
those in [Hö76]. The first is obvious. For the second, we refer to [Hö76]. Properties
3. and 4. are quite trivial. We prove the last property. By (A.1),

|f ◦ z|Cσ ≤ |f |C0 + |(∇f ◦ z)T∇z|Cσ−1 , (A.2)

where T stands for the transpose and (∇f ◦z)T∇z is the vector having i component
equal to

(
(∇f ◦ z)T∇z

)
i

= ∇f ◦ z · ∂xiz. Thanks to the property 2.

|f ◦ z|Cσ ≤ |f |C0 + |(∇f ◦ z)T∇z|Cσ−1

≤ |f |C0 + C(σ)|∇f ◦ z|Cσ−1|∇z|C0 + C(σ)|∇f ◦ z|C0|∇z|Cσ−1 .

The last term of the latter is bounded by |f |C1|∇z|Cσ−1 , it remains to estimate
|∇f ◦ z|Cσ−1|∇z|C0 . If σ ≤ 2, |∇f ◦ z|Cσ−1 ≤ |f |Cσ |∇z|σ−1C0 + |f |C1 thanks to 4..
Then

|∇f ◦ z|Cσ−1|∇z|C0 ≤ C(σ) (|f |Cσ |∇z|σC0 + |f |C1|∇z|C0)

≤ C(σ) (|f |Cσ |∇z|σC0 + |f |C1|∇z|Cσ−1) ,

whence the property holds in this case. If σ > 2, assuming that 5. is already
proven for σ − 1, we find

|∇f◦z|Cσ−1|∇z|C0 ≤ C(σ) (|∇f |Cσ−1|∇z|σC0 + |f |C2|∇z|Cσ−2|∇z|C0 + |f |C1|∇z|C0) .

It remains to find a good estimate for the central term. By Proposition A.1

|f |C2|∇z|Cσ−2 |∇z|C0 ≤ C(σ)

(
|f |

σ−2
σ−1

C1 |f |
1

σ−1

Cσ

)(
|∇z|

1
σ−1

C0 |∇z|
σ−2
σ−1

Cσ−1

)
|∇z|C0

≤ C(σ) (|f |C1|∇z|Cσ−1)
σ−2
σ−1 (|f |Cσ |∇z|σC0)

1
σ−1 ,

since aλb1−λ ≤ C(a+ b) for 0 < λ < 1, we have the claim.
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B Real analytic classes of functions

This section will collect some well-known facts about real analytic functions. For
some s > 0, we begin with the introduction of complex domains

Tns := {q ∈ Cn/Zn : | Im(q)| ≤ s}
Bs := {p ∈ Cn : |p| ≤ s},

with Tn = Rn/Zn and B ⊂ Rn a sufficiently large neighborhood of the origin.
Let D be equal to Tn × B or Tn and we consider a real analytic function in a
neighborhood of D

f : D → R.

Let Ds be equal to Tns ×Bs or Tns , for a suitable small s. It is known that f extends
to a function

f : Ds → C

that is real, holomorphic and bounded. We define the following norm

|f |s = sup
z∈Ds
|f(z)|.

In the case of vector-valued functions f = (f1, ..., fn) with values in Cn, we set
|f |s = maxi |fi|s. Moreover, if C = {Cij}1≤i,j≤n is a n × n matrix, we let |C|s =
maxij |Cij|s. We define As as the space of such functions. The rest of this section
is devoted to a series of general well-known properties.

Proposition B.1. Let f , g ∈ As, then the product fg ∈ As and

|fg|s ≤ |f |s|g|s.

Let f ∈ As and 0 ≤ σ ≤ s. Then ∂xf ∈ As and we have

|∂xf |s−σ ≤
1

σ
|f |s.

Let f ∈ As, 0 ≤ σ ≤ s and φ ∈ As−σ such that φ : Ds−σ → Ds. Then f ◦φ ∈ As−σ
and

|f ◦ φ|s−σ ≤ |f |s.

C Banach spaces

Here, we prove that the normed spaces introduced in Section 4.2 are Banach spaces.
Similarly, we have the claim for those defined in Section 6.1.

