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Abstract: A novel metric that describes the vulnerability of the measurements in power systems to data integrity attacks is pro-
posed. The new metric, coined vulnerability index (VuIx), leverages information theoretic measures to assess the attack effect in
terms of the fundamental limits of the disruption and detection tradeoff. The result of computing the VuIx of the measurements in
the system yields an ordering of their vulnerability based on the degree of exposure to data integrity attacks. This new framework
is used to assess the measurement vulnerability of IEEE 9-bus and 30-bus test systems and it is observed that power injection
measurements are significantly more vulnerable to data integrity attacks than power flow measurements. A detailed numerical
evaluation of the VuIx values for IEEE test systems is provided.

1 Introduction

Supervisory Control and Data Acquisition (SCADA) systems and
more recently advanced communication systems facilitate efficient,
economic and reliable operation of power systems [1]. For instance,
the communication system transmits the measurements to a state
estimator that evaluates the operational status of the system accu-
rately [2]. However, the integration between the physical layer and
the cyber layer exposes the system to cybersecurity threats. Cyber
incidents highlight the vulnerability of power systems to sophis-
ticated attacks. To ensure the security and reliability of power
system operation, it is essential to quantitatively characterize the
vulnerabilities of the system in order to set up appropriate security
mechanisms [3]. To that end, security metrics provide operationally
meaningful vulnerability descriptors and identify the impact that
security threats pose to the system. Moreover, security metrics
enable operators to assess the defence mechanisms requirements to
be embedded into cybersecurity policies, processes, and technol-
ogy [4]. For example, the Common Vulnerability Scoring System
(CVSS) analysis Information Technology (IT) system [5]. Typical
security metrics for power systems focus on integrity, availabil-
ity, and confidentiality as envisioned by the cybersecurity working
group in the NIST Smart Grid interoperability panel [6]. System
security objectives are categorized into system vulnerability, defence
power, attack severity, and situations to develop security metrics in
a systematic manner [7]. A cyberphysical security assessment met-
ric (CP-SAM) based on quantitative factors is proposed to assess the
specific security challenges of microgrid systems in [8].

This fragmented landscape showcases a wide variety of met-
rics available that depend on the security services, threat charac-
teristics, and system parameters. Remarkably, there is a lack of
general data integrity vulnerability metrics for power systems. For
instance, the impact of data injection attacks (DIAs) [9] can be
assessed with a wide variety of criteria that depend on the objec-
tives of the attackers [10–13]. A large body of literature addresses
DIAs that compromise both the confidentiality and integrity of the
information contained by the system measurements [14]. With the
unprecedented data acquisition capabilities available in cyberphysi-
cal systems, attackers can learn the statistical structure of the system
and incorporate the underlying stochastic process to launch the
attacks [15, 16]. DIAs that operate within a Bayesian framework by
leveraging stochastic models of the system are studied in [17, 18].
From the perspective of the operator, the introduction of stochastic

descriptors opens the door to information theoretic quantification of
the measurement vulnerability.

In this paper, we propose a novel information theoretic metric to
assess the vulnerability of measurements in power systems to data
integrity attacks. Specifically, we characterize the fundamental infor-
mation loss induced by data integrity attacks via mutual information
and the stealthiness of the attack via Kullback-Leibler divergence.
Our aim is to provide a metric that is grounded on fundamental
principles, and therefore, informs the vulnerabilities of the measure-
ments in the system to a wide range of threats. This is enabled by
the use of information theoretic measures which characterize the
amount of information acquired by the measurements in the system
in fundamental terms.

The rest of the paper is organized as follows: In Section 2, we
introduce a Bayesian framework with linearized dynamics for DIAs.
Information theoretic attacks are presented in Section 3. The vul-
nerability metric on information theoretic attacks is proposed in
Section 4. In Section 5, we characterize the vulnerability of mea-
surements in uncompromised systems and propose an algorithm to
evaluate the vulnerability of measurements. The vulnerability of
measurements of the IEEE test systems is presented in Section 6.
The paper concludes in Section 7.

