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Empirical Risk Minimization with
Relative Entropy Regularization

Samir M. Perlaza, Gaetan Bisson, Iñaki Esnaola, Alain Jean-Marie, and Stefano Rini.

Abstract—The empirical risk minimization (ERM) problem with
relative entropy regularization (ERM-RER) is investigated under
the assumption that the reference measure is a σ-finite measure,
and not necessarily a probability measure. Under this assump-
tion, which leads to a generalization of the ERM-RER problem
allowing a larger degree of flexibility for incorporating prior
knowledge, numerous relevant properties are stated. Among these
properties, the solution to this problem, if it exists, is shown
to be a unique probability measure, often mutually absolutely
continuous with the reference measure. Such a solution exhibits a
probably-approximately-correct guarantee for the ERM problem
independently of whether the latter possesses a solution. For a
fixed dataset, the empirical risk is shown to be a sub-Gaussian
random variable when the models are sampled from the solution
to the ERM-RER problem. The generalization capabilities of
the solution to the ERM-RER problem (the Gibbs algorithm)
are studied via the sensitivity of the expected empirical risk to
deviations from such a solution towards alternative probability
measures. Finally, an interesting connection between sensitiv-
ity, generalization error, and lautum information is stablished.

Index Terms—Supervised Learning, PAC-Learning, Regulariza-
tion, Relative Entropy, Empirical Risk Minimization, Gibbs Mea-
sure, Gibbs Algorithm, Generalization, and Sensitivity.

I. INTRODUCTION

In statistical machine learning, the problem of empirical
risk minimization (ERM) with relative entropy regularization
(ERM-RER) has been the workhorse for building probabil-
ity measures on the set of models, without any additional
assumption on the statistical description of the datasets. See
for instance [3]–[5] and [6]. Instead of additional statistical
assumptions on the datasets, which are typical in Bayesian
methods, as shown in [7], relative entropy regularization
requires a reference probability measure, which is external to
the ERM problem. Often, such reference measure represents
prior knowledge and is chosen for guiding the search of
models towards those inducing low empirical risks with high
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probability. The solution to the ERM-RER problem is known
to be unique and correspond to a Gibbs probability measure.
Such a Gibbs probability measure has been studied using
information theoretic notions in [8]–[13]; statistical physics
in [3]; PAC (Probably Approximatively Correct)-Bayesian
learning theory in [14]–[17]; and proved to be of particular
interest in classification problems in [18], [19] and supervised
learning with energy-based models in [20].

In this paper, the ERM-RER is generalized to incorporate
a σ-finite measure with arbitrary support as the reference
measure. The flexibility introduced by this generalization
becomes particularly relevant for the case in which priors are
available in the form of probability distributions that can be
evaluated up to some normalizing factor, cf. [21], or cannot be
represented by probability distributions, e.g., equal preferences
among elements of infinite countable sets. For some specific
choices of the reference measure, the ERM-RER boils down
to particular cases of special interest: (i) the information-
risk minimization problem presented in [11]; (ii) the ERM
with differential entropy regularization; and (iii) the ERM
with discrete entropy regularization. See for instance [22] and
references therein. Hence, the proposed formulation yields a
unified mathematical framework that comprises a large class
of problems. In this paper, if the solution to the ERM-RER
problem exists, it is shown to be unique. The condition for the
existence is mild and is always satisfied when the reference
measure is a probability measure. Interestingly, such a solution
is mutually absolutely continuous with the reference measure
in most practical cases. In this general setting, the solution
is recognized as a Gibbs probability measure despite the fact
that its partition function is defined with respect to a σ-finite
measure. Interestingly, most of the properties known for the
classical ERM-RER problem are shown to hold in the most
general case. For instance, the empirical risk observed when
models are sampled from the ERM-RER optimal probability
measure is a sub-Gaussian random variable that exhibits a PAC
guarantee for the ERM problem without regularization.

When the solution to the ERM-RER problem is used to
sample models to label unseen patterns, the process is known
as the Gibbs algorithm. One of the traditional performance
metrics to evaluate the generalization capabilities of the Gibbs
algorithm is the generalization error. When the reference
measure is a probability measure, a closed-form expression for
the generalization error of the Gibbs algorithm is presented in
[8], while upper bounds have been derived in [10]–[17], [23]–
[36], and references therein. In this work, a new performance
metric coined sensitivity, which quantifies the increment of the
expected empirical risk due to deviations from the solution
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of the ERM-RER problem is introduced. The sensitivity is
defined as the difference between two quantities: (a) The
expectation of the empirical risk with respect to the solution
to the ERM-RER problem; and (b) the expectation of the
empirical risk with respect to an alternative measure. The
absolute value of the sensitivity is shown to be upper bounded
by a term that is proportional to the squared-root of the
relative entropy of the alternative measure with respect to the
ERM-RER-optimal measure. Such bound allows providing a
lower and upper bounds on the expected empirical risk after
the deviation from the ERM-RER optimal measure towards
an alternative probability measure. More interestingly, the
expectation (with respect to the probability distribution of the
datasets) of the sensitivity to a specific measure is shown to be
equal to the generalization error of the Gibbs algorithm. Using
this result, the closed-form expression for the generalization
error of the Gibbs algorithm presented in [8] is shown to hold
even in the case in which the reference measure is a σ-finite
measure. Moreover, the generalization error is shown to be
upper bounded by a term that is proportional to the squared-
root of the lautum information between the models and the
datasets, cf. [37]. This bound is reminiscent of the result in
[13, Theorem 1] in which a similar bound is presented using
the mutual information instead of the lautum information.
Interestingly, the new upper-bound does not require any of
the conditions in [13, Theorem 1].

The remainder of this work is organized as follows. Section II
introduces two optimization problems: the ERM and the ERM-
RER. Section III presents the solution to the ERM-RER
problem in the general case and introduces its main properties.
Section IV studies the properties of the log-partition function
of the ERM-RER-optimal probability measure. Section V
and Section VI study the properties of the expectation and
variance of the empirical risk when the models are sampled
from the ERM-RER-optimal probability measure. Section VII
describes the monotonic concentration of the ERM-RER-
optimal probability measure when the regularization factor
tends to zero. Section VIII and Section IX respectively show
that the empirical risk when the models are sampled from
the ERM-RER-optimal probability measure is a sub-Gaussian
random variable and exhibits a PAC guarantee with respect to
the problem without regularization. Finally, Section X studies
the sensitivity of the empirical risk function with respect to
deviations from the ERM-RER optimal measure and shows
connections with the generalization error and lautum informa-
tion measure. Section XI ends this work with conclusions and
a discussion on the results.

II. EMPIRICAL RISK MINIMIZATION (ERM)

LetM, X and Y , withM⊆ Rd and d ∈ N, be sets of models,
patterns, and labels, respectively. A pair (x, y) ∈ X × Y is
referred to as a labeled pattern or as a data point. Given n
data points, with n ∈ N, denoted by (x1, y1), (x2, y2),
. . ., (xn, yn), the corresponding dataset is represented by the
tuple

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)
∈ (X × Y)

n
. (1)

Let the function f : M × X → Y be such that the label
assigned to the pattern x according to the model θ ∈ M is
f(θ, x). Let also the function

` : Y × Y → [0,+∞] (2)

be such that given a data point (x, y) ∈ X×Y , the risk induced
by a model θ ∈M is ` (f(θ, x), y). In the following, the risk
function ` is assumed to be nonnegative and for all y ∈ Y ,
` (y, y) = 0.

The empirical risk induced by the model θ, with respect to
the dataset z in (1) is determined by the function Lz :M→
[0,+∞], which satisfies

Lz (θ) =
1

n

n∑
i=1

` (f(θ, xi), yi) . (3)

Using this notation, the ERM consists of the following opti-
mization problem:

min
θ∈M

Lz (θ) . (4)

Let the set of solutions to the ERM problem in (4) be denoted
by

T (z) , arg min
θ∈M

Lz (θ) . (5)

Note that if the setM is finite, the ERM problem in (4) always
possesses a solution, and thus, |T (z)| > 0. Nonetheless, in
general, the ERM problem might not necessarily possess a
solution, i.e., |T (z)| = 0.

A. Notation and Main Assumptions

In the following, given a measurable space (Ω,F ), the
notation 4 (Ω,F ) is used to represent the set of σ-finite
measures that can be defined over (Ω,F ). Given a mea-
sure Q ∈ 4 (Ω,F ), the subset 4Q (Ω,F ) of 4 (Ω,F ) con-
tains all σ-finite measures that are absolutely continuous with
respect to the measure Q. Alternatively, the subset 5Q (Ω,F )
of4 (Ω,F ) contains all probability measures P such that Q is
absolutely continuous with respect to P . Given a set A ⊂ Rd,
the Borel σ-field over A is denoted by B (A).

The main assumption adopted in this work is that the function
Lz in (3) is measurable with respect to the Borel measurable
spaces (M,B (M)) and ([0,+∞],B ([0,+∞])).

B. Relative Entropy Extended to σ-Finite Measures

In this work, the relative entropy, which is usually defined for
probability measures, is extended to σ-finite measures.

Definition 1 (Generalized Relative Entropy): Given two σ-
finite measures P and Q on the same measurable space, such
that P is absolutely continuous with respect to Q, the relative
entropy of P with respect to Q is

D (P‖Q) =

∫
dP

dQ
(x) log

Å
dP

dQ
(x)

ã
dQ(x), (6)

where the function dP
dQ is the Radon-Nikodym derivative of P

with respect to Q.



3

The relative entropy exhibits a property often referred to as
the information inequality [38, Theorem 2.6.3] in the case of
probability measures on (Ω,F ), with Ω a countable set. The
following theorem explores this property in a more general
scenario.

Theorem 1: If P and Q are both probability measures on a
general measurable space (Ω,F ), then,

D (P‖Q)>0, (7)

with equality if and only if P and Q are identical.

Proof: Consider the function f : [0,∞)→ R such that for all
x ∈ (0,+∞), f(x) = x log(x) and f(0) = 0. Note that f is
strictly convex. If P and Q are both probability measures on
the measurable space (Ω,F ), the following holds:

D (P‖Q)=

∫
dP

dQ
(x) log

Å
dP

dQ
(x)

ã
dQ(x) (8)

=

∫
f

Å
dP

dQ
(x)

ã
dQ(x) (9)

>f
Å∫

dP

dQ
(x)dQ(x)

ã
(10)

=f (1) (11)
=0, (12)

where the inequality (11) follows from Jensen’s inequality [39,
Section 6.3.5]. Equality in (11) holds if and only if for all
x ∈ suppQ, dP

dQ (x) = 1, which implies that both P and Q
are identical. This completes proof.

If Q is not a probability measure, then it might be observed
that D (P‖Q) < 0. Consider for instance the case in which
P is a zero-mean Gaussian probability measure with variance
σ2 and Q is the Lebesgue measure on (R,B (R)). Hence,
the Radon-Nikodym derivative dP

dQ is the Gaussian probability
density function such that for all x ∈ R,

dP

dQ
(x)=

1√
2πσ2

exp

Å
− x2

2σ2

ã
. (13)

Under this assumption, the relative entropy of P with respect
to Q is the negative of the differential entropy of P . That
is,

D (P‖Q)=−1

2
log
(
2πεσ2

)
, (14)

with ε being Néper’s constant. See for instance [38, Ex-
ample 8.1.2]. Hence, D (P‖Q) is negative for all σ2 ∈(

1
2πε ,+∞

)
and nonnegative for all σ2 ∈

(
0, 1

2πε

]
. Finally,

note also that

lim
σ2→0

D (P‖Q)=−∞, and (15)

lim
σ2→+∞

D (P‖Q)=+∞. (16)

A central observation from (14) is that the equality
D (P‖Q) = 0 does not necessarily imply that P and Q are
identical measures. For instance, when σ2 = 1

2πε in (15), it
holds that D (P‖Q) = 0, while P is a Gaussian probability
measure and Q is the Lebesgue measure.

The following property, known for the case of probability
measures as the joint-convexity of the relative entropy, is
extended by the following theorem.

Theorem 2: Let P1 and P2 be two probability measures and Q1

and Q2 be two σ-finite measures, all on the same measurable
space. For all i ∈ {1, 2}, let Pi be absolutely continuous with
respect to Qi. Then, for all λ ∈ (0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

6λD (P1‖Q1) + (1− λ)D (P2‖Q2) . (17)

Equality in (17) holds if and only if P1 = P2 and Q1 = Q2.

Proof: The proof is presented in Appendix A.

C. ERM with Relative Entropy Regularization

Given a dataset, the expected empirical risk induced by a
measure P ∈ ∆ (M,B (M)) is defined as follows.

Definition 2 (Expected Empirical Risk): Let P be a probability
measure in ∆ (M,B (M)). The expected empirical risk with
respect to the dataset z in (1) induced by the measure P is

Rz (P ) =

∫
Lz (θ) dP (θ), (18)

where the function Lz is in (3).

The ERM-RER problem is parametrized by a σ-finite measure
in 4 (M,B (M)) and a positive real, which are referred
to as the reference measure and the regularization factor,
respectively. Let Q ∈ 4 (M,B (M)) be a σ-finite measure
and let λ be a positive real. The ERM-RER problem, with
parameters Q and λ, consists of the following optimization
problem:

min
P∈4Q(M,B(M))

Rz (P ) + λD (P‖Q) , (19a)

s. t.

∫
dP (θ) = 1, (19b)

where the dataset z is in (1), and the function Rz is defined
in (18).

D. Type-I and Type-II Relative Entropy Regularization

The optimization problem in (19) is coined Type-I ERM-RER
in [40] in the aim of distinguishing it from the optimization
problem

min
P∈5Q(M,B(M))

Rz (P ) + λD (Q‖P ) , (20a)

s. t.

∫
dP (θ) = 1, (20b)

which is coined Type-II ERM-RER.

The Type-II ERM-RER problem in (20), when Q is a probabil-
ity measure, exhibits a solution that is identical to the solution
to the following Type-I ERM-RER problem [40, Theorem 1]:

min
P∈4Q(M,B(M))

∫
log(β+Lz(ν))dP (ν)+D(P‖Q), (21a)

s. t.

∫
dP (θ) = 1, (21b)
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where β is a constant chosen to satisfy∫
λ

β + Lz (ν)
dQ(ν)=1. (21c)

Essentially, by appropriately transforming the objective func-
tion, an equivalence can be established between Type-I and
Type-II ERM-RER problems. Hence, without loss of general-
ity, the remainder of this work focuses exclusively on Type-I
ERM-RER, which is simply referred to as ERM-RER.

III. THE SOLUTION TO THE ERM-RER PROBLEM

The solution to the ERM-RER problem in (19) is presented
in terms of two objects. First, the function KQ,z : R → R ∪
{+∞} such that for all t ∈ R,

KQ,z (t)=log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
, (22)

with Lz in (3). Second, the set KQ,z ⊂ (0,+∞), which is
defined by

KQ,z,
ß
s ∈ (0,+∞) : KQ,z

Å
−1

s

ã
< +∞

™
. (23)

The notation for the function KQ,z and the set KQ,z are
chosen such that their parametrization by (or dependence on)
the dataset z in (1) and the σ-finite measure Q in (19) are
highlighted. The log-partition function KQ,z in (22) exhibits
the following properties.

Lemma 1: The function KQ,z in (22) is nondecreasing and
differentiable infinitely many times.

Proof: The proof is presented in Appendix B.

The following lemma describes the set KQ,z .

Lemma 2: The set KQ,z in (23) is either the empty set or of the
form (0, b) or (0, b], for some b ∈ (0,+∞]. If the measure Q
in (19) is a probability measure, then, the set KQ,z in (23)
satisfies

KQ,z = (0,+∞). (24)

Proof: The proof is presented in Appendix C.

Using this notation, the solution to the ERM-RER problem
in (19) is presented by the following theorem.

Theorem 3: For all λ ∈ KQ,z , with KQ,z in (23), the
solution to the optimization problem in (19) is a unique
probability measure, denoted by P

(Q,λ)
Θ|Z=z , which satisfies for

all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
, (25)

where the function Lz is defined in (3) and the function KQ,z

is defined in (22).

Proof: The proof is presented in Appendix D.

Contrary to the ERM problem in (4), which does not necessar-
ily possess a solution, the ERM-RER problem in (19) always
possess a solution when Q is a probability measure. This is
essentially because the set KQ,z is never empty (Lemma 2).

On the contrary, when Q is a σ-finite measure, the solution to
the ERM-RER problem in (19) depends on whether λ ∈ KQ,z .
If the solution exists, it is P (Q,λ)

Θ|Z=z in (25), which is a unique
probability measure referred to as the Gibbs measure [41]. The
function KQ,z is often referred to as the log-partition function,
see for instance, [42, Section 7.3.1].

Theorem 3 shows that the probability measure P
(Q,λ)
Θ|Z=z is

absolutely continuous with respect to the measure Q. The
following lemma shows that the converse is also true if and
only if the set of models that lead to an infinite empirical risk
exhibit zero measure with respect to the reference measure
Q.

Lemma 3: For all λ ∈ KQ,z , with KQ,z in (23), the σ-finite
measure Q and the probability measure P (Q,λ)

Θ|Z=z in (25) are
mutually absolutely continuous if and only if

Q ({θ ∈M : Lz (θ) = +∞}) = 0. (26)

Proof: The proof is presented in Appendix E.

The relevance of Lemma 3 is that it shows that for all λ ∈
KQ,z , the collection of negligible sets with respect to the
measure P

(Q,λ)
Θ|Z=z in (25) is identical to the collection of

negligible sets with respect to the measure Q in (19), under
the assumption in (26). Such an assumption is trivially true
when the function ` in (2) is bounded.

The following lemma shows that the negligible sets with
respect to the measure P

(Q,λ)
Θ|Z=z in (25) are invariant with

respect to the choice of λ ∈ KQ,z .

Lemma 4: For all (α, β) ∈ KQ,z × KQ,z , with KQ,z in (23),
assume that the measures P (Q,α)

Θ|Z=z and P (Q,β)
Θ|Z=z satisfy (25)

with λ = α and λ = β, respectively. Then, P (Q,α)
Θ|Z=z

and P (Q,β)
Θ|Z=z are mutually absolutely continuous.

Proof: The proof is presented in Appendix F.

The following lemma determines the value of the objec-
tive function of the ERM-RER problem in (19) when it is
evaluated at its solution. This result appeared first in [43,
Lemma 3].

Lemma 5 (Lemma 3 in [43]): The probability measure P (Q,λ)
Θ|Z=z

in (25) and the σ-finite measure Q in (19) satisfy

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+λD

Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=−λKQ,z

Å
− 1

λ

ã
and (27)

Rz (Q)− λD
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
=−λKQ,z

Å
− 1

λ

ã
, (28)

where the function Rz is defined in (18); and the func-
tion KQ,z is defined in (22).