Given υ ≥ 0, let b be a positive, decreasing, integrable function on Jυ. We
recall that

b̄(t) =

∫ +∞

t

b(τ)dτ.

We may assume
b(t) ≤ 1, b̄(t) ≤ 1
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for all t ∈ Jυ. For fixed σ ≥ 1 and an integer k ≥ 0, we consider the following
spaces (G, | · |) and (W , ‖·‖) such that

G = {g : Tn × Jυ → R : g ∈ S̄υσ,k and |g| = |g|υσ+k,b <∞}

Wσ =
{
w : Tn × Jυ → Rn : w, (∇w) Ω ∈ Sυσ

and ‖w‖σ = max{|w|υσ,b̄, | (∇w) Ω|υσ,b} <∞
}

We recall that, for all (q, t) ∈ Tn × Jυ, ∇w(q, t)Ω = ∂qw(q, t)ω + ∂tw(q, t) with
ω ∈ Rn. Moreover, the spaces Sυσ and S̄υσ,k are defined respectively by Definition
2.1 and Definition 2.2, and the norm | · |υσ,b is introduced by (4.4).

We prove that these spaces are complete. We begin with the first. Let
{gd}d≥0 ⊂ G be a Cauchy sequence. This means that, for all ε > 0 there exists
D ∈ N such that for all d, m ≥ D, |gd−gm|υσ+k,b < ε. For all fixed t ∈ Jυ, we claim

that the sequence {gtd}d≥0 contained in the Banach space
(
Cσ+k(Tn), | · |Cσ+k

)
is a

Cauchy sequence. This is because for all fixed t ∈ Jυ

|gtd − gtm|Cσ+k ≤
|gtd − gtm|Cσ+k

b(t)
≤ |gd − gm|υσ+k,b.

Then, for all fixed t ∈ Jυ, there exists gt ∈ Cσ+k such that

lim
d→+∞

|gtd − gt|Cσ+k = 0.

We have to verify that g ∈ G (that is g ∈ S̄υσ,k and |g|υσ+k,b <∞) and
limd→+∞ |gd − g|υσ+k,b = 0.

We prove that g ∈ S̄υσ,k. Obviously, for all fixed t ∈ Jυ, g
t ∈ Cσ+k(Tn). It

remains to verify that ∂iqg ∈ C(Tn × Jυ) for all 0 ≤ i ≤ k. For all (q1, t1),
(q2, t2) ∈ Tn × Jυ

|∂iqgt1(q1)− ∂iqgt2(q2)| ≤ |∂iqg
t1
d (q1)− ∂iqgt1(q1)|+ |∂iqg

t1
d (q1)− ∂iqg

t2
d (q2)|

+ |∂iqg
t2
d (q2)− ∂iqgt2(q2)|

for all 0 ≤ i ≤ k. Now, for all ε > 0 there exists D ∈ N such that, for all d ≥ D,
the first and the last term on the right-hand side of the latter are smaller than
ε
3
. This is because, for all fixed t ∈ Jυ, g

t
d converges to gt in the norm Cσ+k.

Concerning the second term, we know that gd ∈ S̄υσ,k. Hence, by the definition of
S̄υσ,k, ∂iqgd ∈ C(Tn × Jυ) for all 0 ≤ i ≤ k. Then, there exists δ > 0 such that if
|(q1, t1) − (q2, t2)| < δ also the second term on the right-hand side of the latter is
smaller than ε

3
. This proves the claim.

We prove that lim
d→+∞

|gd− g|υσ+k,b = 0. Let gkd be a subsequence of gd such that

|gkd+1
− gkd|υσ+k,b <

(
1

2

)d
for all d ∈ N. We claim that it suffices to prove the above property for gkd . Indeed,
we assume that lim

d→+∞
|gkd − g|υσ+k,b = 0. Then, for all d ∈ N

|gd − g|υσ+k,b ≤ |gd − gkd |υσ+k,b + |gkd − g|υσ+k,b.
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Therefore, for all ε > 0, there exists D ∈ N such that, |gd − gkd|υσ+k,b < ε
2

and
|gkd − g|υσ+k,b < ε

2
for all d ≥ D. Because gd is a Cauchy sequence, we have the

first inequality. The second follows because we assumed that gkd converges to g in
the norm | · |υσ+k,b. This implies lim

d→+∞
|gd − g|υσ+k,b = 0 and hence the claim.