The main contributions of this paper follow: (1) A notion of
vulnerability for the measurements in the system is proposed. The
proposed notion is characterized by the information theoretic cost
induced by random attacks. Specifically, mutual information and KL
divergence are used to construct a quantitative measure of vulnera-
bility. (2) The vulnerability assessment of the measurements is posed
as a minimization problem and closed-form expressions are obtained
for the case in which the initial state of the system is uncompro-
mised. (3) An algorithm that computes the proposed vulnerability
indices for general state estimators in power systems is proposed.
(4) The proposed framework is numerically evaluated in IEEE 9-bus
and 30-bus test systems to obtain qualitative characterizations of the
vulnerability of the measurements in the systems.

Notation: We denote the number of state variables on a given
system by n and the number of the measurements by m. The set
of positive semidefinite matrices of size n× n is denoted by Sn

+.
The n-dimensional identity matrix is denoted as In. For a matrix
A ∈ Rm×n, we denote by (A)ij the entry in row i and column
j and diag(A) denotes the vector formed by the diagonal entries
of A. The elementary vector ei ∈ Rn is a vector of zeros with a
one in the i-th entry. Random variables are denoted by capital let-
ters and their realizations by the corresponding lower case, e.g., x is



a realization of the random variable X . Vectors of n random vari-
ables are denoted by a superscript, e.g.,Xn = (X1, . . . , Xn)T with
corresponding realizations denoted by x. Given an n-dimensional
vector µ ∈ Rn and a matrix Σ ∈ Sn

+, we denote by N (µ,Σ) the
multivariate Gaussian distribution of dimension n with mean µ and
covariance matrix Σ. The mutual information between random vari-
ables X and Y is denoted by I(X;Y ) and the Kullback-Leibler
(KL) divergence between the distributions P and Q is denoted by
D(P‖Q).

2 System model

2.1 Observation Model

In a power system the state vector x ∈ Rn that contains the voltages
and phase angles at all the buses describes the operational state of the
system. State vector x is observed by the acquisition function F :
Rn → Rm. A linearized observation model is considered for state
estimation, which yields the observation model

Ym = Hx + Zm, (1)

where H ∈ Rm×n is the Jacobian of the function F at a given oper-
ating point and is determined by the parameters and topology of the
system. The vector of measurements Ym is corrupted by additive
white Gaussian noise introduced by the sensors [1], [2]. The noise
vector Zm follows a multivariate Gaussian distribution, that is,

Zm ∼ N (0, σ2Im), (2)

where σ2 is the noise variance.
In a Bayesian estimation framework, the state variables are

described by a vector of random variables Xn with a given distribu-
tion. In this study, we assume Xn follows a multivariable Gaussian
distribution [19] with zero mean and covariance matrix ΣXX ∈ Sn

+,
that is,

Xn ∼ N (0,ΣXX). (3)

From (1), it follows that the vector of measurements is with zero
mean and covariance matrix ΣYY ∈ Sm

+ , that is,

Ym ∼ N (0,ΣYY ), (4)

where

ΣYY
∆
= HΣXXHT + σ2Im. (5)

2.2 Attack Setting

Let us denote the measurements corrupted by the malicious attack
given by the random vector Am taking values in Rm, that is,

Ym
A = HXn + Zm +Am, (6)

where Ym
A ∈ Rm random vector of measurements. With a fixed

covariance matrix ΣAA ∼ Sm
++, when the additive disturbance to

the system, that is, Zm +Am follows a multivariate Gaussian dis-
tribution, the mutual information between the state variables Xn

and the compromised measurements Ym
A denoted by I(Xn;Ym

A )
is minimized [20]. Hence, from the Lévy-Cramér decomposition
theorem [21, 22], it holds that the sum Zm +Am is Gaussian, given
that Zm satisfies (2), and therefore,Am is Gaussian. In view of this,
in the following, we assume that