Proof: From Theorem 3, it follows that for all θ ∈
suppQ,

log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
=−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ) , (29)
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where the functions Lz is defined in (3). Thus,

D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
=

∫
log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=z (θ) (30)

=−KQ,z

Å
− 1

λ

ã
−1

λ

∫
Lz (θ)dP

(Q,λ)
Θ|Z=z (θ) (31)

=−KQ,z

Å
− 1

λ

ã
− 1

λ
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, (32)

where the function Rz is defined in (18). This completes the
proof of (27).

From (29), it follows that

D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
=−

∫
log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(θ)

é
dQ (θ) (33)

=KQ,z

Å
− 1

λ

ã
+

1

λ

∫
Lz (θ) dQ (θ) (34)

=KQ,z

Å
− 1

λ

ã
+

1

λ
Rz (Q) , (35)

which completes the proof of (28).

From Lemma 4, it follows that

Rz (Q)− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=λ
Ä
D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
+D

Ä
P

(Q,λ)
Θ|Z=z‖Q

ää
, (36)

where the right-hand side is a symmetrized Kullback-Liebler
divergence, also known as Jeffrey’s divergence [44], between
the measures Q and P (Q,λ)

Θ|Z=z . More importantly, when Q is a

probability measure, it follows that D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
> 0 and

D
Ä
Q‖P (Q,λ)

Θ|Z=z

ä
> 0, which leads to the following corollary

from Lemma 4.

Corollary 1: If the σ-finite measure Q in (19) is a probability
measure, then, the probability measure P (Q,λ)

Θ|Z=z in (25) satis-
fies

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 Rz (Q) , (37)

where, the function Rz is defined in (18).

Particular assumptions on the set M and the reference mea-
sure Q lead to well-known instances of the ERM-RER prob-
lem in (19), as discussed hereunder.

A. Special Cases

Three cases are of particular interest: (a) The set M ⊂ Rd
is countable and the measure Q is the counting measure in
(M,B (M)); (b) The setM is an uncountable subset of Rd,
and Q is the Lebesgue measure on (M,B (M)); and (c) The
set M and the measure Q form a Borel probability measure
space (M,B (M) , Q).

1) ERM with Discrete Entropy Regularization (ERM-DisER):
When the set M ⊂ Rd is countable and the σ-finite mea-
sure Q in (19) is the counting measure in (M,B (M)),
given a probability measure P ∈ 4 (M,B (M)), the Radon-
Nikodym derivative dP

dQ is a probability mass function, denoted
by p. Thus, the relative entropy D (P‖Q) is equivalent to the
negative of the discrete entropy [38, Chapter 2], denoted by
H(p). Hence, the ERM-RER in (19) can be re-written as the
following ERM with discrete entropy regularization (ERM-
DisER) problem:

min
p

∑
θ∈M

Lz (θ) p (θ)− λH (p) , (38)

where the optimization domain in (38) is the set of probability
mass functions on 4 (M,B (M)). In this special case, the
probability measure P (Q,λ)

Θ|Z=z whose probability mass function
is the solution to the ERM-DisER problem in (38) satis-
fies

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä
−Lz(θ)

λ

ä
∑
ν∈M

exp

Å
−Lz (ν)

λ

ã , (39)

which describes the discrete Gibbs probability measure
on4 (M,B (M)), with temperature parameter λ, and energy
function Lz in (3).
2) ERM with Differential Entropy Regularization (ERM-
DiffER): When M ⊆ Rd is uncountable and the σ-finite
measure Q in (19) is the Lebesgue measure in (M,B (M)),
for all probability measures P ∈ ∆ (M,B (M)), the Radon-
Nikodym derivative dP

dQ is a probability density function,
denoted by g. Thus, the relative entropy D (P‖Q) is equivalent
to the negative of the differential entropy [38, Chapter 8],
denoted by h(g). In this special case, the ERM-RER in (19)
can be re-written as the following ERM with differential
entropy regularization (ERM-DiffER) problem:

min
g

∫
M

Lz (θ) g (θ) dθ − λh (g) , (40)

where the optimization domain in (40) is the set of probability
density functions on (M,B (M)). The probability measure
P

(Q,λ)
Θ|Z=z whose probability density function is the solution to

the ERM-RER problem in (40) satisfies

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä
−Lz(θ)

λ

ä∫
M

exp

Å
−Lz (ν)

λ

ã
dν

, (41)

which describes the absolutely continuous Gibbs probability
measure with temperature parameter λ and energy function Lz
in (3).

Both, the ERM-DiffER and ERM-DisER problems are closely
related to those typically arising while using Jayne’s maximum
entropy principle [45], [45] for classification problems such as
those in [18], [19], and [46].
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3) Information-Risk Minimization: When Q is a probabil-
ity measure, the ERM-RER in (19) is equivalent to the
information-risk minimization (IRM) problem in [11]. The
IRM problem in (19) is known to possess a unique solution
equal to the Gibbs probability measure in (25), as indepen-
dently shown in [11], [13], [41], [47], [48] and [49].

B. Bounds on the Radon-Nikodym Derivative

Under the assumption that the ERM problem in (4) possesses
a solution in the support of the reference measure suppQ,

the maximum of the function
dP

(Q,λ)

Θ|Z=z

dQ in (25) is achieved
by the models that are at the intersection of suppQ and
the set T (z) in (5). The following lemma formalizes this
observation.

Lemma 6: For all λ ∈ KQ,z , with KQ,z in (23), for all θ1 ∈
suppQ, and for all θ2 ∈ T (z) ∩ suppQ, with T (z) in (5),

the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies that

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) 6

dP
(Q,λ)
Θ|Z=z

dQ
(θ2) , (42)

with equality if and only if θ1 ∈ T (z) ∩ suppQ.

Proof: The proof is presented in Appendix G.

When the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is
either the probability mass function in (39) or the probability
density function in (41), Lemma 7 shows that the elements
of the set T (z) ∩ suppQ in (5) are the modes of the
corresponding probability density function or probability mass
function.

The following lemma shows that, independently of whether
the ERM-RER problem in (19) possesses a solution, the
Radon-Nikodym derivative in (25) is both nonnegative and
finite.

Lemma 7: For all λ ∈ KQ,z , with KQ,z in (23), and for

all θ ∈ suppQ, the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ
in (25) satisfies that

0 6
dP

(Q,λ)
Θ|Z=z

dQ
(θ) < +∞, (43)

where the equality
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0 holds if and only
if Lz (θ) = +∞.

Proof: The proof is presented in Appendix H.

An immediate consequence of Lemma 7 is the
equalityP (Q,λ)

Θ|Z=z ({θ ∈M : Lz (θ) = +∞}) = 0.

C. Asymptotes of the Radon-Nikodym Derivative

The following lemma describes the asymptotic behavior of

the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) when the
regulariation factor increases, i.e., λ→ +∞.

Lemma 8: Let the measure Q in (19) be a probability
measure. Then, for all θ ∈ suppQ, the Radon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=1. (44)

Proof: From Theorem 3, it follows that for all θ ∈
suppQ,

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)= lim

λ→+∞

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(45)

=
1∫

dQ (ν)

(46)

=1, (47)

where the function Lz is defined in (3). This completes the
proof.

Lemma 8 unveils the fact that, when Q is a probability
measure, in the limit when λ → +∞, both probability
measures P

(Q,λ)
Θ|Z=z and Q are identical. This is consistent

with the fact that when λ tends to infinity, the optimization
problem in (19) boils down to exclusively minimizing the
relative entropy. Such minimum is zero and is observed
when both probability measures P (Q,λ)

Θ|Z=z and Q are identical
(Theorem 1). Alternatively, from Lemma 2, it follows that,
when Q is not a probability measure, the set KQ,z might be
an interval of the form (0, b), with b < ∞. Hence, in such a
case, the analysis in which λ tends to infinity is void.

The limit of the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25),
when λ tends to zero from the right, can be studied using the
following set

Lz (δ),{θ ∈M : Lz (θ) 6 δ} , (48)

where the function Lz is defined in (3) and δ ∈ [0,+∞). In
particular consider the nonnegative real

δ?Q,z , inf {δ ∈ [0,+∞) : Q (Lz (δ)) > 0} . (49)

Let also L?Q,z be the following level set of the empirical risk
function Lz in (3):

L?Q,z,
{
θ ∈ suppQ : Lz (θ) = δ?Q,z

}
. (50)

Using this notation, the limit of the Radon-Nikodym deriva-

tive
dP

(Q,λ)

Θ|Z=z

dQ in (25), when λ tends to zero from the right, is
described by the following lemma.

Lemma 9: If Q
Ä
L?Q,z

ä
> 0, with the set L?Q,z in (50) and Q

the σ-finite measure in (19), then for all θ ∈ suppQ, the

Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}. (51)
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Alternatively, if Q
Ä
L?Q,z

ä
= 0. Then, for all θ ∈ suppQ,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

ß
+∞ if θ ∈ L?Q,z

0 otherwise.
(52)

Proof: The proof is presented in Appendix I.

Consider that Q
Ä
L?Q,z

ä
> 0, with L?Q,z in (50). Under

this assumption, from Lemma 9, it holds that the probability
measure P (Q,λ)

Θ|Z=z asymptotically concentrates on the set L?Q,z
when λ tends to zero from the right. More specifically, note
that for all measurable sets A ⊆ L?Q,z ∩ suppQ, it holds
that

lim
λ→0+

P
(Q,λ)
Θ|Z=z (A)= lim

λ→0+

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) (53)

=

∫
lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)1{θ∈A}dQ(θ) (54)

=

∫
1

Q
Ä
L?Q,z

ä1{θ∈L?Q,z}1{θ∈A}dQ(θ) (55)

=
1

Q
Ä
L?Q,z

ä ∫ 1{θ∈A}dQ (θ) (56)

=
Q (A)

Q
Ä
L?Q,z

ä , (57)

where the equality in (54) follows from Lemma 7 and the
dominated convergence theorem [39, Theorem 2.6.9]. The
equality in (55) follows from Lemma 9. In the particular case
in which A = L?Q,z in (57), it holds that lim

λ→0+
P

(Q,λ)
Θ|Z=z

(
L?Q,z

)
= 1, which verifies the asymptotic concentration of the prob-
ability measure P (Q,λ)

Θ|Z=z on the set L?Q,z .

Another interesting observation is that the Radon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is a constant among the elements of
the set L?Q,z . This can be assimilated to a uniform distribution
of the probability among the elements of the set L?Q,z in the
limit when λ tends to zero from the right. This becomes more
evident in the case in which the set M is finite and Q is the
counting measure. In such a case, the asymptotic probability
of each of the elements in L?Q,z when λ tends to zero from
the right is 1

|L?Q,z|
.

Consider now that Q
Ä
L?Q,z

ä
= 0, with L?Q,z in (50). Under

this assumption, for all λ ∈ KQ,z , with KQ,z in (23), the
probability measure P

(Q,λ)
Θ|Z=z is absolutely continuous with

respect to the measure Q, and thus, P (Q,λ)
Θ|Z=z

Ä
L?Q,z

ä
= 0.

This is typically the case in whichM = Rd, the measure Q is
absolutely continuous with respect to the Lebesgue measure,
and the solution to the ERM problem in (4) has a unique
solution, i.e., L?Q,z = T (z) and |T (z)| = 1, which im-
plies Q(L?Q,z) = 0.

The following lemma shows that independently of whether the
set L?Q,z is negligible with respect to the measure Q, the limit
when λ tends to zero from the right of P (Q,λ)

Θ‖Z=z

Ä
L?Q,z

ä
is

equal to one.

Lemma 10: The measure P
(Q,λ)
Θ|Z=z in (25) and the set L?Q,z

in (50) satisfy,

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
=1. (58)

Proof: The proof is presented in Appendix J.

Note that if the ERM problem in (4) possesses at least one
solution and such solution is within the support of the mea-
sure Q, i.e., T (z) ∩ suppQ 6= ∅, then, when λ tends to zero
from the right, the probability measure P (Q,λ)

Θ|Z=z asymptotically
concentrates on the solution (or the set of solutions within the
support of Q) to the ERM problem in (4). Alternatively, in
the case in which L?Q,z ∩ T (z) = ∅, when λ tends to zero
from the right, the probability measure P (Q,λ)

Θ|Z=z asymptotically
concentrates on a set that does not contain the set of solutions
to the ERM problem in (4).

D. Coherent and Consistent Reference Measures

A class of reference measures of particular importance to
establish connections between the set of solutions to the ERM
problem in (4) and the solution to the ERM-RER problem
in (19) is that of coherent measures. Let ρ? > 0 be the infimum
of the empirical risk Lz in (3). That is,

ρ? , inf{Lz (θ) : θ ∈M}. (59)

Using this notation, coherent measures are defined as fol-
lows.

Definition 3 (Coherent Measures): The σ-finite measure Q
in (19) is said to be coherent if, for all δ ∈ (ρ?,+∞), with
ρ? in (59), it holds that

Q (Lz (δ)) > 0, (60)

where the set Lz (δ) is defined in (48).

When the reference measure in the EMR-RER problem in (19)
is a coherent measure Q, for all δ > ρ?, the set Lz (δ)
in (48) exhibits positive probability measure with respect to
the probability measure P (Q,λ)

Θ|Z=z in (25). The following lemma
highlights this observation.

Lemma 11: The probability measure P (Q,λ)
Θ|Z=z in (25) satisfies

for all δ ∈ (ρ?,+∞), with ρ? in (59), that

P
(Q,λ)
Θ|Z=z (Lz (δ))>0, (61)

with Lz (δ) in (48), if and only if the σ-finite measure Q
in (19) is coherent.

Proof: The proof is presented in Appendix K.

Under the assumption that the ERM problem in (4) possesses
a solution, it holds that

min
θ∈M

Lz (θ)=inf{Lz (θ) : θ ∈M}. (62)

Hence, when the σ-finite measure Q in (19) is coherent,
then

δ?Q,z = ρ?, (63)
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with δ?Q,z in (49) and ρ? in (59), which implies that

L?Q,z ⊆ T (z) , (64)

with T (z) in (5) and L?Q,z in (50). This observation, together
with Lemma 10, leads to the following result.

Lemma 12: Assume that the ERM problem in (4) possesses a
solution. Then, the probability measure P (Q,λ)

Θ|Z=z in (25) and
the sets T (z) in (5) and L?Q,z in (50) satisfy

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z ∩ T (z)

)
=1, (65)

if and only if the σ-finite measure Q in (19) is coherent.

Proof: The proof follows by observing that if the ERM
problem in (4) possesses a solution, the inclusion in (64)
holds. Thus, from Lemma 10, the equality in (65) holds.
Alternatively, when the measure Q in (19) is noncoherent,
then δ?Q,z > ρ?, which implies that L?Q,z ∩T (z) = ∅. Hence,
from Lemma 10, it follows that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z ∩ T (z)

)
=0, (66)

and completes the proof.

The relevance of coherent measures in ERM-RER problems
is well highlighted by Lemma 12. Essentially, when the ERM
problem in (4) possesses at least one solution, the concen-
tration of the probability measure P (Q,λ)

Θ|Z=z in (25) on the set
(or a subset) of solutions to the ERM problem in (4) occurs
asymptotically when λ tends to zero from the right, if only if
the reference measure Q in (19) is coherent. Nonetheless, such
asymptotic concentration is not a guarantee that for strictly
positive values of λ in (19), the set T (z) in (5) and the
measure P (Q,λ)

Θ|Z=z in (25) satisfy P (Q,λ)
Θ|Z=z (T (z)) > 0. In order

to ensure this, another class of reference measures, known as
consistent measures, is introduced.

Definition 4 (Consistent Measure): The σ-finite measure Q
in (19) is said to be consistent if Q

Ä
L?Q,z

ä
> 0, with L?Q,z

in (50).

Note that every consistent measure is not necessarily coherent.
For instance, if Q is consistent but δ?Q,z > ρ?, with ρ? in (59)
and δ?Q,z in (49), then, for all δ ∈ (ρ?, δ?Q,z), it follows that
Q (Lz (δ)) = 0, and thus, Q is not coherent. Alternatively,
every coherent measure is not necessarily consistent. For
instance, if

∣∣∣L?Q,z∣∣∣ = 1 and Q is coherent and absolutely
continuous with respect to the Lebesgue measure, it follows
that Q

Ä
L?Q,z

ä
= 0, and thus, Q is not consistent.

The relevance of consistent measures is highlighted by the
following lemma.

Lemma 13: For all λ ∈ KQ,z , with KQ,z in (23), the
probability measure P (Q,λ)

Θ|Z=z in (25) and the set L?Q,z in (50)
satisfy

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
>0, (67)

if and only if the σ-finite measure Q in (19) is consistent.

Proof: When Q is nonconsistent, it holds that Q
Ä
L?Q,z

ä
=

0 and thus, from the fact that the measure P
(Q,λ)
Θ|Z=z in (25)

is absolutely continuous with respect to Q, it holds that for
all λ ∈ KQ,z , P (Q,λ)

Θ|Z=z

Ä
L?Q,z

ä
= 0. When Q is consistent,

it holds that Q
Ä
L?Q,z

ä
> 0. Moreover, for all θ ∈ L?Q,z , it

holds that Lz (θ) < +∞ and thus, from Lemma 7, it follows

that for all λ ∈ KQ,z ,
dP

(Q,λ)

Θ|Z=z

dQ (θ) > 0. Hence,

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
=

∫
L?Q,z

dP
(Q,λ)
Θ|Z=z (θ) (68)

=

∫
L?Q,z

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (69)

which completes the proof.

The following lemma highlights a central property of con-
sistent measures when the ERM problem in (4) possesses a
solution.

Lemma 14: Assume that the ERM problem in (4) possesses a
solution. For all λ ∈ KQ,z , with KQ,z in (23), the probability
measure P (Q,λ)

Θ|Z=z in (25) and the set T (z) in (5) satisfy

P
(Q,λ)
Θ|Z=z

(
L?Q,z ∩ T (z)

)
>0, (70)

if and only if the σ-finite measure Q in (19) is consistent.

Proof: The proof follows from Lemma 13 by noticing that
when the ERM problem in (4) possesses a solution, the
inclusion in (64) holds.

The distinction between coherent and consistent measures
becomes more evident under certain conditions. Consider the
case in which M is finite. In this case, if the solution to the
ERM problem in (4) is in the support of a σ-finite measure Q,
then Q is both coherent and consistent. This is essentially
because all models in suppQ exhibit positive measure with
respect to Q. Alternatively, if the solution to the ERM problem
in (4) is not in the support of Q, then Q is consistent but not
coherent. Consider the case in whichM is the set Rd; the loss
function ` in (2) is continuous; and the ERM problem in (4)
admits a unique solution. In this case, any probability measure
Q absolutely continuous with respect to the Lebesgue measure
is a coherent measure, but it is not a consistent measure.
Alternatively, if the set of solutions to the ERM problem in (4)
exhibits positive Lebesgue measure, then, the measure Q is
both coherent and consistent.