Now, for all fixed t ∈ Jυ

|gtkd − g
t|Cσ+k

b(t)
≤

+∞∑
i=d

|gtki − g
t
ki+1
|Cσ+k

b(t)
≤

+∞∑
i=d

|gki − gki+1
|υσ+k,b ≤

+∞∑
i=d

(
1

2

)i
= 2

(
1

2

)d
and hence, taking the sup for all t ∈ Jυ, we obtain

|gkd − g|υσ+k,b ≤ 2

(
1

2

)d
.

Then, for every ε > 0 there exists D ∈ N such that |gkd−g|υσ+k,b < ε for all d ≥ D.
We prove that |g|υσ+k,b <∞. For all d ∈ N, we can estimate |g|υσ+k,b as follows

|g|υσ+k,b ≤ |gd − g|υσ+k,b + |gd|υσ+k,b.

For d sufficiently large, |gd−g|υσ+k,b <∞ because lim
d→+∞

|gd−g|υσ+k,b = 0. Moreover,

|gd|υσ+k,b <∞ because gd ∈ G. Then (G, | · |) is a Banach space.
In the second part of this section we prove that (W , ‖·‖) is a Banach space.

Let {wd}d≥0 ⊂ W be a Cauchy sequence. Similarly to the previous case, there
exist w ∈ Sυσ and f ∈ Sυσ such that

lim
d→+∞

|wd − w|υσ,b̄ = 0, lim
d→+∞

| (∇wd) Ω− f |υσ,b = 0. (C.1)

We have to verify that ∇w(q, t)Ω = f(q, t) for all (q, t) ∈ Tn × Jυ. Let us denote
z = (q, t) and we recall that Ω = (ω, 1). We will prove that, for all ε > 0, there
exists δ > 0 such that ∣∣∣∣w(z + τΩ)− w(z)

τ
− f(z)

∣∣∣∣ < ε

for all |τ | < δ. Thanks to the triangle inequality∣∣∣∣w(z + τΩ)− w(z)

τ
− f(z)

∣∣∣∣ <

∣∣∣∣wd(z + τΩ)− wd(z)

τ
− w(z + τΩ)− w(z)

τ

∣∣∣∣
+

∣∣∣∣wd(z + τΩ)− wd(z)

τ
−∇wd(z)Ω

∣∣∣∣
+ |∇wd(z)Ω− f(z)| .

By (C.1) there exists D > 0, depending on ε and τ , such that the first and the
third terms on the right-hand side of the latter are smaller than ε

3
for all d ≥ D.

Now, thanks to Taylor’s formula, we can rewrite the second term on the right-hand
side of the latter as follows∣∣∣∣wd(z + τΩ)− wd(z)

τ
−∇wd(z)Ω

∣∣∣∣ =

∣∣∣∣∫ 1

0

∇wd(z + τsΩ)Ω−∇wd(z)Ωds

∣∣∣∣
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and using the triangle inequality∣∣∣∣∫ 1

0

∇wd(z + τsΩ)Ω−∇wd(z)Ωds

∣∣∣∣ ≤ ∫ 1

0

|∇wd(z + τsΩ)Ω− f(z + τsΩ)| ds

+

∫ 1

0

|f(z + τsΩ)− f(z)| ds

+

∫ 1

0

|f(z)−∇wd(z)Ω| ds.

We know that f is continuous, then there exists δ such that for all |τ | < δ the
second term on the right-hand side of the latter is smaller than ε

9
. Since the

uniform convergence of (∇wd) Ω there exists D > 0, depending on ε and τ , such
that the first and the third terms on the right-hand side of the latter are smaller
than ε

9
. This concludes the proof.
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