Am ∼ N (0,ΣAA), (7)

where 0 = (0, 0, . . . , 0) and ΣAA ∈ Sm+ are the mean vector and
the covariance matrix of the random attack vector Am. The assump-
tion in (7) is further discussed in Section 3. Consequently, the vector

of compromised measurements Ym
A follows a multivariate Gaussian

distribution with zero mean and covariance matrix ΣYAYA
∈ Sm+ ,

that is,

Ym
A ∼ N (0,ΣYAYA

), (8)

with

ΣYAYA

∆
= HΣXXHT + σ2Im + ΣAA. (9)

3 Information Theoretic Attacks

The aim of the attack is twofold. Firstly, the attack aims to disrupt
the state estimation procedure. Secondly, it aims to stay undetected.
For the first objective, we minimize the mutual information between
the vector of state variables Xn in (3) and the vector of com-
promised measurements Ym

A in (6), that is, I(Xn;Ym
A ). In other

words, the attack yields less information about the state variables
contained by the compromised measurements. The stealth constraint
in the second objective is captured by the Kullback Leibler (KL)
divergence between the distribution PY m

A
in (6) and the distribution

PY m in (1), that is, D(PY m
A
‖PY m). For the observation model and

attack setting described in Section 2, and assuming optimal detec-
tion, the Chernoff-Stein Lemma [23] states that the minimization of
KL divergence leads to the minimization of the asymptotic detection
probability.

The following propositions characterize mutual information and
KL divergence with Gaussian state variables and attacks, respec-
tively [24, Prop. 1, 2].

Proposition 1. The mutual information between the random vectors
Xn in (3) and Ym

A in (8) is

I(Xn;Ym
A ) =

1

2
log
|ΣXX ||ΣYAYA

|
|Σ| , (10)

where the matrices ΣXX and ΣYAYA
are in (3) and (9), respec-

tively; and the matrix Σ is the covariance matrix of the joint
distribution of Xn and Ym

A , that is, (Xn;Ym
A ) ∼ N (0,Σ) with

Σ =

(
ΣXX ΣXXHT

HΣXX HΣXXHT + σ2Im + ΣAA

)
, (11)

where σ ∈ R+ is in (2); and matrices H and ΣAA are in (1) and (7),
respectively.

Proposition 2. The KL divergence between the distribution of ran-
dom vector Ym

A in (8) and the distribution of random vector Ym

in (4) is

D(PY m
A
‖PY m) =

1

2

(
log

|ΣYY |
|ΣYAYA

| −m+ tr
(
Σ−1

YY ΣYAYA

))
,

(12)

where the matrices ΣYY and ΣAA are in (5) and (7), respectively.

The information theoretic attack construction is proposed in the
following optimization problem [17, 24]:

min
PAm

I(Xn;Ym
A ) + λD(PY m

A
‖PY m), (13)

where λ ∈ R+ is the weighting parameter that determines the trade-
off between mutual information and KL divergence. Note that the
optimization domain in (13) is the set of m-dimensional Gaussian
multivariate distributions. The optimal Gaussian attack for λ ≥ 1 as



a solution to (13) is given by [24]

Am ∼ N (0, λ−1/2HΣXXHT). (14)

Note that the attack realizations from (14) are nonzero with proba-
bility one, that is, P[|supp(Am)| = m] = 1, where

supp(Am)
∆
= {i : P [Ai = 0] = 0} . (15)

The attack implementation requires access to the sensing infras-
tructure of the industrial control system (ICS) operating the power
systems. For that reason, the attack construction incorporates a spar-
sity constraint that limits the optimization domain over the attack
vector Am in (6) to the distributions with cardinality of the support
satisfying |supp(Am)| = k ≤ m, that is,

Pk
∆
=

k⋃
i=1

{
Am ∼ N (0, Σ̄) :

∣∣supp(Am)
∣∣ = i

}
. (16)

The resulting sparse attack construction is [18]

min
Pk

I(Xn;Ym
A ) + λD(PY m

A
‖PY m). (17)

The following theorem provides the optimal single sensor attack
construction.