E. Gibbs Reference Measures

In model selection, a natural idea is to proceed by successive
approximations in the seek of lower computation complexity.
From this perspective, one might wonder whether the solution
to a current instance of an ERM-RER problem might serve as
reference measure for the next instance. In this section, it is
shown that this yields no benefit. Composing two successive
ERM-REM problems boils down to a unique ERM-RER
problem with the initial reference measure and a particular
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regularization factor. Under the assumption that λ ∈ KQ,z ,
with KQ,z in (23), the problem of interest is:

min
P∈4Q(M,B(M))

Rz (P ) + αD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (71a)

s. t.

∫
dP (θ) = 1, (71b)

where α > 0; the reference measure P
(Q,λ)
Θ|Z=z , which satis-

fies (25), is the solution of the ERM-RER problem in (19);
and the function Rz is defined in (18). From Theorem 3, the
solution to the ERM-RER problem in (71), which is denoted

by P
Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z , satisfies for all θ ∈ suppQ that

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)

=exp

Å
−K

P
(Q,λ)

Θ|Z=z
,z

Å
− 1

α

ã
− 1

α
Lz (θ)

ã
. (72)

The log-partition functions KQ,z in (22) and K
P

(Q,λ)

Θ|Z=z
,z

in (72) are strongly related, as shown by the following
lemma.

Lemma 15: If λ ∈ KQ,z , with KQ,z in (23), the functions
KQ,z in (22) and K

P
(Q,λ)

Θ|Z=z
,z

in (72) satisfy for all t ∈ R,

K
P

(Q,λ)

Θ|Z=z
,z

(t)=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
. (73)

Moreover, for all t 6 0,

K
P

(Q,λ)

Θ|Z=z
,z

(t)60. (74)

Proof: The proof of (73) relies on the fact that for all

t ∈
ß
ν ∈ R : K

P
(Q,λ)

Θ|Z=z
,z

(ν) <∞
™

, the function K
P

(Q,λ)

Θ|Z=z
,z

in (72) satisfies

K
P

(Q,λ)

Θ|Z=z
,z

(t) (75)

=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
(76)

=log

Ñ∫
exp (t Lz (θ))

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ)

é
(77)

=log

Å∫
exp

ÅÅ
t−1

λ

ã
Lz(θ)−KQ,z

Å
−1

λ

ãã
dQ(θ)

ã
(78)

=log

Å∫
exp

ÅÅ
t−1

λ

ã
Lz(θ)

ã
dQ(θ)

ã
−KQ,z

Å
−1

λ

ã
(79)

=KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
, (80)

where the equality in (78) follows from (25). Moreover, from
Lemma 1, it follows that the function K

P
(Q,λ)

Θ|Z=z
,z

is continuous

and nondecresing. Hence, for all t ∈ (−∞, t?), with t? ∈ß
ν ∈ R : K

P
(Q,λ)

Θ|Z=z
,z

(ν) <∞
™

, it holds that K
P

(Q,λ)

Θ|Z=z
,z

(t) 6

K
P

(Q,λ)

Θ|Z=z
,z

(t?) < +∞.

Let s? ∈ R ∪ {+∞} be defined by

s?,sup

ß
ν ∈ R : K

P
(Q,λ)

Θ|Z=z
,z

(ν) <∞
™
. (81)

If s? = +∞, then for all t ∈ R, K
P

(Q,λ)

Θ|Z=z
,z

(t) < +∞, and
the proof of (73) is completed.

Alternatively, if s? < +∞, it follows that for all t > s?,
K
P

(Q,λ)

Θ|Z=z
,z

(t) = +∞, which implies that KQ,z

(
t− 1

λ

)
=

+∞, as the function KQ,z is also continuous (Lemma 1) and
KQ,z

(
− 1
λ

)
<∞ (due to the choice of λ). Hence, in this case,

the equality in (73) is of the form +∞ = +∞. This completes
the proof of (73).

The proof of (74) follows by noticing that for all t 6 0
and for all θ ∈ suppQ, it holds that exp (t Lz (θ)) 6 1.
Hence,

K
P

(Q,λ)

Θ|Z=z
,z

(t)=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
(82)

6log

Å∫
dP

(Q,λ)
Θ|Z=z(θ)

ã
(83)

=0, (84)

which completes the proof.

The following lemma establishes that the solution to the ERM-
RER problem in (71) is identical to the solution to another
ERM-RER problem of the form

min
P∈4Q(M,B(M))

Rz (P ) +

Ç
1

1
α + 1

λ

å
D (P‖Q) , (85a)

s. t.

∫
dP (θ) = 1, (85b)

with λ ∈ KQ,z , with KQ,z in (23), and whose solution,

denoted by P

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z , satisfies for all θ ∈ suppQ,

dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z

dQ
(θ)

=exp

Å
−KQ,z

Å
− 1

λ
− 1

α

ã
−
Å

1

λ
+

1

α

ã
Lz (θ)

ã
. (86)

The formal statement is as follows.

Lemma 16: Let α ∈ (0,+∞) and λ ∈ KQ,z , with KQ,z
in (23), be fixed. Then, the probability measures P

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

in (72) and P

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z in (86) are identical.
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Proof: For all θ ∈ suppQ,

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dQ
(θ)

=
dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) (87)

=exp

(
−K

P
(Q,λ)

Θ|Z=z
,z

Å
− 1

α

ã
−KQ,z

Å
− 1

λ

ã
−
Å

1

α
+

1

λ

ã
Lz(θ)

)
(88)

=exp

Å
−KQ,z

Å
− 1

α
− 1

λ

ã
−
Å

1

α
+

1

λ

ã
Lz (θ)

ã
(89)

=
dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z

dQ
(θ), (90)

where the equality in (87) follows from the fact that the

measure P
Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z is absolutely continuous with respect to

P
(Q,λ)
Θ|Z=z and P (Q,λ)

Θ|Z=z is absolutely continuous with respect to
the measure Q; the equality in (88) follows from Lemma 15;
and the equality in (90) follows from Theorem 3.

For all measurable subsets A of M, the following
holds:

P

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z (A)=

∫
A

dP

Ä
P

(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dQ
(θ)dQ(θ) (91)

=

∫
A

dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z

dQ
dQ(θ) (92)

=

∫
A

dP

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z (θ) (93)

=P

Å
Q, 1

1
λ

+ 1
α

ã
Θ|Z=z (A), (94)

where the equality in (92) follows from (90). This completes
the proof.

The following theorem establishes a relation between the
solutions to the following optimization problems

min
P∈4Q(M,B(M))

Rz (P ) , (95a)

s. t. D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
6 c, and (95b)∫

dP (θ) = 1, (95c)

and

min
P∈4Q(M,B(M))

Rz (P ) + ωD (P‖Q) , (96a)

s. t.

∫
dP (θ) = 1, (96b)

with c > 0 and ω ∈ KQ,z , with KQ,z in (23), two constants;
P

(Q,λ)
Θ|Z=z the probability measure in (25); and Rz the function

in (18).

From Theorem 3, the solution to the ERM-RER problem
in (96), which is denoted by P

(Q,ω)
Θ|Z=z , satisfies for all θ ∈

suppQ that

dP
(Q,ω)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

ω

ã
− 1

ω
Lz (θ)

ã
, (97)

where the function KQ,z is in (22).

The following theorem formalizes the relation between both
optimization problems.

Theorem 4: Assume that c and ω in (95) and (96) satisfy

D
Ä
P

(Q,ω)
Θ|Z=z‖P

(Q,λ)
Θ|Z=z

ä
= c, (98)

with P
(Q,λ)
Θ|Z=z and P

(Q,ω)
Θ|Z=z being the probability measures

in (25) and (97), respectively. Then, the solution to the opti-
mization problem in (95) is the probability measure P (Q,ω)

Θ|Z=z .

Proof: The proof is presented in Appendix L.

IV. THE LOG-PARTITION FUNCTION

This section introduces a handful of properties for the log-
partition function KQ,z in (22) using the notion of separa-
ble empirical risk functions with respect to the measure Q
in (19).

Definition 5 (Separable Empirical Risk Function): The em-
pirical risk function Lz in (3) is said to be separable with
respect to the σ-finite measure Q in (19), if there exist a
positive real c > 0 and two subsets A and B of M that are
nonnegligible with respect to Q, and for all (θ1,θ2) ∈ A×B,

Lz (θ1)< c <Lz (θ2) < +∞. (99)

In a nutshell, a nonseparable empirical risk function is a
constant almost surely with respect to the measure Q. More
specifically, there exists a real a > 0, such that

Q ({θ ∈M : Lz (θ) = a}) = 1. (100)

From this perspective, nonseparable empirical risk functions
exhibit little practical interest. Hence, the remainder of this
work focuses exclusively on separable empirical risk func-
tions.

The definition of separability in Definition 5 and Lemma 3
lead to the following lemma.

Lemma 17: The empirical risk function Lz in (3) is separable
with respect to the σ-finite measure Q in (19) if and only if it
is separable with respect to the probability measure P (Q,λ)

Θ|Z=z
in (25).

Proof: Consider first that the function Lz is separable with
respect to the σ-finite measure Q. Hence, there exist a positive
real c > 0 and two subsets A and B of M that are nonneg-
ligible with respect to Q, such that for all (θ1,θ2) ∈ A × B
the inequality in (99) holds. Hence, from (99) the following
inequalities hold for all λ ∈ KQ,z , with KQ,z in (23),

− 1

λ
Lz (θ1)>− c

λ
> − 1

λ
Lz (θ2) > −∞, (101)

exp

Å
− 1

λ
Lz (θ1)

ã
>exp

(
− c
λ

)
> exp

Å
− 1

λ
Lz (θ2)

ã
> 0, (102)
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and finally,

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) > exp

Å
−KQ,z

Å
− 1

λ

ã
− c

λ

ã
(103)

>
dP

(Q,λ)
Θ|Z=z

dQ
(θ2) (104)

> 0. (105)

Using the inequality in (103) and the facts that Q (A) > 0
and Q (B) > 0, the following holds

P
(Q,λ)
Θ|Z=z (A)=

∫
A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (106)

and

P
(Q,λ)
Θ|Z=z (B)=

∫
B

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0. (107)

which implies that the function Lz is separable with respect
to the probability measure P (Q,λ)

Θ|Z=z .

Consider now that the function Lz is separable with respect to
the probability measure P (Q,λ)

Θ|Z=z . Hence, there exist a positive
real c > 0 and two subsets A and B ofM that are nonnegligi-
ble with respect to P (Q,λ)

Θ|Z=z , such that for all (θ1,θ2) ∈ A×B
the inequality in (99) holds. More specifically, P (Q,λ)

Θ|Z=z (A) >

0 and P
(Q,λ)
Θ|Z=z (B) > 0. From Lemma 7 and the inequal-

ity in (99), it follows that for all pairs (θ1,θ2) ∈ A ×
B,

dP
(Q,λ)

Θ|Z=z

dQ (θ1) > 0 and
dP

(Q,λ)

Θ|Z=z

dQ (θ2) > 0. Hence, from the

fact that P (Q,λ)
Θ|Z=z (A) > 0 and P

(Q,λ)
Θ|Z=z (B) > 0, it follows

that Q (A) > 0 and Q (B) > 0, which implies that the
function Lz is separable with respect to the σ-finite measure Q.
This completes the proof.

Lemma 17 shows that separable empirical risk functions, and
only these functions, lead to ERM-RER-optimal probability
measures from which models are sampled with different
probabilities. For the case of nonseparable empirical risk
functions, all models are sampled from the ERM-RER-optimal
probability measure with the same probability.

The following lemma presents a general property of the
function KQ,z in (22) for the case of separable empirical risk
functions.

Lemma 18: The function KQ,z in (22) is convex. The func-
tion KQ,z in (22) is strictly convex if and only if the empirical
risk function Lz in (3) is separable with respect to the σ-finite
measure Q in (19).

Proof: The proof is presented in Appendix M.

Let the m-th derivative of the function KQ,z in (22) be
denoted by K

(m)
Q,z : R → R, with m ∈ N. Hence, for

all s ∈ KQ,z ,

K
(m)
Q,z

Å
−1

s

ã
,

dm

dtm
KQ,z (t)

∣∣∣
t=− 1

s

. (108)

The following lemma provides explicit expressions for the
first, second and third derivatives of the function KQ,z

in (22).

Lemma 19: The first, second and third derivatives of the
function KQ,z in (22), denoted respectively by K(1)

Q,z , K(2)
Q,z ,

and K(3)
Q,z , satisfy for all λ ∈ intKQ,z , with KQ,z in (23),

K
(1)
Q,z

Å
− 1

λ

ã
=

∫
Lz (θ) dP

(Q,λ)
Θ|Z=z(θ), (109)

K
(2)
Q,z

Å
− 1

λ

ã
=

∫ Å
Lz(θ)−K(1)

Q,z

Å
−1

λ

ãã2
dP

(Q,λ)
Θ|Z=z(θ), (110)

K
(3)
Q,z

Å
− 1

λ

ã
=

∫ Å
Lz(θ)−K(1)

Q,z

Å
−1

λ

ãã3
dP

(Q,λ)
Θ|Z=z(θ), (111)

where the function Lz is defined in (3) and the mea-
sure P (Q,λ)

Θ|Z=z satisfies (25).

Proof: The proof is presented in Appendix N.

From Lemma 19, it follows that if Θ is the random vector
that induces the measure P

(Q,λ)
Θ|Z=z in (25), with λ ∈ KQ,z ,

the empirical risk function Lz in (3) becomes the random
variable

W , Lz (Θ) , (112)

whose mean, variance, and third cumulant are K
(1)
Q,z

(
− 1
λ

)
in (109), K(2)

Q,z

(
− 1
λ

)
in (110), and K

(3)
Q,z

(
− 1
λ

)
in (111),

respectively. The expectation and the variance are separately
studied in the following sections.

V. EXPECTATION OF THE EMPIRICAL RISK

The mean of the random variable W in (112) is equivalent
to the expectation of the empirical risk function Lz with
respect to the probability measure P

(Q,λ)
Θ|Z=z in (25), which

is equal to Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
, with the function Rz in (18).

Often, Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is referred to as the ERM-RER-optimal

expected empirical risk to emphasize that this is the expected
value of the empirical risk when models are sampled from
the solution of the ERM-RER problem in (19). The following
corollary of Lemma 19 formalizes this observation.

Corollary 2: For all λ ∈ KQ,z , with KQ,z in (23), the
probability measure P (Q,λ)

Θ|Z=z in (25) verifies that

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
= K

(1)
Q,z

Å
− 1

λ

ã
, (113)

where the functions Rz and K
(1)
Q,z are defined in (18)

and (109), respectively.

The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (113) exhibits

the following property.

Theorem 5: The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (113) is nondecreasing with λ ∈ KQ,z , with KQ,z in (23).
Moreover, Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
is strictly increasing with λ ∈ KQ,z

if and only if the function Lz in (3) is separable with respect
to the measure Q.

Proof: The proof is presented in Appendix O.
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A question that arises from Theorem 5 is whether the
value Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
in (113) can be made arbitrarily close

to δ?Q,z , with δ?Q,z in (49), by making λ arbitrarily small.
The following lemma shows that there exist cases in which
the value Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
is bounded away from δ?Q,z , even for

arbitrarily small values of λ.

Lemma 20: For all λ ∈ KQ,z , with KQ,z in (23), the expected
empirical risk Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
in (113) satisfies,

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
> δ?Q,z, (114)

where δ?Q,z is defined in (49). Moreover, the inequality in (114)
is strict if and only if the function Lz in (3) is separable with
respect to the measure Q in (19).

Proof: The proof is presented in Appendix P.

In the asymptotic regime when λ tends to zero, the expected
empirical risk Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
in (113) is equal to δ?Q,z , as

shown by the following lemma.

Theorem 6: The expected empirical risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
in (113) satisfies,

lim
λ→0+

Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=δ?Q,z, (115)

where δ?Q,z is defined in (49).

Proof: The proof is presented in Appendix Q.

VI. VARIANCE OF THE EMPIRICAL RISK

The monotonicity of the expectation of the random variable W
in (112), stated by Theorem 5, is not a property exhibited by
the variance nor the third cumulant. This section highlights
this observation via the following example.

Example 1: Consider the ERM-RER problem in (19), under
the assumption that Q is a probability measure and the
empirical risk function Lz in (3) is such that for all θ ∈M,

Lz (θ) =

ß
0 if θ ∈ A
1 if θ ∈M \A, (116)

where the sets A ⊂ M and M \ A are nonnegligible with
respect to the reference probability measure Q. In this case,
the function KQ,z in (22) satisfies for all λ > 0,

KQ,z

Å
− 1

λ

ã
=log

Å
Q(A)+exp

Å
− 1

λ

ã
(1−Q(A))

ã
. (117)

The derivatives K
(1)
Q,z , K

(2)
Q,z , and K

(3)
Q,z in (108) of the

function KQ,z in (117) satisfy for all λ > 0,

K
(1)
Q,z

Å
−1

λ

ã
=

exp
(
− 1
λ

)
(1−Q (A))

Q (A) + exp
(
− 1
λ

)
(1−Q (A))

; (118)

K
(2)
Q,z

Å
−1

λ

ã
=

Q (A) (1−Q (A)) exp
(
− 1
λ

)(
Q (A) + exp

(
− 1
λ

)
(1−Q (A))

)2 ; and (119)

K
(3)
Q,z

Å
−1

λ

ã
=K

(2)
Q,z

Å
− 1

λ

ãÇ
Q(A)−(1−Q(A))exp

(
−1
λ

)
Q(A)+exp

(
−1
λ

)
(1−Q(A))

å
. (120)

Note that K(3)
Q,z

(
− 1
λ

)
> 0 if and only if

Q (A)− (1−Q (A)) exp

Å
− 1

λ

ã
> 0. (121)

Assume that Q (A) > 1
2 . Thus, it holds that for all λ > 0,

the inequality in (121) is always satisfied. This follows from
observing that for all λ > 0,

exp

Å
− 1

λ

ã
< 1 6

Q (A)

1−Q (A)
. (122)

Hence, if Q (A) > 1
2 , for all decreasing sequences of positive

reals λ1 > λ2 > . . . > 0, it holds that

1

4
> K

(2)
Q,z

Å
− 1

λ1

ã
> K

(2)
Q,z

Å
− 1

λ2

ã
> . . . > 0. (123)

Alternatively, assume that Q (A) < 1
2 . In this case, the

inequality in (121) is satisfied if and only if

λ <

Å
log

Å
1−Q (A)

Q (A)

ãã−1
. (124)

Hence, if Q (A) < 1
2 , then for all decreasing sequences of

positive realsÅ
log

Å
1−Q (A)

Q (A)

ãã−1
> λ1 > λ2 > . . . > 0,

it holds that
1

4
> K

(2)
Q,z

Å
− 1

λ1

ã
> K

(2)
Q,z

Å
− 1

λ2

ã
> . . . > 0. (125)

Moreover, for all decreasing sequences of positive reals

λ1 > λ2 > . . . >

Å
log

Å
1−Q (A)

Q (A)

ãã−1
,

it holds that

K
(2)
Q,z

Å
− 1

λ1

ã
< K

(2)
Q,z

Å
− 1

λ2

ã
< . . . <

1

4
. (126)

The upperbound by 1
4 in (123), (125) and (126) follows by

noticing that the value K(2)
Q,z

(
− 1
λ

)
is maximized when λ =Ä

log
Ä
1−Q(A)
Q(A)

ää−1
and K(2)

Q,z

(
− 1
λ

)
= 1

4 .