Theorem 1. [17, Th. 1] The solution to the sparse stealth attack
construction problem in (17) for the case k = 1 is

Σ̄
∗

= veie
T
i , (18)

where

i = arg min
j∈{1,2,...,m}

{(
Σ−1

YY

)
jj

}
, (19)

v = −σ
2

2
+

1

2

(
σ4 − 4(wσ2 − 1)

λw2

) 1
2

, (20)

with w ∆
= (Σ−1

YY )ii.

4 Vulnerability Metric for Information Theoretic
Attacks

4.1 Attack Structure with Sequential Measurement
Selection

To assess the impact of the attacks to different measurements, we
model the entries of the random attack vector Am as idependent,
that is,

PAm =

m∏
i=1

PAi
, (21)

where Ai is the i-th entry of Am and for all i ∈ {1, 2, . . . ,m}, the
distribution PAi

is Gaussian with zero mean and variance v ∈ R+,
that is, Ai ∼ N (0, v). Consider that k sensors have been attacked
with k ∈ {0, 1, 2, . . . ,m− 1} and let the covariance matrix of the

corresponding attack vector Am in (6) be

Σ ∈ Sk, (22)

where Sk is the set of m-dimensional positive semidefinite matrix
with k positive entries in the diagonal, that is,

Sk
∆
= {S ∈ Sm+ : ‖diag(S)‖0 = k}. (23)

Let the set of measurements that have not been compromised be

Ko
∆
= {i ∈ {1, 2, . . . ,m} : (Σ)ii = 0}, (24)

where (Σ)ii is the entry of Σ in row i and column i. The sequen-
tial measurement selection imposes the following structure in the
covariance matrix of the attack vector in (7):

ΣAA = Σ + veie
T
i , (25)

where i ∈ Ko and v ∈ R+. From (25), the cost function f : Sk ×
R+ × R+ ×Ko → R+ defined by adding (10) and (12) is as
follows:

f(Σ, λ, v, i) (26)

∆
=I(Xn;Ym

A ) + λD(PY m
A
‖PY m) (27)

=
1

2
log
|ΣXX ||ΣYAYA

|
|Σ| (28)

+
1

2
λ

(
log

|ΣYY |
|ΣYAYA

| −m+ tr
(
Σ−1

YY ΣYAYA

))
=

1

2
log

|ΣYAYA
|

|σ2Im + ΣAA|
+

1

2
λ

(
log

|ΣYY |
|ΣYAYA

| + tr
(
Σ−1

YY ΣAA

))
,

(29)

=
1

2
(1− λ)log

∣∣∣ΣYY + Σ + veie
T
i

∣∣∣− 1

2
log
∣∣∣Σ + veie

T
i + σ2Im

∣∣∣
+

1

2
λ
(

tr
(
Σ−1

YY

(
Σ + veie

T
i

))
+ log |ΣYY |

)
, (30)

where the inequality in (28) holds from plugging (10) and (12)
into (27); the equality in (29) follows from cancelling |ΣXX | in the
first term [25, Sec. 14.17] and noting that ΣYAYA

= ΣYY + ΣAA
in (9); and the equality in (30) holds from plugging (25) into (29).

4.2 Information theoretic vulnerability of a measurement

We propose a notion of vulnerability that is linked to the information
theoretic cost function proposed in [24] to characterize the disruption
and detection tradeoff incurred by the attacks. Taking the state of the
system with k compromised measurements as the baseline, we quan-
tify the vulnerability of measurement i ∈ Ko in terms of the cost
decrease that i induces. In the following, we define the vulnerability
of a measurement according to this idea.

Definition 1. The function ∆ : Sm+ × R+ × R+ ×Ko → R+,
where Ko is in (24), defines the vulnerability of measurement i in
the following form:

∆(Σ, λ, v, i)
∆
= f(Σ, λ, v, i)− f(Σ, λ, 0, i), (31)

where the function f is defined in (26).

Note that the attacker aims to minimize (26) by choosing an index
i and a variance v, and therefore, the definition above implies that
given that k measurements in {1, 2, . . . ,m} \ Ko are already under
attack in the system, the most vulnerable measurement is obtained
by solving the following minimization problem

min
i∈Ko

∆(Σ, λ, v, i), (32)

where Ko is defined in (24).



5 Vulnerability of Measurements

5.1 Vulnerability analysis of uncompromised systems

We first consider the case in which no measurements are under
attacks, that is, k = 0, for which the the following holds

Σ = 0, (33)

Ko = {1, 2, . . . ,m}. (34)

The attacker selects a single measurement with a given variance
budget v ≤ v0. We quantify the vulnerability of measurement i in
terms of ∆(Σ, λ, v, i) defined in (31). For the uncompromised sys-
tem case, the optimization problem in (32) can be solved in closed
form expression. The following theorem provides the solution.

Theorem 2. The solution to the problem in (32), with
Ko = {1, 2, . . . ,m}, is

i = arg min
j∈{1,2,...,m}

{(
Σ−1

YY

)
jj

}
, (35)

where ΣYY is in (5).

Proof: We start by noting that (33) establishes that the vulnerability
of measurement i in (31) is ∆(0, λ, v, i). From the equality in (30),
the function f(0, λ, 0, i) is constant with respect to i. Hence, for
Σ = 0, the optimization problem in (32) is equivalent to

min
i∈Ko

f(0, λ, v, i), (36)

where Ko is defined in (34). Recall that λ ∈ R+ and v ∈ R+.
From (30), the resulting problem in (36) is equivalent to the follow-
ing optimization problem:

min
i∈{1,2,...,m}

(1− λ)log
∣∣∣ΣYY + veie

T
i

∣∣∣− log
∣∣∣veieTi + σ2Im

∣∣∣
+ λvtr

(
Σ−1

YY eie
T
i

)
(37)

= min
i∈{1,2,...,m}

(1− λ)log
∣∣∣Im + vΣ−1

YY eie
T
i

∣∣∣− log(v + σ2)

+ λvtr
(
Σ−1

YY eie
T
i

)
(38)

= min
i∈{1,2,...,m}

(1− λ)log
(

1 + vtr
(
Σ−1

YY eie
T
i

))
+ λvtr

(
Σ−1

YY eie
T
i

)
, (39)

where the equivalence in (37) holds from plugging Σ = 0 into the
equality in (30); the equality in (38) follows from removing a con-
stant (1− λ)log |ΣYY | from the first term; and the equality in (39)
follows from the fact that Σ−1

YY eie
T
i is a matrix with nonzero entries

in the i-th column and all the other entries are zero.
We now proceed by defining t ∆

= vtr
(
Σ−1

YY eie
T
i

)
, with t ∈ R+,

and rewriting the equality in (39) as

min
t∈R+

(1− λ)log (1 + t) + λt. (40)

Note that (40) increases monotonically with t. Therefore, the cost
function in (39) is monotonically increasing with t. This completes
the proof. �

From Theorem 2, it follows that the identification of the most vul-
nerable measurement is independent of λ, introduced in (26), and
the value of the variance v. That is, it only depends on the system
topology and parameters denoted by ΣYY defined in (5). This result

coincides with Theorem 1 in the sense that in the attack construction
for k = 1, the most vulnerable measurement is characterized in (19),
which is independent of the value of λ. The following corollary
formalizes this observation.

Corollary 1. Let Σ = 0. The vulnerability ranking for measurement
indices

s
∆
= (s1, s2, . . . , sm) (41)

is such that for all measurement index i, with i ∈ {1, 2, . . . ,m},
si ∈ {1, 2, . . . ,m} and

tr
(
Σ−1

YY es1eTs1

)
≤ tr

(
Σ−1

YY es2eTs2

)
≤ . . . ≤ tr

(
Σ−1

YY esmeTsm

)
.

(42)
For all i ∈ {1, 2, . . . ,m}, the i-th most vulnerable measurement
index is si.

5.2 Vulnerability index (VuIx)

The vulnerability analysis of uncompromised systems in Section 5.1
is constrained to k = 0. To generalize the vulnerability analysis to
systems compromised with k > 0, in the following we propose a
novel metric, coined vulnerability index.