Example 1 provides important insights on the choice of the
reference measure Q. Note for instance that when the reference
measure assigns a probability to the set of models T (z) in (5)
that is greater than or equal to the probability of suboptimal
models M \ T (z), i.e., Q (T (z)) > 1

2 , the variance is
strictly decreasing to zero when λ decreases. See for instance,
Figure 1 and Figure 2. That is, when the reference measure
assigns higher probability to the set of solutions to the ERM
problem in (4), the variance is monotone with respect to the
parameter λ.

Alternatively, when the reference measure assigns a probability
to the set T (z) that is smaller than the probability of the
setM\T (z), i.e., Q (T (z)) < 1

2 , there exists a critical point

for λ at
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
. See for instance, Figure 3. More

importantly, such a critical point can be arbitrarily close to zero
depending on the value Q (A). The variance strictly decreases
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when λ decreases beyond the value
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
. Other-

wise, reducing λ above the value
Ä
log
Ä
1−Q(A)
Q(A)

ää−1
increases

the variance.

In general, these observations suggest that reference mea-
sures Q that allocate small measures to the sets containing the
set T (z) might require reducing the value λ beyond a small
threshold in order to observe small values of K(2)

Q,z

(
− 1
λ

)
,

which is the variance of the random variable W , in (112).
These observations are central to understanding the concentra-
tion of probability that occurs when λ decreases, as discussed
in the following section.
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VII. CONCENTRATION OF PROBABILITY

Given a positive real λ ∈ KQ,z , with KQ,z in (23), consider
the following set,

NQ,z(λ),
¶
θ ∈M : Lz (θ) 6 Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (127)

where the function Lz is defined by (3); the function Rz is de-
fined by (18); and the probability measure P (Q,λ)

Θ|Z=z is in (25).
This section introduces two results. First, in Theorem 7, it is
shown that when λ tends to zero, the set NQ,z(λ) forms a
monotonic sequence of sets that decreases to the set

N ?
Q,z , Lz

(
δ?Q,z

)
, (128)

where, δ?Q,z is defined in (49); and the set Lz(·) is defined
in (48). Second, in Theorem 8, it is shown that the sequence
formed by P

(Q,λ)
Θ|Z=z(NQ,z(λ)) when λ tends to zero is in-

creasing and monotone. More importantly, in Theorem 9, it
is shown that the limit of such sequence is equal to one.
These observations justify referring to the set N ?

Q,z as the
limit set. These observations are complementary to those stated
in Section III-B and Section III-C. This section ends by
showing that the probability measure P

(Q,λ)
Θ|Z=z concentrates

on a specific subset L?Q,z in (50) of the set N ?
Q,z . At the

light of this observation, the set L?Q,z is referred to as the
nonnegligible limit set. Finally, it is shown that when the σ-
finite measure Q in (19) is coherent, the sets N ?

Q,z and L?Q,z
are identical.

A. The Limit Set

The set NQ,z(λ) in (127), with λ ∈ KQ,z and KQ,z in (23),
contains all the models that induce an empirical risk that is
smaller than or equal to Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
, i.e., the ERM-RER-

optimal expected empirical risk in (113). This observation
unveils the existence of a relation between the set N ?

Q,z

in (128) and the set T (z) in (5), as shown by the following
lemma.
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Lemma 21: The set N ?
Q,z in (128) satisfies

T (z) ⊆ N ?
Q,z, (129)

where the set T (z) is in (5). Moreover,

T (z) = N ?
Q,z, (130)

if and only if (a) the ERM problem in (4) possesses a solution;
and (b) the reference measure Q in (19) is coherent.

Proof: If the set T (z) in (5) is empty, the inclusion in (129)
is trivially true. Assume that |T (z)| > 0. Hence, the proof of
the inclusion in (129) follows from observing that for all θ ∈
T (z), it holds that Lz (θ) = ρ? 6 δ?Q,z , with δ?Q,z in (49)
and ρ? in (59). Hence, θ ∈ N ?

Q,z . This completes the proof
of the inclusion in (129).

The proof of the equality in (130) is presented in two parts.
In the first part, it is proved that if (130) holds, then the ERM
problem in (4) possesses a solution and the measure Q is
coherent. The second part proves the converse. The proof of
the first part is as follows. Under the assumption that T (z) =
N ?
Q,z holds, it follows that δ?Q,z = ρ?, with ρ? in (59), which

implies that the ERM problem in (4) possesses a solution.
Moreover, for all δ ∈ (ρ?,+∞), it holds that Q (Lz (δ)) > 0,
which verifies that the measure Q is coherent and completes
the proof of the first part. The proof of the second part is as
follows. Under the assumption that the ERM problem in (4)
possesses a solution and the measure Q is coherent, it follows
that δ?Q,z = ρ?. Hence, T (z) = N ?

Q,z , which completes the
proof of the second part.

The following theorem highlights that the set NQ,z (λ) is
decreasing with λ.

Theorem 7: For all (λ1, λ2) ∈ KQ,z×KQ,z , with KQ,z in (23)
and λ1 > λ2, the sets NQ,z (λ1) and NQ,z (λ2) in (127)
satisfy

M⊇ NQ,z(λ1) ⊇ NQ,z(λ2) ⊇ N ?
Q,z, (131)

with N ?
Q,z being the set defined in (128). Moreover, if the

empirical risk function Lz in (3) is continuous on M and
separable with respect to the measure Q in (19), then,

M⊃ NQ,z(λ1) ⊃ NQ,z(λ2) ⊃ N ?
Q,z. (132)

Proof: The proof is presented in Appendix R.

An interesting observation is that for all λ ∈ KQ,z , with KQ,z
in (23), only a subset of NQ,z (λ) might exhibit nonzero
probability with respect to the measure P

(Q,λ)
Θ|Z=z in (25).

Consider for instance that the measure Q in (19) is non-
coherent (Definition 3). That is, δ?Q,z > ρ?, with δ?Q,z
in (49) and ρ? in (59). Thus, for all γ ∈

Ä
ρ?, δ?Q,z

ä
, it

holds that Q (Lz (γ)) = 0, with the set Lz(·) in (48). From
Lemma 3, this implies that for all γ ∈

Ä
ρ?, δ?Q,z

ä
, the

measure P (Q,λ)
Θ|Z=z in (25) satisfies P (Q,λ)

Θ|Z=z (Lz (γ)) = 0, while
verifying that Lz (γ) ⊆ NQ,z (λ). These observations lead to
the analysis of the asymptotic concentration of probability in
the following section.

B. The Nonnegligible Limit Set

The first step in the analysis of the asymptotic concentration
of the probability measure P

(Q,λ)
Θ|Z=z in (25) is to show that

the probability P (Q,λ)
Θ|Z=z (NQ,z(λ)) increases when λ tends to

zero, as shown by the following theorem.

Theorem 8: For all (λ1, λ2) ∈ KQ,z×KQ,z , with KQ,z in (23)
and λ1 > λ2, assume that the measures P (Q,λ1)

Θ|Z=z and P (Q,λ2)
Θ|Z=z

satisfy (25) with λ = λ1 and λ = λ2, respectively. Then, the
set NQ,z (λ2) in (127) satisfies

0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) 6 P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (133)

where strict inequality holds if and only if the function Lz is
separable with respect to the σ-finite measure Q.

Proof: The proof is presented in Appendix S.

The following lemma highlights a case in which a stronger
concentration of probability is observed.

Lemma 22: Let the function Lz in (3) be separable with respect
to the σ-finite measure Q in (19). Let also (λ1, λ2) ∈ KQ,z ×
KQ,z , with KQ,z in (23), be two positive reals such that λ1 >
λ2 and

Q

Å
NQ,z (λ1) ∩ (NQ,z (λ2))

c
ã

= 0, (134)

with the complement with respect to the set of models M.
Then, two measures P (Q,λ1)

Θ|Z=z and P
(Q,λ2)
Θ|Z=z that respectively

satisfy (25) with λ = λ1 and λ = λ2 verify that

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (135)

where, the set NQ,z (·) is defined in (127).

Proof: The proof is presented in Appendix T.

The following example shows the relevance of Lemma 22 in
the case in which the empirical risk function Lz in (3) is
a simple function and separable with respect to the σ-finite
measure Q in (19).

Example 2: Consider Example 1. Note that, for all λ > 0,

0 < Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
< 1, (136)

where Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
is the ERM-RER-optimal expected em-

pirical risk in (113). The equality in (136) implies that given
two reals λ1 and λ2 such that λ1 > λ2 > 0, it holds that,

NQ,z (λ1) ∩ (NQ,z (λ2))
c

=
¶
ν ∈M :Rz

Ä
P

(Q,λ2)
Θ|Z=z

ä
< Lz (ν)6Rz

Ä
P

(Q,λ1)
Θ|Z=z

ä©
(137)

=∅, (138)

and moreover, NQ,z(λ1) = NQ,z(λ2). Finally, from
Lemma 22,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (139)

The main result of this section is presented by the following
theorem.
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Theorem 9: The probability measure P (Q,λ)
Θ|Z=z in (25) satisfies

lim
λ→0+

P
(Q,λ)
Θ|Z=z (NQ,z (λ)) = 1, (140)

where, the set NQ,z (λ) is defined in (127).

Proof: The proof follows immediately from Lemma 10 and
by noticing that for all λ ∈ KQ,z , with KQ,z in (23), the
sets L?Q,z in (50) and NQ,z (λ) in (127) satisfies L?Q,z ⊆
NQ,z (λ).

Note that Theorem 9 and Lemma 10 lead to the following
conclusion

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
NQ,z (λ) \ L?Q,z

)
= 0, (141)

which follows from the fact that L?Q,z ⊂ NQ,z (λ), with L?Q,z
in (50). This justifies referring to the set L?Q,z as the nonneg-
ligible limit set.

VIII. CUMULANT GENERATING FUNCTION OF THE
EMPIRICAL RISK

Let λ be a real in KQ,z , with KQ,z in (23), and
consider the transport of the measure P

(Q,λ)
Θ|Z=z in (25)

from (M,B (M)) to ([0,+∞],B ([0,+∞])) through the
function Lz in (3). Denote the resulting probability measure
in ([0,+∞],B ([0,+∞])) by P

(Q,λ)
W |Z=z . That is, for all A ∈

B ([0,+∞]),

P
(Q,λ)
W |Z=z (A) = P

(Q,λ)
Θ|Z=z

(
L−1z (A)

)
, (142)

where the term L−1z (A) represents the set

L−1z (A),{ν ∈M : Lz(ν) ∈ A} . (143)

Note that the random variable W in (112) induces the probabil-
ity measure P (Q,λ)

W |Z=z in ([0,+∞],B ([0,+∞])). The objective
of this section is to study the properties of the cumulant
generating function of the probability measure P (Q,λ)

W |Z=z , de-
noted by Jz,Q,λ : R → R ∪ {+∞}, which satisfies for
all t ∈ R,

Jz,Q,λ(t) = log

Å∫
exp (tw) dP

(Q,λ)
W |Z=z(w)

ã
(144)

= log

Å∫
exp (t Lz (u)) dP

(Q,λ)
Θ|Z=z(u)

ã
,(145)

where the equality in (145) follows from [39, Theo-
rem 1.6.12].

For all λ ∈ KQ,z , with KQ,z in (23), the following lemma
provides an expression for Jz,Q,λ in terms of the log-partition
function KQ,z in (22).

Lemma 23: If λ ∈ KQ,z , with KQ,z in (23), then, the
function Jz,Q,λ in (144), verifies for all t ∈ R,

Jz,Q,λ(t) = K
P

(Q,λ)

Θ|Z=z
,z

(t) (146)

= KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
(147)

=

+∞∑
m=1

tm

m!
K

(m)
Q,z

Å
− 1

λ

ã
, (148)

with the function KQ,z in (22) and the function K(m)
Q,z in (108).

Proof: The proof of (146) follows immediately from (22) and
(145). The proof of (147) follows from Lemma 15. Finally, the
proof of (148) follows by observing that a Taylor expansion
of the function KQ,z in (22) at the point − 1

λ , yields for all
t ∈ {ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=KQ,z

Å
− 1

λ

ã
+

+∞∑
s=1

K
(s)
Q,z

(
− 1
λ

)
s!

Å
t+

1

λ

ãs
. (149)

Choosing α ∈ R such that t = α− 1
λ in (149) yields

KQ,z

Å
α− 1

λ

ã
=KQ,z

Å
− 1

λ

ã
+

+∞∑
s=1

αs

s!
K

(s)
Q,z

Å
− 1

λ

ã
, (150)

which implies that for all t ∈{
ν ∈ R : KQ,z(ν − 1

λ ) < +∞
}

,

KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
=

+∞∑
s=1

ts

s!
K

(s)
Q,z

Å
− 1

λ

ã
. (151)

Moreover, from Lemma 1, it follows that the function KQ,z

is continuous and nondecreasing. Hence, for all t ∈ (−∞, t?),
with t? ∈

{
ν ∈ R : KQ,z

(
ν − 1

λ

)
<∞

}
, it holds that

KQ,z(t− 1
λ ) < KQ,z(t? − 1

λ ) < +∞.

Let s? ∈ R ∪ {+∞} be defined by

s?,sup

ß
ν ∈ R : KQ,z

Å
ν − 1

λ

ã
<∞

™
. (152)

If s? = +∞, then for all t ∈ R, KQ,z

(
t− 1

λ

)
−KQ,z

(
− 1
λ

)
<

+∞, and thus,

+∞>Jz,Q,λ(t) = K
P

(Q,λ)

Θ|Z=z
,z

(t) (153)

= KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
(154)

=

+∞∑
m=1

tm

m!
K

(m)
Q,z

Å
− 1

λ

ã
. (155)

Alternatively, if s? < +∞, it follows that for all t > s?,
KQ,z

(
t− 1

λ

)
= +∞. From the fact that the function KQ,z

is continuous (Lemma 1) and KQ,z

(
− 1
λ

)
< ∞ (due to the

choice of λ), it follows that

+∞= Jz,Q,λ(t) = KQ,z

Å
t− 1

λ

ã
−KQ,z

Å
− 1

λ

ã
(156)

=

+∞∑
m=1

tm

m!
K

(m)
Q,z

Å
− 1

λ

ã
, (157)

which implies that
∑+∞
m=1

tm

m!K
(m)
Q,z

(
− 1
λ

)
= +∞. Hence, in

this case, the equality in (148) is of the form +∞ = +∞.
This completes the proof.

Alternative expressions for Jz,Q,λ in (144) are provided here-
under.
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Lemma 24: If λ ∈ KQ,z , with KQ,z in (23), then, the
function Jz,Q,λ in (144), verifies for all t ∈ (0,+∞),

Jz,Q,λ

Å
−1

t

ã
= −1

t
Rz

Ñ
P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z

é
−D

Ñ
P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z ‖P (Q,λ)

Θ|Z=z

é
(158)

= −1

t
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+D

Ñ
P

(Q,λ)
Θ|Z=z‖P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z

é
, (159)

with the function Rz is in (18); the function K
P

(Q,λ)

Θ|Z=z
,z

is

in (72); and the probability measures P (Q,λ)
Θ|Z=z and P

Å
Q, 1

1
λ

+1
t

ã
Θ|Z=z

are respectively in (25) and (86).

Proof: The proof of (158) follows from (27) in Lemma 5 by
observing that for all t ∈ (0,+∞),

−tK
P

(Q,λ)

Θ|Z=z
,z

Å
−1

t

ã
=Rz

Å
P

Ä
P

(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z

ã
+tD

Å
P

Ä
P

(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z ‖P (Q,λ)
Θ|Z=z

ã
(160)

=Rz

Ñ
P

Å
Q, 1

1
λ
+1
t

ã
Θ|Z=z

é
+tD

Ñ
P

Å
Q, 1

1
λ
+1
t

ã
Θ|Z=z ‖P

(Q,λ)
Θ|Z=z

é
, (161)

where the equality in (161) follows from Lemma 16. The proof
of (159) follows from (28) in Lemma 5 by observing that for
all t ∈ (0,+∞),

−tK
P

(Q,λ)

Θ|Z=z
,z

Å
−1

t

ã
=Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−tD

Å
P

(Q,λ)
Θ|Z=z‖P

Ä
P

(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z

ã
(162)

=Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−tD

Ñ
P

(Q,λ)
Θ|Z=z‖P

Å
Q, 1

1
λ
+1
t

ã
Θ|Z=z

é
, (163)

where the equality in (163) follows from Lemma 16, which
completes the proof.

Denote by J (m)
z,Q,λ : R → R ∪ {+∞}, with m ∈ N, the m-th

derivative of the function Jz,Q,λ in (144). That is, for all s ∈
R,

J
(m)
z,Q,λ(s) =

dm

dtm
Jz,Q,λ(t)

∣∣∣
t=s

. (164)

From Lemma 23, it follows that for all m ∈ N, and for all α ∈
R, the following holds,

J
(m)
z,Q,λ(α) = K

(m)
Q,z

Å
α− 1

λ

ã
, (165)

where the function K
(m)
Q,z denotes the m-th derivative of the

function KQ,z in (22). See for instance, Lemma 19. The
equality in (165) establishes a relation between the cumulant
generating function Jz,Q,λ and the function KQ,z . This ob-
servation becomes an alternative proof to Lemma 19.

The following theorem presents the main result of this sec-
tion.

Theorem 10: For all α ∈ R, the function Jz,Q,λ in (144)
verifies the following inequality

Jz,Q,λ(α) 6 αK
(1)
Q,z

Å
− 1

λ

ã
+

1

2
α2β2

Q,z, (166)

where

βQ,z,sup

ß√
K

(2)
Q,z (ξ) : ξ ∈ (−∞, 0)

™
, (167)

and the functions K
(1)
Q,z and K

(2)
Q,z are defined in (109)

and (110), respectively.

Proof: From Lemma 1, it follows that the function KQ,z is
continuous, monotone, increasing and differentiable infinitely
many times. Then, a Taylor expansion of KQ,z at the point
α − 1

λ , with α ∈
{
ν ∈ R : KQ,z(ν − 1

λ ) < +∞
}

, yields for
all t ∈ {ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=KQ,z

Å
α− 1

λ

ã
+

+∞∑
s=1

K
(s)
Q,z

(
α− 1

λ

)
s!