Definition 2. For k ∈ {1, 2, . . . ,m− 1} and Sk in (23), let the
parameters be Σ ∈ Sk, v ∈ R+, λ ∈ R+. Consider the set {(i,∆) :
i ∈ Ko}, with Ko in (24) and

∆i
∆
= ∆(Σ, λ, v, i). (43)

Let the vulnerability ranking

r = (r1, r2, . . . , r|Ko|) (44)

be such that for all i ∈ {1, 2, . . . , |Ko|}, ri ∈ Ko and moreover,

∆r1 ≤ ∆r2 ≤ . . . ≤ ∆r|Ko| . (45)

The vulnerability index (VuIx) of measurement rj ∈ Ko is j, that is,
VuIx(rj) = j.

Note that the measurement with the smallest VuIx is the most
vulnerable measurement and corresponds to the solution of the opti-
mization problem in (32). The proposed VuIx for i ∈ Ko is obtained
by Algorithm 1.

Algorithm 1 Computation of Vulnerability Index (VuIx)

Input: H in (1);
σ2 in (2);
ΣXX in (3);
Σ ∈ Sk in (22);
λ ∈ R+ and v ∈ R+.

Output: the VuIx for all i ∈ Ko.
1: Set Ko in (24)
2: for i ∈ Ko do
3: Compute ∆(Σ, λ, v, i) in (31)
4: end for
5: Sort ∆(Σ, λ, v, i) in ascending order
6: Set r = (r1, r2, . . . , r|Ko|)
7: Set the VuIx of measurement rj ∈ Ko as j.

6 Numerical results

In this section, we numerically evaluate the VuIx of the measure-
ments on a direct current (DC) setting for the IEEE Test sys-
tems [26]. The voltage magnitudes are set to 1.0 per unit, that is,
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Fig. 1: Vulnerability index (VuIx) when k = 1, SNR = 10 dB, λ = 2
and ρ = 0.1 on the IEEE 9-bus system.
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Fig. 2: Vulnerability index (VuIx) when k = 2, SNR = 10 dB, λ = 2
and ρ = 0.1 on the IEEE 9-bus system.

the measurements of the systems are active power flow between the
buses that are physically connected and active power injection to all
the buses. The Jacobian matrix H in (1) determined by the topology
of the system and the physical parameters of the branches is gener-
ated by MATPOWER [27]. We adopt a Toeplitz model for the covari-
ance matrix ΣXX that arises in a wide range of practical settings,
such as autoregressive stationary processes. Specifically, we model
the correlation between state variableXi andXj with an exponential
decay parameter ρ ∈ R+, which results in the entries of the matrix
(ΣXX)ij = ρ|i−j| with (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n}. In
this setting, the VuIx of the measurements is also a function of
the correlation parameter ρ, the noise variance σ2, and the Jaco-
bian matrix H. The noise regime in the observation model is
characterized by the signal to noise ratio (SNR) defined as

SNR ∆
= 10 log10

(
tr(HΣXXHT)

mσ2

)
. (46)

For all λ ∈ R+ and v ∈ R+, we generate a realization of k attacked
indices Ka ⊆ {1, 2, . . . ,m} that is uniformly sampled from the set
of sets given by

K̃ = {A ⊆ {1, 2, . . . ,m} : |A| = k} . (47)
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Fig. 3: Vulnerability index (VuIx) when k = 1, SNR = 30 dB, λ = 2
and ρ = 0.1 on the IEEE 9-bus system.

5 10 15 20 m

Sensor index

0

5

10

15

20

25

30

V
u

ln
e

ra
b

ili
ty

 i
n

d
e

x
 (

V
u

Ix
)

Power flow measurements  Power injection 

     measurements

Mean of the vulnerability index

Variance of the vulnerability index

Vulnerability index for k=0

Fig. 4: Vulnerability index (VuIx) when k = 2, SNR = 30 dB, λ = 2
and ρ = 0.1 on the IEEE 9-bus system.