Å
t− α+

1

λ

ãs
. (168)

Choosing t = − 1
λ in (168), it holds from the Taylor-Lagrange

theorem [50, Theorem 2.5.4] that

KQ,z

Å
− 1

λ

ã
=KQ,z

Å
α− 1

λ

ã
− αK(1)

Q,z

Å
α− 1

λ

ã
+

1

2
α2K

(2)
Q,z (ξ) , (169)

where ξ ∈
(
min{− 1

λ , α−
1
λ},max{− 1

λ , α−
1
λ},
)
. The

equality in (169) leads to the following inequality:

KQ,z

Å
α−1

λ

ã
−KQ,z

Å
−1

λ

ã
=αK

(1)
Q,z

Å
−1

λ

ã
−α

2

2
K

(2)
Q,z(ξ), (170)

6αK(1)
Q,z

Å
−1

λ

ã
+
α2

2
K

(2)
Q,z(ξ), (171)

which follows from observing that K(2)
Q,z (ξ) > 0. Let s? ∈

R ∪ {+∞} be defined by

s?,sup

ß
ν ∈ R : KQ,z

Å
ν − 1

λ

ã
<∞

™
. (172)

If s? = +∞, then for all α ∈ R, KQ,z

(
α− 1

λ

)
−

KQ,z

(
− 1
λ

)
< +∞, and thus, the proof is completed by

noticing that from Lemma 23, it holds that Jz,Q,λ(α) =
KQ,z

(
α− 1

λ

)
− KQ,z

(
− 1
λ

)
. Hence, choosing βQ,z as

in (167) leads to the desired inequality in (166).

Alternatively, if s? < +∞, it follows that for all α > s?,
KQ,z

(
α− 1

λ

)
= +∞. From from Lemma 23, it holds that

Jz,Q,λ(α) = +∞; and due to the fact that the function KQ,z

is continuous and nondecreasing, it follows from (171) that
+∞ 6 αK

(1)
Q,z

(
− 1
λ

)
+ α2

2 K
(2)
Q,z (ξ), which implies that βQ,z

in (167) is infinite, i.e., βQ,z = +∞. Hence, in this case, the
equality in (166) is of the form +∞ 6 +∞. This completes
the proof.

The main implication of Theorem 10 is that if βQ,z in (167)
is finite, the random variable W in (112) is a sub-Gaussian



17

random variable with sub-Gaussianity parameter βQ,z [51,
Definition 2.2].

IX. (δ, ε)-OPTIMALITY

This section introduces a PAC guarantee of optimality for the
models that are sampled from the probability measure P (Q,λ)

Θ|Z=z
in (25) with respect to the ERM problem in (4). Such guarantee
is defined as follows.

Definition 6 ((δ, ε)-Optimality): Given a pair of positive re-
als (δ, ε), with ε < 1, the probability measure P (Q,λ)

Θ|Z=z in (25)
is said to be (δ, ε)-optimal, if the set Lz (δ) in (48) satisfies

P
(Q,λ)
Θ|Z=z (Lz (δ)) > 1− ε. (173)

If the probability measure P (Q,λ)
Θ|Z=z in (25) is (δ, ε)-optimal,

then it assigns a probability that is always greater than 1− ε
to a set that contains models that induce an empirical risk that
is smaller than δ. From this perspective, particular interest is
given to the smallest δ and ε for which P

(Q,λ)
Θ|Z=z is (δ, ε)-

optimal.

The main result of this section is presented by the following
theorem.

Theorem 11: For all (δ, ε) ∈ (δ?Q,z,+∞) × (0, 1), with δ?Q,z
in (49), there exists a real λ ∈ KQ,z , with KQ,z in (23), such
that the probability measure P (Q,λ)

Θ|Z=z is (δ, ε)-optimal.

Proof: Let δ be a real in
Ä
δ?Q,z,+∞

ä
, with δ?Q,z in (49). Let

also λ ∈ KQ,z satisfy the following equality:

K
(1)
Q,z

Å
− 1

λ

ã
6 δ. (174)

Note that from Lemma 1, it follows that the function K(1)
Q,z is

continuous. Moreover, from Theorem 6, it follows that such
a λ in (174) always exists. From (48) and (127), it holds
that

NQ,z(λ) ⊆ Lz (δ) , (175)

and thus,

P
(Q,λ)
Θ|Z=z (Lz (δ)) > P

(Q,λ)
Θ|Z=z (NQ,z(λ)) . (176)

Let γ be a positive real such that γ 6 λ and

P
(Q,γ)
Θ|Z=z(NQ,z(γ)) > 1− ε. (177)

The existence of such a positive real γ follows from Theo-
rem 9. Hence, from (177), it holds that,

1− ε<P (Q,γ)
Θ|Z=z(NQ,z(γ)) (178)

6P (Q,γ)
Θ|Z=z (Lz (δ)) , (179)

where the inequality in (179) follows from the fact
that NQ,z(γ) ⊆ NQ,z(λ) ⊆ Lz (δ). Finally, the inequality
in (179) implies that the probability measure P (Q,λ)

Θ|Z=z is (δ, ε)-
optimal (Definition 6). This completes the proof.

A stronger optimality claim can be stated when the reference
measure is coherent.

Theorem 12: For all (δ, ε) ∈ (ρ?,+∞)×(0, 1), with ρ? in (59),
there always exists a λ ∈ KQ,z , with KQ,z in (23), such that
the probability measure P (Q,λ)

Θ|Z=z is (δ, ε)-optimal if and only
if the reference measure Q is coherent.

Proof: The proof is divided into two parts. The first part shows
that if for all (δ, ε) ∈ (ρ?,+∞) × (0, 1), there always exists
a λ ∈ KQ,z , with KQ,z in (23), such that the probability
measure P (Q,λ)

Θ|Z=z in (25) is (δ, ε)-optimal, then, the measure Q
is coherent. The second part deals with the converse.

The first part is as follows. Let γ ∈ KQ,z be such that

P
(Q,γ)
Θ|Z=z (Lz (δ))>1− ε, (180)

then, for all measurable subsets A of Lz (δ), it holds
that

1−ε < P
(Q,γ)
Θ|Z=z (Lz (δ)) (181)

=

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(ν)dQ(ν)+

∫
Lz(δ)\A

dP
(Q,γ)
Θ|Z=z

dQ
(ν)dQ(ν),

which, together with Lemma 7, implies that there exists at
least one measurable subset A for which Q (A) > 0, and
thus,

Q (Lz (δ))>Q (A) > 0, (182)

which implies that the measure Q is coherent. This completes
the first part of the proof.

The second part of the proof is as follows. Under the assump-
tion that the measure Q is coherent, it follows that δ?Q,z = ρ?.
Then, from Theorem 11, it follows that for all (δ, ε) ∈
(δ?Q,z,+∞) × (0, 1), there always exists a λ ∈ KQ,z ,
with KQ,z in (23), such that the probability measure P (Q,λ)

Θ|Z=z

is (δ, ε)-optimal. This completes the second part of the proof.

X. SENSITIVITY AND GENERALIZATION

This section introduces the notion of sensitivity and establishes
its connections with the notion of generalization error of the
Gibbs algorithm, cf. [8].

A. Sensitivity

The sensitivity of the expected empirical risk Rz in (18) to
deviations from the probability measure P (Q,λ)

Θ|Z=z in (25) to-
wards an alternative probability measure P ∈ 4 (M,B (M))
is introduced as a novel metric to evaluate the generaliza-
tion capabilities of the ERM-RER-optimal measure P (Q,λ)

Θ|Z=z .

Deviations from the probability measure P
(Q,λ)
Θ|Z=z towards

an alternative probability measure P would allow comparing
the ERM-RER-optimal measure with alternative measures (or
algorithms). For instance, if new datasets become available,
a new ERM-RER problem can be formulated using a larger
dataset obtained by aggregating the old and the new datasets,
cf. [43] and [52]. Intuitively, the ERM-RER optimal measure
obtained after the aggregation of datasets might exhibit better
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generalization capabilities, see for instance [43]. This analy-
sis is the motivation of the sensitivity, which is defined as
follows.

Definition 7 (Sensitivity): Given the σ-finite measure Q and
the positive real λ > 0 in (19), let SQ,λ : (X × Y)

n ×
4Q (M,B (M))→ (−∞,+∞] be a function such that

SQ,λ(z,P ) =

®
Rz (P )−Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
if λ∈KQ,z

+∞ otherwise,
(183)

where the function Rz is defined in (18) and the probability
measure P

(Q,λ)
Θ|Z=z is in (25). The sensitivity of the expected

empirical risk Rz due to a deviation from P
(Q,λ)
Θ|Z=z to P

is SQ,λ (z, P ).

Recently, the following exact expression for the sensitivity
SQ,λ (z, P ) in (183) was introduced in [43].

Theorem 13 (Theorem 1 in [43]): The sensitivity SQ,λ (z, P )
in (183) satisfies

SQ,λ(z,P )

=λ
(
D
Ä
P

(Q,λ)
Θ|Z=z‖Q

ä
+D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
−D(P‖Q)

)
, (184)

where the probability measure P (Q,λ)
Θ|Z=z is in (25).

The following theorem introduces an upper bound on the
absolute value of the sensitivity SQ,λ (z, P ) in (183), which
requires the calculation of only one of the relative entropies
in Theorem 13.

Theorem 14: For all P ∈ 4Q (M,B (M)), the sensitivity
SQ,λ (z, P ) in (183) satisfies

|SQ,λ (z, P )|6
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (185)

where the constant βQ,z is defined in (167).

Proof: The proof is presented in Appendix U.

Note that equality holds in (185) in the trivial case in which
the empirical risk function is not separable with respect to Q
(Definition 5). In such case, for all P ∈ 4Q (M,B (M)), it
holds that SQ,λ (z, P ) = 0 and βQ,z = 0.

Theorem 14 establishes an upper and a lower bound on the
increase and decrease of the expected empirical risk that
can be obtained by deviating from the optimal solution of
the ERM-RER problem in (19). More specifically, note that
for all probability measures P ∈ 4Q (M,B (M)), it holds
that,

Rz (P )>Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
−
√

2σ2D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
and (186)

Rz (P )6Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
+
√

2σ2D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (187)

B. Generalization Error

This section unveils the interesting connection between the
notion of sensitivity and the notion of generalization error
of the Gibbs algorithm, cf. [8]. The Generalization error is

defined under the assumption that datasets are sampled from
a probability measure

PZ ∈ 4 ((X × Y)
n
,F ) , (188)

where F denotes a given σ-field on the set (X × Y)
n. For

such a probability measure PZ in (188), let the set KQ,PZ
⊂ R

be
KQ,PZ

=
⋂

z∈suppPZ

KQ,z, (189)

where the σ-finite measure Q is in (19). The set KQ,PZ

in (189) can be empty for some choices of the σ-finite
measure Q. Nonetheless, from Lemma 2, it follows that if Q
is a probability measure, then,

KQ,PZ
= (0,+∞) . (190)

Under the assumption that datasets are sampled from PZ
in (188), the generalization error of the Gibbs algorithm with
parameters Q and λ, with Q being a probability measure and
the regularization factor λ being strictly positive, is defined
in [8] and [13] as follows:∫ Ä

Rν
Ä
P

(Q,λ)
Θ

ä
−Rν
Ä
P

(Q,λ)
Θ|Z=ν

ää
dPZ(ν), (191)

where the probability measure P
(Q,λ)
Θ satisfies for all sub-

sets A ∈ B (M),

P
(Q,λ)
Θ (A) =

∫
P

(Q,λ)
Θ|Z=ν (A) dPZ (ν) , (192)

and for all z ∈ suppPZ , the probability measure P (Q,λ)
Θ|Z=z is

defined in (25).

The following theorem establishes a connection between sen-
sitivity and generalization error in the particular case in which
Q in (19) is a probability measure.

Theorem 15: Under the assumption that datasets are sampled
from PZ in (188), the generalization error of the Gibbs
algorithm with parameters Q and λ > 0, is∫

SQ,λ
Ä
ν, P

(Q,λ)
Θ

ä
dPZ(ν), (193)

where the function SQ,λ is in (183); and the probability
measure P (Q,λ)

Θ is in (192).

Proof: The proof uses the fact that under the assumption that
Q is a probability measure, for all ν ∈ suppPZ , it follows
from Lemma 2 that KQ,ν = (0,+∞). This implies that for
all z ∈ suppPZ and for all λ > 0, the ERM-RER problem
in (19), always possesses as solution the measure P

(Q,λ)
Θ|Z=z

in (25). Thus, the measure P
(Q,λ)
Θ in (192) is well defined.

Moreover, SQ,λ
Ä
z, P

(Q,λ)
Θ

ä
= Rz

Ä
P

(Q,λ)
Θ

ä
− Rz

Ä
P

(Q,λ)
Θ|Z=z

ä
and the integral in (191) is also well defined, which completes
the proof.

Theorem 15 provides an interesting viewpoint of the gener-
alization error. For instance, the probability measure P (Q,λ)

Θ

in (188) can be understood as the barycenter of a subset
of 4 (M,B (M)) containing the solutions to ERM-RER
problems of the form in (19), with z ∈ suppPZ in (188).
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Hence, the generalization error of the Gibbs algorithm is the
expectation (with respect to PZ) of the sensitivity of the
expected empirical risks Rz in (18) (one for each dataset
z ∈ suppPZ) to variations from the ERM-RER-optimal
measure P

(Q,λ)
Θ|Z=z towards the barycenter, i.e., the measure

P
(Q,λ)
Θ .

The following definition extends the notion of generalization
error to Gibbs algorithms obtained by assuming that the refer-
ence measure Q in (19) is a σ-finite measure. This definition
also exploits the relation between the notions of sensitivity
and generalization error introduced by Theorem 15.

Definition 8 (Generalization Error of the Gibbs Algorithm):
Given a σ-finite measure Q ∈ 4 (M,B (M)) and a real λ >
0, let the function GQ,λ : 4 ((X × Y)

n
,F ) → (−∞,+∞]

be such that

GQ,λ(PZ)=


∫
SQ,λ
Ä
ν,P

(Q,λ)
Θ

ä
dPZ(ν) if λ∈KQ,PZ

+∞ otherwise,
(194)

where the function SQ,λ is in (183); the set KQ,PZ
is in (189);

and the probability measure P (Q,λ)
Θ is in (192). The general-

ization error induced by the Gibbs algorithm with parameters
Q and λ under the assumption that datasets are sampled from
the probability measure PZ , is GQ,λ (PZ).

The main difficulty for extending the notion of generalization
error to Gibbs algorithms obtained under the assumption that
the reference measure is not a probability measure, but a σ-
finite measure, is that the integrals in (191) and (192) might not
be well defined. This is essentially due to the fact that, while
the ERM-RER problem in (19) always possesses a solution
when Q is a probability measure, the existence of a solution
when Q is not a probability measure is subject to the condition
that for all z ∈ suppPZ , λ ∈ KQ,z , with KQ,z in (23). This
leads to the condition that λ ∈ KQ,PZ

, with the set KQ,PZ

in (189). When such condition is not met, the definition of
sensitivity is void.

The following theorem provides a closed-form expression for
the generalization error of the Gibbs algorithm in the general
case in which the reference measure Q in (19) is a σ-finite
measure.

Theorem 16: If λ ∈ KQ,PZ
, with KQ,PZ

in (189), the
generalization error GQ,λ (PZ) in (194) satisfies

GQ,λ (PZ) = λ

(∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν)

+

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν)

)
, (195)

where for all z ∈ suppPZ , the probability measure P (Q,λ)
Θ|Z=z is

in (25); and the probability measure P (Q,λ)
Θ is defined in (192).

Proof: The proof is presented in Appendix V.

The terms
∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν) and∫

D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν) in the right-hand side

of (195) are respectively the mutual and the lautum
information [37] induced by a joint probability measure PΘ,Z

whose marginals are PZ in (188) and P (Q,λ)
Θ in (192). When

the reference measure Q in (19) is a probability measure,
Theorem 16 reduces to [8, Theorem 1]. Interestingly,
independently of whether the reference measure Q in (19)
is a probability measure, or whether the n data points in
the datasets are independent and identically distributed, the
generalization error GQ,λ (PZ) in (194) is always a factor of
the sum of the mutual and lautum information induced by
the joint probability measure PΘ,Z mentioned above.

Theorem 16 also provides an alternative interpretation of the
generalization error GQ,λ (PZ) in (194). Note that by writing
one of the factors in the right-hand side of (195) as∫ Ä

D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
+D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ää
dPZ(ν),

it becomes clear that GQ,λ (PZ) is the expectation with respect
to PZ of the symmetrized Kullback-Leibler divergence, also
known as Jeffrey’s divergence [44], of the probability measures
P

(Q,λ)
Θ|Z=z and P

(Q,λ)
Θ . That is, the solution to the ERM-RER

problem in (19) and the barycenter induced by PZ .

The following theorem provides an upper-bound on the gen-
eralization error of the Gibbs algorithm only in terms of
the lautum information induced by such a joint probability
measure PΘ,Z .

Theorem 17: The generalization error GQ,λ (PZ) in (194)
satisfies for all λ ∈ KQ,PZ

,

0 6GQ,λ(PZ)6

 
2σ2

Q

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν), (196)

where for all z ∈ suppPZ , the probability measure P (Q,λ)
Θ|Z=z

is in (25); the probability measure P (Q,λ)
Θ is defined in (192);

and

σQ=sup {βQ,z : z ∈ (X × Y)
n} , (197)

with βQ,z in (167).

Proof: The proof of the inequality GQ,λ (PZ) > 0 fol-
lows from observing that for all ν ∈ (X × Y)

n, the terms
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
and D

Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
are nonneg-

ative (Theorem 1). The proof of the remaining inequality
follows from (194) and the following inequalities:

GQ,λ (PZ)=

∣∣∣∣∫ SQ,λ
Ä
ν, P

(Q,λ)
Θ

ä
dPZ(ν)

∣∣∣∣ (198)

6
∫ ∣∣∣SQ,λ Äν, P (Q,λ)

Θ

ä∣∣∣dPZ(ν) (199)

6
∫ √

2βQ,νD
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν), (200)

6
∫√

2σ2
QD
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν) (201)

6

 
2σ2

Q

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν), (202)

where the equality in (198) follows from (194); the inequality
in (199) follows from [39, Theorem 1.5.9(c)]; the inequality
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in (200) follows from Theorem 14; the inequality in (201)
follows from (197); and the inequality in (202) follows from
Jensen’s inequality [39, Section 6.3.5]. This completes the
proof.

In a nutshell, the generalization error GQ,λ (PZ) in (194) is
upper bounded up to a constant factor by the square root
of the lautum information induced by the joint probability
measure PΘ,Z mentioned above. Theorem 17 is reminiscent
of [13, Theorem 1], which provides a similar upper-bound on
GQ,λ (PZ) using the mutual information instead of the lautum
information induced by the joint probability measure PΘ,Z .
The interest in Theorem 17 for the specific case of the Gibbs
algorithm, lies on the fact that it holds under milder conditions
than those in [13, Theorem 1]. For instance, no additional
conditions on the loss function ` in (2) concerning sub-
Gaussianity are assumed. Moreover, the probability measure
PZ from which datasets are sampled is not necessarily a
product measure.

XI. CONCLUSIONS AND FINAL REMARKS

The classical ERM-RER problem in (19) has been studied
under the assumption that the reference measure Q is a σ-
finite measure, instead of a probability measure, which leads
to a more general problem that includes the ERM problem
with (discrete or differential) entropy regularization and the
information-risk minimization problem. While in the case in
which the reference measure is a probability measure the so-
lution to the ERM-RER problem always exists, in this general
case, the existence of a solution is subject to a condition
that depends on the loss function, the reference measure, the
regularization factor, and the training dataset. When a solution
exists, it has been proved that it is unique. Additionally, if it
exists, such a solution and the reference measure are mutually
absolutely continuous in most of the practical cases of interest.
Interestingly, the empirical risk observed when models are
sampled from the ERM-RER-optimal probability measure is a
sub-Gaussian random variable that exhibits a PAC guarantee
for the ERM problem. That is, for some positive δ and ε,
it is shown that there always exist some parameters for the
ERM-RER problem such that the set of models that induce an
empirical risk smaller than δ exhibits a probability that is not
smaller that 1− ε. Interestingly, none of these results relies on
statistical assumptions on the datasets.

The sensitivity of the expected empirical risk to deviations
from the ERM-RER-optimal measure to alternative measures
is introduced as a new performance metric to evaluate the
generalization capabilities of the Gibbs algorithm. In particu-
lar, an upper bound on the absolute value of the sensitivity,
which depends on the training dataset, is presented. This bound
is formed by a constant factor and the square root of the
relative entropy of the alternative measure (the deviation) with
respect to the ERM-RER solution. Finally, it is shown that
the expectation of the sensitivity (with respect to the datasets)
to deviations towards a particular measure is equivalent to
the generalization error of the Gibbs algorithm. Equipped
with this observation, the generalization error is shown to be

in the most general case, up to a constant factor, the sum
of the mutual and lautum information between the models
and the datasets, which was a result known exclusively for
the case in which the reference is a probability measure,
cf. [8]. From this perspective, it is argued that the study of
the generalization capabilities of the Gibbs algorithm based
on generalization error is a significantly narrow view. This
is essentially because it is looking at an expectation of the
sensitivity to deviations to a particular measure, i.e., the
barycenter of the set of ERM-RER solutions induced by a prior
on the datasets. A broader view is offered by the study of the
sensitivity to deviations towards other measures, i.e., ERM-
RER-optimal measures obtained with different training data
sets. This approach has lead already to a few initial results in
[43] that highlight the connections to sensitivity, training error,
and test error. Nonetheless, the study of the sensitivity in the
aim of describing the generalization capabilities of learning
algorithms remains by now as an open problem.
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[28] A. Asadi, E. Abbe, and S. Verdú, “Chaining mutual information and
tightening generalization bounds,” Advances in Neural Information
Processing Systems, pp. 7245–7254, Dec. 2018.

[29] A. T. Lopez and V. Jog, “Generalization error bounds using Wasserstein
distances,” in Proceedings of the IEEE Information Theory Workshop
(ITW), Guangzhou, China, Nov. 2018, pp. 1–5.

[30] H. Hafez-Kolahi, Z. Golgooni, S. Kasaei, and M. Soleymani, “Con-
ditioning and processing: Techniques to improve information-theoretic
generalization bounds,” Advances in Neural Information Processing
Systems, pp. 16 457–16 467, Dec. 2020.

[31] M. Haghifam, J. Negrea, A. Khisti, D. M. Roy, and G. K. Dziugaite,
“Sharpened generalization bounds based on conditional mutual infor-
mation and an application to noisy, iterative algorithms,” Advances in
Neural Information Processing Systems, pp. 9925–9935, Dec. 2018.

[32] B. Rodrı́guez Gálvez, G. Bassi, R. Thobaben, and M. Skoglund, “Tighter
expected generalization error bounds via Wasserstein distance,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 19 109–
19 121, Dec. 2021.

[33] A. R. Esposito, M. Gastpar, and I. Issa, “Generalization error bounds
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APPENDIX A
PROOF OF THEOREM 2

Consider the function f : [0,+∞)→ R such that

f(x) =

ß
x log(x) if x > 0

0 if x = 0,
(203)

and note that it is strictly convex. From the assumption that
for all i ∈ {1, 2}, Pi and Qi are both measures on the same
measurable space (Ω,F ), with Pi absolutely continuous with
respect to Qi, let g : Ω→ [0,∞) be the function

g(x)=
d (λP1 + (1− λ)P2)

d (λQ1 + (1− λ)Q2)
(x) . (204)

Using this notation, for all λ ∈ (0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

−λD (P1‖Q1) + (1− λ)D (P2‖Q2) (205)

=

∫
log(g(x))d(λP1+(1−λ)P2)(x)

−λ
∫

log

Å
dP1

dQ1
(x)

ã
dP1(x)−(1−λ)

∫
log

Å
dP2

dQ2
(x)

ã
dP2(x)

=λ

∫
log (g (x)) dP1(x) + (1− λ)

∫
log (g (x)) dP2(x)

−λ
∫

log

Å
dP1

dQ1
(x)

ã
dP1(x)−(1−λ)

∫
log

Å
dP2

dQ2
(x)

ã
dP2(x)

=λ

∫
log

ÇÅ
dP1

dQ1
(x)

ã−1
g(x)

å
dP1(x)

+(1−λ)

∫
log

ÇÅ
dP2

dQ2
(x)

ã−1
g(x)

å
dP2(x)

=λ

∫
dP1

dQ1
(x)log

ÇÅ
dP1

dQ1
(x)

ã−1
g(x)

å
dQ1(x)

+(1−λ)

∫
dP2

dQ2
(x)log

ÇÅ
dP2

dQ2
(x)

ã−1
g(x)

å
dQ2(x)

=λ

∫ g(x) dP1

dQ1
(x)

g(x)
log

ÇÅ
dP1

dQ1
(x)

ã−1
g(x)

å
dQ1(x)

+(1−λ)

∫ g(x) dP2

dQ2
(x)

g(x)
log

ÇÅ
dP2

dQ2
(x)

ã−1
g(x)

å
dQ2(x)

=−λ
∫
g(x)f

Å
dP1

dQ1
(x)(g(x))

−1
ã

dQ1(x)

−(1−λ)

∫
g(x)f

Å
dP2

dQ2
(x)(g(x))

−1
ã

dQ2(x), (206)

where the function f is defined in (203). Let β1 and β2 be the
following constants:

β1,
∫
g(ν)dQ1(ν) and (207a)

β2,
∫
g(ν)dQ2(ν). (207b)

From (206) and (207), it follows that for all λ ∈ (0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

−λD (P1‖Q1) + (1− λ)D (P2‖Q2)

=−λβ1
∫
g(x)

β1
f

Å
dP1

dQ1
(x)(g(x))

−1
ã

dQ1(x)

−(1−λ)β2

∫
g(x)

β2
f

Å
dP2

dQ2
(x)(g(x))

−1
ã

dQ2(x)

6−λβ1f
Å∫

g(x)

β1

dP1

dQ1
(x)(g(x))

−1
dQ1(x)

ã
(208)

−(1−λ)β2f

Å∫
g(x)

β2

dP2

dQ2
(x)(g(x))

−1
dQ2(x)

ã
=−λβ1f

Å
1

β1

∫
dP1(x)

ã
−(1−λ)β2f

Å
1

β2

∫
dP2(x)

ã
=−λβ1f

Å
1

β1

ã
−(1−λ)β2f

Å
1

β2

ã
6−f

Å
λβ1

1

β1
+ (1− λ)β2

1

β2

ã
(209)

=−f (1)

=0, (210)

where the inequalities in (208) and (209) follow from Jensen’s
inequality [39, Section 6.3.5] and the fact that the function f
in (206) is strictly concave. Note that from (207), in (208), for
all i ∈ {1, 2},

∫ g(x)
βi

dQi(x) = 1; while in (209),

λβ1 + (1− λ)β2=

∫
g(ν)d(λQ1 +(1−λ)Q2)(ν) (211)

=

∫
d (λP1 + (1− λ)P2) (ν) (212)

=λ

∫
dP1(ν)+(1−λ)

∫
dP2(ν) (213)

=1. (214)

Given the strict convexity of the function f in (203), equality
in (208) and (209) hold if and only if P1 = P2 and Q1 = Q2.
This completes the proof.

APPENDIX B
PROOF OF LEMMA 1

Note that for all (λ1, λ2) ∈ {x ∈ R : KQ,z(x) < +∞}2, such
that λ1 > λ2, it follows that for all θ ∈ suppQ, the inequality
exp (λ2 Lz (θ)) 6 exp (λ1 Lz (θ)) holds. This implies that
KQ,z (λ2) 6 KQ,z (λ1) < +∞, which proves that the
function is nondecreasing.

The proof of continuity of the function KQ,z follows from
observing that for all α ∈ {x ∈ R : KQ,z(x) < +∞}, it holds
that

lim
t→α

KQ,z(t)=lim
t→α

log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
(215)

=log

Å
lim
t→α

∫
exp (t Lz (θ)) dQ(θ)

ã
(216)

=log

Å∫
lim
t→α

exp (t Lz (θ)) dQ(θ)

ã
(217)

=log

Å∫
exp (α Lz (θ)) dQ(θ)

ã
(218)

=KQ,z(α), (219)
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where (216) and (218) follow from the fact that both the
logarithmic and exponential functions are continuous; and the
equality in (217) follows from the monotone convergence
theorem [39, Theorem 1.6.2]. This shows that the function
KQ,z is continuous in {x ∈ R : KQ,z(x) < +∞}.

The proof of differentiability follows by considering
the transport of the σ-finite measure Q in (22) from
the measure space (M,B (M)) to the measure
space ([0,+∞) ,B ([0,+∞))) through the function Lz in (3).
Denote the resulting measure in ([0,+∞) ,B ([0,+∞)))
by P . More specifically, for all A ∈ B ([0,+∞)),
it holds that P (A) = Q ({θ ∈M : Lz (θ) ∈ A}).
Hence, the function KQ,z satisfies for all t ∈
{ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=log

Å∫
exp (t Lz (θ)) dQ(θ)

ã
(220)

=log

Å∫
exp (t w) dP (w)

ã
, (221)

where the equality (221) follows from [39, Theorem 1.6.12].
Denote by φ the Laplace transform of the measure P . That is,
for all t ∈ {x ∈ R : KQ,z(x) < +∞},

φ(t) =

∫
exp (t v) dP (v). (222)

Hence, φ(t) = exp (KQ,z (t)). From [53, Theorem 1a (page
439)], it follows that the function φ has derivatives of all
orders in {x ∈ R : KQ,z(x) < +∞}, and thus, so does the
function KQ,z in the interior of {x ∈ R : KQ,z(x) < +∞}.
This completes the proof.

APPENDIX C
PROOF OF LEMMA 2

The proof is divided into two parts. The first part is as follows.
Under the assumption that the set KQ,z in (23) is empty, there
is nothing to prove. Alternatively, under the assumption that
the set KQ,z is not empty, there always exists a real b ∈ KQ,z ,
such that KQ,z

(
− 1
b

)
< +∞. Note that for all θ ∈M,

d

dt
exp

Å
−1

t
Lz (θ)

ã
=

1

t2
Lz (θ)exp

Å
−1

t
Lz (θ)

ã
> 0, (223)

with Lz in (3). Thus, from (22), it follows that KQ,z

(
− 1
b

)
is

nondecreasing with b. This implies that (0, b] ⊆ KQ,z .

Let b? ∈ (0,+∞] be

b? = supKQ,z. (224)

Hence, if b? = +∞, it follows from (23) that

KQ,z = (0,+∞). (225)

Alternatively, if b? < +∞, it holds that

(0, b?) ⊆ KQ,z ⊆ (0, b?]. (226)

In either case, it follows that KQ,z is a convex set. This
completes the first part of the proof.

The second part of the proof is under the assumption that Q is
a probability measure. Under this assumption, for all θ ∈ M
and for all for all t > 0, it follows that

exp

Å
−1

t
Lz (θ)

ã
6 1, (227)

with Lz in (3). Thus,

KQ,z

Å
−1

t

ã
=log

Å∫
exp

Å
−1

t
Lz (θ)

ã
dQ(θ)

ã
(228)

6log

Å∫
dQ(θ)

ã
(229)

=0, (230)

which implies that (0,+∞) ⊆ KQ,z . Thus, if Q is a probabil-
ity measure, from (23), it holds that KQ,z = (0,+∞), which
completes the proof.

APPENDIX D
PROOF OF THEOREM 3

The objective function in the optimization problem in (19) can
be written as follows:

min
P∈4Q(M,B(M))

∫
Lz (θ)

dP

dQ
(θ)dQ(θ)

+λ

∫
dP

dQ
(θ)log

Å
dP

dQ
(θ)

ã
dQ(θ) (231a)

s. t.

∫
dP (θ) = 1. (231b)

with dP
dQ being the Radon-Nikodym derivative of P with

respect to Q.

Let M be the set of nonnegative measurable functions with re-
spect to the measurable spaces (M,B (M)) and (R,B (R)).
The Lagrangian of the optimization problem in (231) can
be constructed in terms of a function in M , instead of a
measure in 4 (M,B (M)). Let such a Lagrangian be L :
M × [0,+∞)→ R of the form

L

Å
dP

dQ
, β

ã
=

∫
Lz (ν)

dP

dQ
(ν)dQ(ν)+λ

∫
dP

dQ
(ν)log

Å
dP

dQ
(ν)

ã
dQ(ν)

+β

Å∫
dP

dQ
(ν) dP (ν)− 1

ã
, (232)

where β is a positive real that acts as a Lagrangian multiplier
due to the constraint (231b).

Let g : Rk → R be a function in M . The Gateaux differential
of the functional L in (232) at

Ä
dP
dQ , β

ä
∈ M × [0,+∞) in

the direction of g is

∂L

Å
dP

dQ
, β; g

ã
,

d

dα
r(α)

∣∣∣∣
α=0

, (233)
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where the real function r : R → R is such that for all α ∈
R,

r(α)=

∫
Lz (ν)

Å
dP

dQ
(ν) + αg (ν)

ã
dQ (ν)

+β

Å∫ Å
dP

dQ
(ν) + αg (ν)

ã
dQ (ν)− 1

ã
+λ

∫ Å
dP

dQ
(ν)+αg(ν)

ã
log

Å
dP

dQ
(ν)+αg(ν)

ã
dQ(ν). (234)

Note that the derivative of the real function r in (234) is

d

dα
r(α)=

∫
Lz(ν)g(ν)dQ(ν)+β

∫
g(ν)dQ(ν)

+λ

∫
g(ν)

Å
1+log

Å
dP

dQ
(ν)+αg(ν)

ãã
dQ(ν). (235)

From (233) and (235), it follows that

∂L

Å
dP

dQ
, β; g

ã
=

∫
g(ν)

Å
Lz(ν)+λ

Å
1+log

Å
dP

dQ
(ν)

ãã
+β

ã
dQ(ν). (236)

The relevance of the Gateaux differential in (236) stems from
[54, Theorem 1, page 178], which unveils the fact that a
necessary condition for the functional L in (232) to have a

minimum at
Å

dP
(Q,λ)

Θ|Z=z

dQ , β

ã
∈ M × [0,+∞) is that for all

functions g ∈M ,

∂L

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
; g

é
= 0. (237)

From (237), it follows that
dP

(Q,λ)

Θ|Z=z

dQ must satisfy for all
functions g in M that

0 =∫
g(ν)

Ñ
Lz(ν)+λ

Ñ
1+log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(ν)

éé
+β

é
dQ(ν),

which implies that for all ν ∈M,

Lz (ν) + λ

Ñ
1 + log

Ñ
dP

(Q,λ)
Θ|Z=z

dQ
(ν)

éé
+ β = 0, (238)

and thus,

dP
(Q,λ)
Θ|Z=z

dQ
(ν) = exp

Å
−β + λ

λ

ã
exp

Å
−Lz (ν)

λ

ã
, (239)

with β chosen to satisfy (231b). That is,

dP
(Q,λ)
Θ|Z=z

dQ
(ν)=

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

(240)

=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (ν)

ã
.(241)

The proof continues by verifying that the measure P (Q,λ)
Θ|Z=z that

satisfies (240) is the unique solution to the ERM-RER problem

in (19). Such verification is done by showing that the objective
function in (19) is strictly convex with the optimization
variable. Let P1 and P2 be two different probability measures
in (M,B (M)) and let α be in (0, 1). Hence,

Rz (αP1 + (1− α)P2) + λD (αP1 + (1− α)P2‖Q)

=αRz (P1)+(1−α)Rz (P2)+λD(αP1 +(1−α)P2‖Q)

>α(Rz (P1)+λD(P1‖Q))+(1−α)(Rz (P2)+λD(P2‖Q))

where the function Rz is defined in (18). The equality above
follows from the properties of the Lebesgue integral, while
the inequality follows from Theorem 2. This proves that the
solution is unique due to the strict concavity of the objective
function, which completes the proof.

APPENDIX E
PROOF OF LEMMA 3

For all λ ∈ KQ,z , with KQ,z in (23), and for all C ∈
B (M),

P
(Q,λ)
Θ|Z=z (C)=

∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (242)

and thus, if Q (C) = 0, then

P
(Q,λ)
Θ|Z=z (C)=0, (243)

which implies the absolute continuity of P (Q,λ)
Θ|Z=z with respect

to Q.

Alternatively, given a set C ∈ B (M) and a real λ ∈ KQ,z , as-
sume now that P (Q,λ)

Θ|Z=z (C) = 0. Hence, it follows that

0=P
(Q,λ)
Θ|Z=z (C) (244)

=

∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) . (245)

From Lemma 7, and the assump-
tion Q ({θ ∈M : Lz (θ) = +∞}) = 0, it holds that
for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0, (246)

which implies that∫
C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ)=0, (247)

if and only if Q (C) = 0. This verifies the absolute continuity
of Q with respect to P (Q,λ)

Θ|Z=z , and completes the proof.

APPENDIX F
PROOF OF LEMMA 4

Consider the function g :M→ [0,+∞),

g(θ) =
dP

(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
, (248)

and note that for all θ ∈ suppQ \
{
ν ∈

M: Lz (ν) = +∞
}

, g (θ) > 0 and for



25

all θ ∈ {ν ∈M : Lz (ν) = +∞} , g (θ) = 0, which
follows from the assumption 0 · 10 = 0.

Consider a measure P on (M,B (M)), such that for all
sets A ∈ B (M),

P (A) =

∫
A
g(θ)dP

(Q,β)
Θ|Z=z(θ), (249)

and note that if P (Q,β)
Θ|Z=z(A) = 0, then P (A) = 0. This implies

that P is absolutely continuous with respect to P
(Q,β)
Θ|Z=z(A).