We then construct a random covariance matrix describing the exist-
ing attacks on the system as

Σ̃ =
∑
i∈Ka

eie
T
i , (48)

withKa ∈ K̃. In the numerical simulation, we obtain the vulnerabil-
ity of measurement i by computing

∆(Σ̃, λ, 1, i), (49)

where i ∈ Ko is in (24) and ∆ is defined in (31).

6.1 Assessment of vulnerability index (VuIx)

Fig. 1 and Fig. 2 depict the mean and variance of the VuIx obtained
by Algorithm 1 for all the measurements with SNR = 10 dB, λ = 2
and ρ = 0.1 on the IEEE 9-bus system when k = 1 and k = 2,
respectively. Therein, it is observed that in general power injec-
tion measurements take higher vulnerability indices. Note that the
vulnerability index captures the threat posed by an attack on sen-
sor i expressed in terms of the vulnerability of the measurement
as described by ∆(Σ, λ, v, i) in Algorithm 1. A larger value of
∆(Σ, λ, v, i) indicates a larger potential for an stealthy data integrity
disruption induced by an attacker. Fig.1-6 depict a prevalence of
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Fig. 5: Vulnerability index (VuIx) when k = 1, SNR = 10 dB, λ = 2
and ρ = 0.1 on the IEEE 30-bus system.
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Fig. 6: Vulnerability index (VuIx) when k = 2, SNR = 10 dB, λ = 2
and ρ = 0.1 on the IEEE 30-bus system.

higher vulnerability indices assigned to power injection measure-
ments for different system settings. This implies that corrupting the
sensor data of power injection measurements is linked to larger infor-
mation losses about the state of the grid, regardless of the attack
construction used by the malicious attacker. Most power injection
measurements correspond to higher ranked vulnerability indices but
there are instances of power flow measurements with a higher ranked
VuIx than that of power injection measurements. Interestingly, the
power injection measurements with lower vulnerability indices cor-
respond to the buses that are more isolated in the system, that is, the
buses with a lower number of connections. On the other hand, the
power flow measurements with higher ranked vulnerability indices
correspond to the branches with higher admittance. The VuIx for
k = 0 obtained in Corollary 1 is depicted for the purpose of serving
as a reference to assess the deviation when k > 0. In this setting, the
VuIx of most measurements does not change substantially for dif-
ferent values of k, which suggests that the VuIx is insensitive to the
state of the system.

Fig. 3 and Fig. 4 depict the mean and variance of the VuIx from
Algorithm 1 for all the measurements with SNR = 30 dB, λ = 2 and
ρ = 0.1 on the IEEE 9-bus system when k = 1 and k = 2, respec-
tively. Similarly to what is observed above, the mean of the VuIx
for most of the measurements does not deviate significantly from
the case when k = 0. However, most of the variance values deviate
significantly in comparison with the cases in Fig. 1 and Fig. 2 with
SNR = 10 dB. Fig. 5 and Fig. 6 depict the results on IEEE 30-bus
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Fig. 7: Vulnerability index (VuIx) when k = 1, SNR = 30 dB, λ = 2
and ρ = 0.1 on the IEEE 30-bus system.
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Fig. 8: Vulnerability index (VuIx) when k = 2, SNR = 30 dB, λ = 2
and ρ = 0.1 on the IEEE 30-bus system.

systems with the same setting as in Fig. 1 and Fig. 2, respectively.
Fig. 7 and Fig. 8 depict the results on IEEE 30-bus systems with the
same setting as in Fig. 3 and Fig. 4, respectively. Surprisingly, the
mean of the VuIx in larger systems coincides with that obtained for
the case k = 0, which suggests that the VuIx is a robust security
metric for large systems. In line with the previous observation, the
power injection measurements corresponding to the least connected
buses decrease in the VuIx when SNR = 10 dB.