Moreover, from (249), it follows that

P (A)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
dP

(Q,β)
Θ|Z=z(θ) (250)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ
dP

(Q,β)
Θ|Z=z

dQ
(θ)

é−1
dP

(Q,β)
Θ|Z=z

dQ
(θ)dQ(θ) (251)

=

∫
A

dP
(Q,α)
Θ|Z=z

dQ
(θ) dQ(θ) (252)

=

∫
A

dP
(Q,α)
Θ|Z=z(θ) (253)

= P
(Q,α)
Θ|Z=z(A). (254)

This proves that P (Q,α)
Θ|Z=z is absolutely continuous with respect

to P
(Q,β)
Θ|Z=z . The proof that P (Q,β)

Θ|Z=z is absolutely continuous

with respect to P
(Q,α)
Θ|Z=z follows the same argument. This

completes the proof.

APPENDIX G
PROOF OF LEMMA 6

For all θ1 ∈ suppQ and for all θ2 ∈ T (z) ∩ suppQ, it
follows that

Lz (θ1)>Lz (θ2) , (255)

and thus, for all λ ∈ KQ,z , with KQ,z in (23), it holds
that

exp

Å
−Lz (θ1)

λ

ã
6exp

Å
−Lz (θ2)

λ

ã
, (256)

which implies

exp
Ä
−Lz(θ1)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ(α)

6
exp
Ä
−Lz(θ2)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ(α)

. (257)

Hence, under the assumption that T (z) ∩ suppQ 6= ∅, for
all θ1 ∈ suppQ and for all θ2 ∈ T (z) ∩ suppQ, it follows
from Theorem 3 that,

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) 6

dP
(Q,λ)
Θ|Z=z

dQ
(θ2) , (258)

with equality if and only if θ1 ∈ T (z) ∩ suppQ, which
completes the proof.

APPENDIX H
PROOF OF LEMMA 7

From Lemma 6, it follows that for all λ ∈ KQ,z , for all θ ∈
suppQ, and for all µ ∈ T (z) ∩ suppQ, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ)6

dP
(Q,λ)
Θ|Z=z

dQ
(µ) (259)

=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (µ)

ã
(260)

6exp

Å
−KQ,z

Å
− 1

λ

ãã
(261)

<+∞, (262)

where the equality in (260) follows from (25); the inequality
in (261) follows from the fact that Lz (µ) > 0; and the equality
in (262) follows from the fact that λ ∈ KQ,z . This completes
the proof of finiteness.

The proof of positivity follows from observing that for
all λ ∈ KQ,z , it holds that KQ,z

(
− 1
λ

)
< +∞, and

thus, exp
(
−KQ,z

(
− 1
λ

))
> 0. Moreover, for all λ ∈ KQ,z

and for all θ ∈ suppQ, it holds that Lz (θ) 6 +∞, which
implies that− 1

λLz (θ) > −∞, and thus, exp
(
− 1
λLz (θ)

)
> 0,

with equality if and only if Lz (θ) = +∞. These two
observations put together yield

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å
−KQ,z

Å
− 1

λ

ã
− 1

λ
Lz (θ)

ã
(263)

=exp

Å
−KQ,z

Å
− 1

λ

ãã
exp

Å
− 1

λ
Lz (θ)

ã
(264)

>0, (265)

with equality if and only if Lz (θ) = +∞. This completes the
proof.

APPENDIX I
PROOF OF LEMMA 9

From Theorem 3, it follows that for all λ ∈ KQ,z and for
all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(266)

=

Å
exp

Å
Lz(θ)

λ

ã∫
exp

Å
−Lz(ν)

λ

ã
dQ(ν)

ã−1
(267)

=

Å∫
exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

ã−1
. (268)

Given θ ∈ suppQ, consider the partition of suppQ formed
by the sets A0 (θ), A1 (θ), and A2 (θ), which satisfy the
following:

A0 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) = 0} , (269a)
A1 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) < 0} , and (269b)
A2 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) > 0} . (269c)
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Using the sets A0 (θ), A1 (θ), and A2 (θ) in (268), the fol-
lowing holds for all λ ∈ KQ,z and for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

(∫
A0(θ)

exp

Å
1

λ
(Lz (θ)−Lz (ν))

ã
dQ(ν)

+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)−Lz (ν))

ã
dQ(ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

)−1
(270)

=

(
Q(A0(θ))+

∫
A1(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

+

∫
A2(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

)−1
. (271)

Note that the sets

{
ν ∈ suppQ : Lz (ν) = δ?Q,z

}
, (272){

ν ∈ suppQ : Lz (ν) > δ?Q,z
}

, and (273){
ν ∈ suppQ : Lz (ν) < δ?Q,z

}
, (274)

with δ?Q,z in (49), form a partition of the set suppQ. Following
this observation, the rest of the proof is divided into three

parts. The first part evaluates limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ), with θ ∈¶
ν ∈M : Lz (ν) = δ?Q,z

©
. The second part considers the case

in which θ ∈
¶
ν ∈M : Lz (ν) > δ?Q,z

©
. The third part

considers the remaining case.

The first part is as follows. Consider that θ ∈¶
ν ∈M : Lz (ν) = δ?Q,z

©
and note that¶

ν ∈M : Lz (ν) = δ?Q,z

©
= L?Q,z . Hence, the

sets A0 (θ), A1 (θ), and A2 (θ) in (269) satisfy the
following:

A0 (θ) = L?Q,z, (275a)

A1 (θ) =
{
µ ∈ suppQ : Lz (µ) > δ?Q,z

}
, and (275b)

A2 (θ) =
{
µ ∈ suppQ : Lz (µ) < δ?Q,z

}
. (275c)

From the definition of δ?Q,z in (49), it follows
that Q (A2 (θ)) = 0. Plugging the equalities in (275)
in (271) yields for all θ ∈

¶
ν ∈M : Lz (ν) = δ?Q,z

©
,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

Å
Q
(
L?Q,z

)
+

∫
A1(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

ã−1
. (276)

The equality in (276) implies that for all θ ∈¶
ν ∈M : Lz (ν) = δ?Q,z

©
,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

Å
lim
λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)−Lz (ν))

ã
dQ(ν)+

+Q
(
L?Q,z

)ã−1
(277)

=

{
+∞ if Q

Ä
L?Q,z

ä
= 0

1

Q(L?Q,z)
otherwise. (278)

where the equality in (278) follows from verifying that the
dominated convergence theorem [39, Theorem 2.6.9] holds.
That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and
(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (279)

This completes the first part of the proof.

The second part is as follows. For all δ > δ?Q,z and for all θ
∈
{
ν ∈ suppQ : Lz (ν) = δ

}
, the sets A0 (θ), A1 (θ),

and A2 (θ) in (269) satisfy the following:

A0 (θ)={µ ∈ suppQ : Lz (µ) = δ} , (280a)
A1 (θ)={µ ∈ suppQ : Lz (µ) > δ} , and (280b)
A2 (θ)={µ ∈ suppQ : Lz (µ) < δ} . (280c)

Consider the sets

A2,1 (θ),
{
µ ∈ A2 (θ) : Lz (µ) < δ?Q,z

}
, and (281)

A2,2 (θ),
{
µ ∈ A2 (θ) : δ?Q,z 6 Lz (µ) < δ

}
, (282)

and note that A2,1 (θ) and A2,2 (θ) form a partition of A2 (θ).
Moreover, from the definition of δ?Q,z in (49), it holds
that

Q (A2,1 (θ)) = 0. (283)

Hence, plugging the equalities in (280) and (283)
in (271) yields, for all δ > δ?Q,z and for
all θ ∈ {ν ∈M : Lz (ν) = δ},

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

Å
Q(A0(θ))+

∫
A1(θ)

exp

Å
1

λ
(Lz(θ)−Lz(ν))

ã
dQ(ν)

+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

ã−1
. (284)
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The equality in (284) implies that for all δ > δ?Q,z and for
all θ ∈

{
ν ∈M: Lz (ν) = δ

}
,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

(
lim
λ→0+

∫
A1(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+ lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν) (285)

+Q (A0 (θ))

)−1
(286)

=

(
lim
λ→0+

∫
A2,2(θ)

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
dQ (ν)

+Q (A0 (θ))

)−1
(287)

=
(
Q (A0 (θ)) +∞

)−1
(288)

=0, (289)

where the equality in (287) follows by verifying that the
dominated convergence theorem [39, Theorem 2.6.9] holds.
That is,
(a) For all ν ∈ A1 (θ), it holds that exp

(
1
λ (Lz (θ)− Lz (ν))

)
< 1; and
(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å
1

λ
(Lz (θ)− Lz (ν))

ã
= 0. (290)

This completes the second part.

The third part of the proof follows by noticing that the
set

{
ν ∈ suppQ: Lz (ν) < δ?Q,z

}
is a negligible

set with respect to Q and thus, for all θ ∈
{
ν ∈

suppQ : Lz (ν) < δ?Q,z
}

, the value
dP

(Q,λ)

Θ|Z=z

dQ (θ) is im-
material. Hence, it is arbitrarily assumed that for all θ ∈¶
ν ∈ suppQ : Lz (ν) < δ?Q,z

©
, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) = 0. (291)

This completes the third part and completes the proof.
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Consider the following partition of the set M formed by the
sets

A0,
{
θ ∈M : Lz (θ) = δ?Q,z

}
, (292a)

A1,
{
θ ∈M : Lz (θ) < δ?Q,z

}
, and (292b)

A2,
{
θ ∈M : Lz (θ) > δ?Q,z

}
, (292c)

with δ?Q,z in (49) and the function Lz in (3). Note that A0 =
L?Q,z , with L?Q,z in (50).

For all λ ∈ KQ,z , the following holds,

1=P
(Q,λ)
Θ|Z=z (A0) + P

(Q,λ)
Θ|Z=z (A1) + P

(Q,λ)
Θ|Z=z (A2) (293)

=P
(Q,λ)
Θ|Z=z (A0) + P

(Q,λ)
Θ|Z=z (A2) (294)

=P
(Q,λ)
Θ|Z=z (A0) +

∫
A2

dP
(Q,λ)
Θ|Z=z(θ), (295)

where, the equality in (294) follows from noticing that
P

(Q,λ)
Θ|Z=z(A1) = 0, which follows from the definition of δ?Q,z

in (49) and the fact that the probability measure P (Q,λ)
Θ|Z=z is

absolutely continuous with respect to the measure Q.

The above implies that

1= lim
λ→0+

P
(Q,λ)
Θ|Z=z(A0)+ lim

λ→0+

∫
A2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)dQ(θ) (296)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z(A0)+

∫
A2

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)dQ(θ) (297)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z (A0) , (298)

where, the equality in (297) follows from the dominated con-
vergence theorem [39, Theorem 1.6.9], given that for all λ ∈
KQ,z , the Randon-Nikodym derivative

dP
(Q,λ)

Θ|Z=z

dQ is positive and
finite (Lemma 7); and the inequality in (298) holds from the

fact that for all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) =
0 (Lemma 9). Hence, it finally holds that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(
L?Q,z

)
= 1, (299)

which completes the proof.
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The proof is presented in two parts. The first part shows that
if for all δ ∈ (ρ?,+∞), the inequality in (61) holds, then, Q
is coherent. The second part shows that if Q is not coherent,
thenthere exists a δ ∈ (ρ?,+∞) such that

P
(Q,λ)
Θ|Z=z (Lz (δ))=0. (300)

The first part is as follows. Note that for all δ ∈ (ρ?,+∞)
and for all θ ∈ Lz (δ) ∩ suppQ, it holds from Lemma 7
that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0. (301)

Hence, if for all δ ∈ (ρ?,+∞), the inequality in (61) holds,
then

0 < P
(Q,λ)
Θ|Z=z (Lz (δ)) (302)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z (θ) (303)

=

∫
Lz(δ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (304)

which, together with (301), implies that for all δ ∈
(ρ?,+∞), Q (Lz (δ)) > 0. Hence, Q is coherent.
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The second part is as follows. Assume that Q is not coherent.
Then, there exists a δ ∈ (ρ?,+∞) such that Q (Lz (δ)) = 0.
Hence, from the fact that P (Q,λ)

Θ|Z=z is absolutely continuous

with respect to Q, it follows that P (Q,λ)
Θ|Z=z (Lz (δ)) = 0. This

completes the proof.
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The optimization problem in (95) can be re-written as follows:

min
P∈4Q(M,B(M))

∫
Lz (ν)

dP

dP
(Q,λ)
Θ|Z=z

(ν)dP
(Q,λ)
Θ|Z=z (ν),(305a)

subject to:∫
dP

dP
(Q,λ)
Θ|Z=z

(ν)log

Ñ
dP

dP
(Q,λ)
Θ|Z=z

(ν)

é
dP

(Q,λ)
Θ|Z=z(ν)6c, (305b)∫

dP

dP
(Q,λ)
Θ|Z=z

(θ) dP
(Q,λ)
Θ|Z=z(θ) = 1. (305c)

Let M be the set of nonnegative measurable functions with re-
spect to the measurable spaces (M,B (M)) and (R,B (R)).
The Lagrangian of the optimization problem in (305) can
be constructed in terms of a function in M , instead of a
measure over the measurable space (M,B (M)) . Let such
Lagrangian L : M × [0,+∞)2 → R be of the form

L (g, α, β)=

∫
Lz (ν) g (ν) dP

(Q,λ)
Θ|Z=z (ν)

+α

Å∫
g (ν) log (g (ν)) dP

(Q,λ)
Θ|Z=z (ν)− c

ã
+β

Å∫
g (ν) dP

(Q,λ)
Θ|Z=z (ν)− 1

ã
, (306)

where g is a notation to represent the Radon-Nikodym deriva-
tive dP

dP
(Q,λ)

Θ|Z=z

; the reals α and β are both nonnegative and act as

Lagrangian multipliers due to the constraint (305b) and (305c),
respectively.

Let h : Rk → R be a function in M . The Gateaux differential
of the functional L in (306) at (g, α, β) ∈M × [0,+∞)2 in
the direction of h is

∂L (g, α, β;h) ,
d

dγ
r(γ)

∣∣∣∣
γ=0

, (307)

where the real function r : R → R is such that for all γ ∈
R,

r(γ)

=

∫
Lz (ν) (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)

+α

Å∫
(g(ν)+γh(ν))log(g(ν)+γh(ν))dP

(Q,λ)
Θ|Z=z(ν)−c

ã
+β

Å∫
(g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)− 1

ã
. (308)

Note that the derivative of the real function r in (308) is

d

dγ
r(γ)

=

∫
Lzh (ν) dP

(Q,λ)
Θ|Z=z (ν) + α

∫
h (ν) dP

(Q,λ)
Θ|Z=z (ν)

+α

∫
h (ν) log (g (ν) + γh (ν)) dP

(Q,λ)
Θ|Z=z (ν)

+β

∫
h (ν) dP

(Q,λ)
Θ|Z=z (ν) . (309)

From (307) and (309), it follows that

∂L (g, α, β;h)

=

∫
h (ν) (Lz (ν) + α (1 + log g (ν)) + β) dP

(Q,λ)
Θ|Z=z (ν) . (310)

From [54, Theorem 1, page 178], it holds that a necessary
condition for the functional L in (306) to have a mini-
mum at (g, α, β) ∈ M × [0,+∞)2 is that for all func-
tions h ∈ M ,

∂L (g, α, β;h) = 0, (311)

which implies that for all ν ∈M,

Lz (ν) + α (1 + log g (ν)) + β = 0. (312)

Thus,

g (ν) = exp

Å
−Lz (ν)

α

ã
exp

Å
−β + α

α

ã
, (313)

where α and β are chosen to satisfy their corresponding
constraints. Denote by P ? the solution of the optimization
problem in (95). Hence, from (313), it follows that

dP ?

dP
(Q,λ)
Θ|Z=z

(ν) =
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(Q,λ)
Θ|Z=z (θ)

, (314)

where α is chosen to satisfy

D
Ä
P ?‖P (Q,λ)

Θ|Z=z

ä
= c. (315)

From Lemma 3, it follows that the probability measure P ?
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and the σ-finite measure Q satisfy,

dP ?

dQ
(ν)=

dP ?

dP
(Q,λ)
Θ|Z=z

(ν)
dP

(Q,λ)
Θ|Z=z

dQ
(ν) (316)

=

Ü
exp
Ä
−Lz(ν)

α

ä∫
exp

Å
−Lz (θ)

α

ã
dP

(Q,λ)
Θ|Z=z (θ)

ê
Ü

exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

ê
(317)

=


exp
Ä
−Lz(ν)

α

ä
∫ exp

Ä
−Lz(θ)

α

ä
exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (α)

λ

ã
dQ (α)

dQ (θ)

Ü
exp
Ä
−Lz(ν)

λ

ä∫
exp

Å
−Lz (θ)

λ

ã
dQ (θ)

ê
(318)

=
exp

(
−
(
1
α + 1

λ

)
Lz (ν)

)∫
exp

Å
−
Å

1

α
+

1

λ

ã
Lz (ν)

ã
dQ (θ)

, (319)

which implies that P ? is a Gibbs probability measure
on (M,B (M)), with reference measure Q, regularization
parameter 1

1
α+ 1

λ

, and energy function Lz . That is, for all ν ∈
suppQ,

P ?(v) = P
(Q, αλα+λ )
Θ|Z=z (ν) , (320)

where α is chosen to satisfy (315). Let the positive real ω
be ω , αλ

α+λ and note that ω ∈ (0, λ] and satis-
fies D

Ä
P

(Q,ω)
Θ|Z=z (ν) ‖P (Q,λ)

Θ|Z=z

ä
= c. The proof ends by

verifying that the objective function in (306) is strictly convex,
and thus, the measure P (Q,ω)

Θ|Z=z is the unique minimizer. This
completes the proof.
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Let (γ1, γ2) ∈ R2, with γ1 6= γ2 and α ∈ [0, 1] be fixed.
Assume that KQ,z (γ1) < +∞ and KQ,z (γ2) < +∞. Then,
for all α ∈ (0, 1), the following holds

αKQ,z (γ1) + (1− α)KQ,z (γ2)

=α log

Å∫
exp (γ1 Lz (θ)) dQ(θ)

ã
+(1− α) log

Å∫
exp (γ2 Lz (θ)) dQ(θ)

ã
(321)

=log

ÅÅ∫
exp (γ1 Lz (θ)) dQ(θ)

ãαã
+ log

ÇÅ∫
exp (γ2 Lz (θ)) dQ(θ)

ã(1−α)å
(322)

=log

ÅÅ∫
exp (γ1 Lz (θ)) dQ(θ)

ãαÅ∫
exp(γ2 Lz(θ))dQ(θ)

ã(1−α)ã
(323)

=log

(Å∫
exp (γ1αLz (θ))

p
dQ(θ)

ã 1
pÅ∫

exp (γ2(1− α)Lz (θ))
q

dQ(θ)

ã 1
q

)
(324)

>log

Å∫
exp(γ1αLz(θ))exp(γ2(1−α)Lz(θ))dQ(θ)

ã
(325)

=log

Å∫
exp

Å
(γ1α+ γ2(1− α)) Lz (θ)

ã
dQ(θ)

ã
(326)

=KQ,z (γ1α+ γ2(1− α)) , (327)

where the inequality in (324) follows with α , 1
p and 1−α ,

1
q ; the inequality in (325) follows from Hölder’s inequality.
Hence, equality in (325) holds if and only if there exist two
constants β1 and β2, not simultaneously equal to zero, such
that the set

A , {θ ∈M : β1 exp (γ1Lz (θ)) = β2 exp (γ2Lz (θ))}

=

ß
θ ∈M : exp ((γ1 − γ2) Lz (θ)) =

β2
β1

™
(328)

=

{
θ ∈M : Lz (θ) =

log β2

β1

(γ1 − γ2)

}
, (329)

satisfies Q (A) = 1. That is, strict inequality in (325) holds if
and only if the function Lz is separable with respect to the σ-
finite measure Q. When α = 0 or α = 1, the proof is trivial.
This completes the proof.
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For all s ∈ KQ,z , with KQ,z in (23), the equality in (108)
implies the following,

K
(1)
Q,z

Å
−1

s

ã
=

d

dt
log

Å∫
exp (t Lz (θ)) dQ(θ)

ã∣∣∣∣∣
t=− 1

s

(330)

=

∫
Lz (θ) exp (t Lz (θ))∫
exp (t Lz (v)) dQ(v)

dQ(θ)

∣∣∣∣∣
t=− 1

s

(331)

=

∫
Lz (θ) exp

(
− 1
s Lz (θ)

)∫
exp

(
− 1
s Lz (v)

)
dQ(v)

dQ(θ) (332)

=exp

Å
−KQ,z

Å
−1

s

ãã∫
Lz(θ)exp

Å
−1

s
Lz(θ)

ã
dQ(θ) (333)

=

∫
Lz (θ) exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ(θ) (334)

=

∫
Lz (θ) dP

(Q,s)
Θ|Z=z(θ), (335)

where the equality in (331) holds from the dominated
convergence theorem [39, Theorem 1.6.9]; the equality
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in (333) follows from (22); and the equality in (335) follows
from (25).