6.2 Comparative vulnerability assessment of power flow
and power injection measurements

In Section 6.1 we have established that power injection measure-
ments and power flow measurements are qualitatively different in
terms of the VuIx. To provide a quantitative description of this
difference, Fig. 9 depicts the probability of a given VuIx i ∈
{1, 2, . . . ,m− |Ka|} being taken by a power injection measure-
ment or a power flow measurement for the IEEE 9-bus and 30-bus
systems when λ = 2, k = 2, SNR = 30 dB and ρ = 0.1. Specifically,
Fig. 9 depicts the probability of the following events:

Flowi: VuIx i corresponds to a power flow measurement,

Inji: VuIx i corresponds to a power injection measurement.

It is observed that in both systems, small VuIx are more likely to
correspond to power injection measurements than to power flow



Fig. 9: Probability mass function of Vulnerability index (VuIx) for
power injection measurements and power flow measurements when
λ = 2, k = 2, SNR = 30 dB and ρ = 0.1 on IEEE 9-bus and 30-bus
systems, respectively.

measurements, that is, P[Inji] > P[Flowi] for small values of i. Con-
versely, it holds that P[Inji] < P[Flowi] for large values of i. In fact,
small VuIx correspond to power injection measurements with prob-
ability one, which suggests that the most vulnerable measurements
in the system tend to be power injection measurements. Conversely,
the larger VuIx values correspond to power flow measurements with
probability one, which indicates that the least vulnerable measure-
ments tend to be power flow measurements. Interestingly, there is a
clear demarcation for each system for which P[Inji] and P[Flowi]
change rapidly with the VuIx value, which points to a phase transi-
tion type phenomenon for measurement vulnerability.

The probability of VuIx taken by power injection measurements
concentrates higher probability mass for higher priority vulnerability
indices. One the other hand, power flow measurements with higher
probability mass coincide with low ranked VuIx values. Precisely,
the probability of the vulnerability indices with higher priority taken
by power injection measurements is one in both IEEE 9-bus and
30-bus systems. Meanwhile, the probability of the lower ranked vul-
nerability indices taken by power flow measurements is one. Note
that the probability of mid-ranked vulnerability indices taken by
power injection measurements drops significantly, which indicates
that there are some power flow measurements that are equally as
vulnerable as power injection measurements. We observe that these
power flow measurements correspond to the branches with higher
admittance. The power injection measurements with lower vulner-
ability indices correspond with the buses that are isolated in the
systems.

Fig. 10 depicts the distribution of VuIx for power injection mea-
surements and power flow measurements on the IEEE 9-bus and
30-bus systems when λ = 2, k = 2, SNR = 30 dB and ρ = 0.1.
Specifically, Fig. 10 depicts the probability mass function of the
following events:

VuIx(Flow) = i: VuIx for power flow measurements is i,

VuIx(Inj) = i: VuIx for power injection measurements is i.

Power injection measurements have a higher probability with high
ranked VuIx, whereas power flow measurements have much higher
probability with low ranked VuIx. It is worth noting that the
probability mass functions are close to uniform for high and low
vulnerability index ranges. This suggests that the most vulnerable
measurements in the system are contained with high probability in
a subset of the power injection measurements. Conversely, the least
vulnerable measurements comprise the majority of the power flow

Fig. 10: Probability of Vulnerability index (VuIx) corresponds to
power injection measurements and power flow measurements when
λ = 2, k = 2, SNR = 30 dB and ρ = 0.1 on IEEE 9-bus and 30-bus
systems, respectively.

measurements with no apparent preference over the majority. Sur-
prisingly, in the 30-bus system, the probability of lowest ranked VuIx
for power flow measurements experiences a sharp increase.

7 Conclusion

In this paper, we have proposed, from a fundamental perspective, a
novel security metric referred to as vulnerability index (VuIx) that
characterizes the vulnerability of power system measurements to
data integrity attacks. We have achieved this by embedding infor-
mation theoretic measures into the metric definition. The resulting
VuIx framework evaluates the vulnerability of all the measurements
in the systems and enables the operator to identify those that are
more exposed to data integrity threats. We have tested the framework
for IEEE test systems and concluded that power injection measure-
ments are more vulnerable to data integrity attacks than power flow
measurements.
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