For all s ∈ KQ,z , with KQ,z in (23), the equalities in (108)
and (334) imply that

K
(2)
Q,z

Å
−1

s

ã
=

d

dt

∫
Lz (θ) exp (−KQ,z (t) + t Lz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(336)

=

∫
Lz (θ)

Ä
−K(1)

Q,z (t) + Lz (θ)
ä

exp (−KQ,z (t) + tLz (θ)) dQ(θ)

∣∣∣∣∣
t=− 1

s

(337)

=

∫
Lz (θ)

Å
−K(1)

Q,z

Å
−1

s

ã
+ Lz (θ)

ã
exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ(θ) (338)

=

∫
Lz (θ)

Å
−K(1)

Q,z

Å
−1

s

ã
+ Lz (θ)

ã
dP

(Q,s)
Θ|Z=z (θ) (339)

=−K(1)
Q,z

Å
−1

s

ã∫
Lz (θ) dP

(Q,s)
Θ|Z=z (θ)

+

∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ) (340)

=−
Å
K

(1)
Q,z

Å
−1

s

ãã2
+

∫
(Lz (θ))

2
dP

(Q,s)
Θ|Z=z (θ) (341)

=

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã2
dP

(Q,s)
Θ|Z=z (θ) , (342)

where the equality in (337) follows from the dominated
convergence theorem [39, Theorem 1.6.9]; the equality
in (339) is due to a change of measure through the Radon-
Nikodym derivative in (25); and the equality in (341) follows
from (335).

For all s ∈ KQ,z , with KQ,z in (23), the equalities in (108)
and (341) imply that

K
(3)
Q,z

Å
−1

s

ã
=

d

dt

Å∫
(Lz (θ))

2
dP

(Q,− 1
t )

Θ|Z=z (θ)−
Ä
K

(1)
Q,z (t)

ä2ã∣∣∣∣∣
t=− 1

s

(343)

=
d

dt

(∫ Å
(Lz (θ))

2
exp (−KQ,z (t) + tLz (θ))

ã
dQ (θ)

−
Ä
K

(1)
Q,z (t)

ä2)∣∣∣∣∣
t=− 1

s

(344)

=

∫
(Lz (θ))

2

Ñ
d

dt
exp(−KQ,z (t)+ tLz (θ))

∣∣∣∣∣
t=− 1

s

é
dQ(θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣∣∣∣∣
t=− 1

s

(345)

=

∫
(Lz (θ))

2Ä
Lz(θ)−K(1)

Q,z(t)
ä
exp(−KQ,z(t)+tLz(θ))

∣∣∣∣∣
t=−1

s

dQ(θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣∣∣∣∣
t=− 1

s

(346)

=

∫
(Lz (θ))

2
Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã
exp

Å
−KQ,z

Å
−1

s

ã
− 1

s
Lz (θ)

ã
dQ (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(347)

=

∫
(Lz (θ))

2
Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã
dP

(Q,s)
Θ|Z=z (θ)

−2K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(348)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)

−K(1)
Q,z

Å
−1

s

ã ∫
(Lz (θ))
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(Q,s)
Θ|Z=z (θ)

−2K
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ã
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Å
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ã
(349)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)

−K(1)
Q,z

Å
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s

ãÇ
K

(2)
Q,z

Å
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s

ã
+

Å
K

(1)
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ãã2å
−2K
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Å
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s

ã
K

(2)
Q,z

Å
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s

ã
(350)

=

∫
(Lz (θ))

3
dP

(Q,s)
Θ|Z=z (θ)−K(1)

Q,z

Å
−1

s

ã3
(351)

−3K
(1)
Q,z

Å
−1

s

ã
K

(2)
Q,z

Å
−1

s

ã
(352)

=

∫ Å
Lz (θ)−K(1)

Q,z

Å
−1

s

ãã3
dP

(Q,s)
Θ|Z=z (θ) , (353)

where the equality in (344) follows from (25); and the equality
in (345) follows from the dominated convergence theorem [39,
Theorem 1.6.9]; the equality in (348) follows from (25); and
the equality in (350) follows from (341).

This completes the proof.

APPENDIX O
PROOF OF THEOREM 5

The proof is based on the analysis of the derivative
of K(1)

Q,z

(
− 1
λ

)
with respect to λ in intKQ,z . This is due to

Corollary 2. For instance, note that
d

dλ
Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
=

d

dλ
K

(1)
Q,z

Å
− 1

λ

ã
(354)

=
1

λ2
K

(2)
Q,z

Å
− 1

λ

ã
(355)

>0, (356)

where the equality in (355) follows from Lemma 19. The
inequality in (356) implies that the expected empirical



31

risk Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
= K

(1)
Q,z

(
− 1
λ

)
in (113) is nondecreasing

with respect to λ. The rest of the proof consists in showing
that for all α ∈ KQ,z , the function K

(2)
Q,z in (108) satis-

fies K(2)
Q,z

(
− 1
α

)
> 0 if and only if the function Lz in (3) is

separable. For doing so, a handful of preliminary results are
described in the following subsection. The proof of Theorem 5
resumes in Subsection O-B

A. Preliminaries

Given a positive real λ ∈ KQ,z , with KQ,z in (23), consider a
partition of M formed by the sets R0(λ), R1(λ) and R2(λ),
such that

R0(λ),
¶
ν ∈M : Lz (ν) = Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (357a)

R1(λ),
¶
ν ∈M : Lz (ν) < Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, and (357b)

R2(λ),
¶
ν ∈M : Lz (ν) > Rz

Ä
P

(Q,λ)
Θ|Z=z

ä©
, (357c)

where the function Rz is in (18) and the probability mea-
sure P

(Q,λ)
Θ|Z=z is in (25). The sets in (357) exhibit several

properties that are central for proving the main results of this
section.

Lemma 25: The probability measure P (Q,λ)
Θ|Z=z in (25), satisfies

P
(Q,λ)
Θ|Z=z (R1(λ)) > 0, (358)

if and only if

P
(Q,λ)
Θ|Z=z (R2(λ)) > 0, (359)

where the sets R1(·) and R2(·) are in (357b) and (357c),
respectively.

Proof: The proof is divided into two parts. In the first part,
given a real α ∈ KQ,z , it is proven that if the set R1 (α) is
nonnegligible with respect to P

(Q,α)
Θ|Z=z , then the set R2 (α)

is nonnegligible with respect to P
(Q,α)
Θ|Z=z . The second part

proves the converse.

The first part is proved by contradiction. Assume that
set R2 (α) is negligible with respect to P (Q,α)

Θ|Z=z . Hence, from

Lemma 19, it holds that

K
(1)
Q,z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν)

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (360)

=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (361)

=K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α)) (362)

+

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (363)

<K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α))

+K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R1(α)) (364)

=K
(1)
Q,z

Å
− 1

α

ã (
P

(Q,α)
Θ|Z=z (R0(α)) + P

(Q,α)
Θ|Z=z (R1(α))

)
(365)

=K
(1)
Q,z

Å
− 1

α

ã
, (366)

which is a contradiction.

The second part of the proof follows the same arguments as
in the first part. Assume that the set R1 (α) is negligible
with respect to P

(Q,α)
Θ|Z=z . Hence, from Lemma 19, it holds

that

K
(1)
Q,z

Å
− 1

α

ã
=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν)

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (367)

=

∫
R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) +

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (368)

=K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α))

+

∫
R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z (ν) (369)

>K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R0(α))

+K
(1)
Q,z

Å
− 1

α

ã
P

(Q,α)
Θ|Z=z (R2(α)) (370)

=K
(1)
Q,z

Å
− 1

α

ãÄ
P

(Q,α)
Θ|Z=z (R0(α)) + P

(Q,α)
Θ|Z=z (R2(α))

ä
(371)

=K
(1)
Q,z

Å
− 1

α

ã
, (372)

which is also a contradiction. This completes the proof.

A more general result can be immediately obtained by com-
bining Lemma 4 and Lemma 25.



32

Lemma 26: For all α ∈ KQ,z , with KQ,z in (23), the
measure P (Q,λ)

Θ|Z=z in (25), satisfies

P
(Q,λ)
Θ|Z=z (R1(α)) > 0, (373)

if and only if
P

(Q,λ)
Θ|Z=z (R2(α)) > 0, (374)

where the sets R1(α) and R2(α) are in (357b) and (357c),
respectively.

B. The proof

The rest of the proof of Theorem 5 is divided into two
parts. In the first part, it is shown that if for all α ∈
KQ,z , K(2)

Q,z

(
− 1
α

)
> 0, then the function Lz in (3) is

separable. The second part of the proof, consists in show-
ing that if the function Lz is separable, then, for all α ∈
KQ,z , K(2)

Q,z

(
− 1
α

)
> 0.

The first part is as follows. From Lemma 19, it holds that for
all α ∈ KQ,z ,

K
(2)
Q,z

Å
− 1

α

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (375)

=

∫
R0(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (376)

+

∫
R1(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (377)

+

∫
R2(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) , (378)

where the sets R0(α), R1(α), and R2(α) are respectively
defined in (357). Hence,

K
(2)
Q,z

Å
− 1

α

ã
=

∫
R1(α)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) (379)

+

∫
R2(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

α

ãã2
dP

(Q,α)
Θ|Z=z (θ) . (380)

Under the assumption that for all α ∈ KQ,z the function K(2)
Q,z

in (108) satisfies K(2)
Q,z

(
− 1
α

)
> 0, it follows that at least one

of the following claims is true:
(a) P (Q,α)

Θ|Z=z (R1(α)) > 0; and

(b) P (Q,α)
Θ|Z=z (R2(α)) > 0.

Nonetheless, from Lemma 25, it follows that both claims (a)
and (b) hold simultaneously. Hence, the setsR1(α) andR2(α)

are both nonnegligible with respect to P (Q,α)
Θ|Z=z and moreover,

it holds that for all (ν1,ν2) ∈ R1(α)×R2(α),

+∞ > Lz (ν1)> K
(1)
Q,z

Å
− 1

α

ã
>Lz (ν2) , (381)

where Lz (ν1) < +∞ follows from the fact that
P

(Q,λ)
Θ|Z=z ({θ ∈M : Lz (θ) = +∞}) = 0 (Lemma 7). This

proves that under the assumption that for all α ∈
KQ,z , K(2)

Q,z

(
− 1
α

)
> 0, the function Lz in (3) is separable

with respect to P
(Q,α)
Θ|Z=z . From Lemma 17, it holds that the

function Lz is separable with respect to Q. This completes
the first part of the proof.

The second part of the proof is simpler. Assume that the
empirical risk function Lz in (3) is separable with respect
to P

(Q,α)
Θ|Z=z . That is, for all γ ∈ KQ,z , there exist a positive

real cγ > 0; and two subsets A(γ) and B(γ) of M that are
nonnegligible with respect to P (Q,γ)

Θ|Z=z in (25) and verify that
for all (ν1,ν2) ∈ A(γ)× B(γ),

+∞ > Lz (ν1)> cγ >Lz (ν2) . (382)

From Lemma 19, it holds that

K
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Q,z

Å
− 1

γ

ã
=

∫ Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (383)

=

∫
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Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ) (384)

+
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Q,z
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(Q,γ)
Θ|Z=z (θ) (385)

+
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Q,z
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ãã2
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(Q,γ)
Θ|Z=z(θ) (386)

>0, (387)

where the inequality (387) follows from the following facts.
First, if cγ < K

(1)
Q,z

Ä
− 1
γ

ä
, with cγ in (382), then for

all ν ∈ B(γ), it holds that K(1)
Q,z

Ä
− 1
γ

ä
> cγ > Lz (ν), and

thus,Å
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γ

ãã2
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Å
cγ −K(1)

Q,z

Å
− 1

γ

ãã2
, (388)

which implies,∫
B(γ)

Å
Lz (θ)−K(1)

Q,z

Å
− 1

γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ)
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Å
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Q,z

Å
− 1

γ

ãã2
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(Q,γ)
Θ|Z=z (B (γ)) (389)

>0. (390)

Second, if cγ > K
(1)
Q,z

Ä
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ä
then for all ν ∈ A(γ), it holds

that Lz (ν) > cγ > K
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Q,z

Ä
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, and thus,Å

Lz (ν)−K(1)
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Å
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γ

ãã2
>

Å
cγ −K(1)
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Å
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ãã2
, (391)

which implies,∫
A(γ)

Å
Lz (θ)−K(1)

Q,z

Å
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γ

ãã2
dP

(Q,γ)
Θ|Z=z (θ)

>
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Q,z

Å
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γ

ãã2
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(Q,γ)
Θ|Z=z (A (γ)) (392)

>0. (393)
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Hence, under the assumption that the empirical risk func-
tion Lz in (3) is separable, it holds that for all γ ∈ KQ,z ,
K

(2)
Q,z

Ä
− 1
γ

ä
> 0. This completes the proof.

APPENDIX P
PROOF OF LEMMA 20

Consider the partition of the set M formed by the sets
following sets A0, A1, and A2 in (292). From (109), for
all λ ∈ KQ,z , with KQ,z in (23), it holds that,

K
(1)
Q,z

Å
− 1

λ

ã
=

∫
A0

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) +

∫
A1

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (394)

+

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (395)

=

∫
A0

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) +

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (396)

=δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) +

∫
A2

Lz (θ) dP
(Q,λ)
Θ|Z=z(θ) (397)

>δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z) + δ?Q,zP

(Q,λ)
Θ|Z=z(A2) (398)

=δ?Q,z, (399)

where, the equality in (396) follows by noticing that Q (A1) =

0, which implies that P (Q,λ)
Θ|Z=z(A1) = 0 (Lemma 3); the equal-

ity in (397) follows from noticing that A0 = L?Q,z , with L?Q,z
in (50); and the equality in (398) follows from (292c).

This completes the proof.

APPENDIX Q
PROOF OF THEOREM 6

From (397) in the proof of Lemma 20, it holds that

lim
λ→0+

K
(1)
Q,z

Å
− 1

λ

ã
= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L

?
Q,z)+ lim

λ→0+

∫
A2

Lz(θ)dP
(Q,λ)
Θ|Z=z(θ) (400)

= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z)

+ lim
λ→0+

∫
A2

Lz (θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (401)

= lim
λ→0+

δ?Q,zP
(Q,λ)
Θ|Z=z(L?Q,z)

+

∫
A2

Lz (θ) lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (402)

=δ?Q,z lim
λ→0+

P
(Q,λ)
Θ|Z=z(L?Q,z) (403)

=δ?Q,z, (404)

where, the equality in (402) follows from noticing two
facts: (a) For all λ ∈ KQ,z , the Randon-Nikodym deriva-

tive
dP

(Q,λ)

Θ|Z=z

dQ is positive and finite (Lemma 7); and (b) For

all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0. Hence, the
dominated convergence theorem [39, Theorem 1.6.9] holds.
The inequality in (403) follows from Lemma 10. This com-
pletes the proof.

APPENDIX R
PROOF OF THEOREM 7

From Theorem 5, it follows that for all (λ1, λ2) ∈ KQ,z×KQ,z
with λ1 > λ2,∫
Lz(α)

dP
(Q,λ1)
Θ|Z=z

dQ
(α)dQ(α)>

∫
Lz(α)

dP
(Q,λ2)
Θ|Z=z

dQ
(α)dQ(α),

which implies the following inclusions:

R1(λ2)⊆R1(λ1), and (405a)
R2(λ1)⊆R2(λ2), (405b)

with the sets R1(·) and R2(·) in (357). From (127), it holds
that for all i ∈ {1, 2},

NQ,z(λi) = R2(λi)
c, (406)

where the complement is with respect to M. Thus, the
inclusion in (405b) and the equality in (406) yields,

NQ,z(λ1) ⊇ NQ,z(λ2). (407)

The inclusion M ⊇ NQ,z(λ1) follows from (127). Al-
ternatively, the inclusion NQ,z(λ2) ⊇ N ?

Q,z , follows from
Lemma 20 and from observing that for all ν ∈ N ?

Q,z ,

Rz
Ä
P

(Q,λ2)
Θ|Z=z

ä
>δ?Q,z = Lz (ν) , (408)

which implies that ν ∈ NQ,z(λ2). This completes the proof
of (131).

The proof of (132) is as follows. From the mean value theorem
[55, Theorem 5.12] and the assumption that the empirical risk
function Lz in (3) is continuous on M, it follows that for
all λ ∈ KQ,z , there always exists a model θ ∈ M, such
that

Lz (θ) =

∫
Lz (α) dP

(Q,λ)
Θ|Z=z (α) , (409)

which implies that R0 (λ) is not empty, and as a conse-
quence, NQ,z (λ) = R0 (λ)∪R1 (λ) is not empty. Hence, for
all θ ∈ R0 (λ1) it holds that θ /∈ NQ,z (λ2). This proves that
the elements ofR0 (λ1) are inNQ,z (λ1) but not inNQ,z (λ2).
This, together with (407), verifies that

NQ,z (λ1)⊃NQ,z (λ2) . (410)

The strict inclusion M ⊃ NQ,z(λ1) is proved by
contradiction. Assume that there exists a λ ∈ KQ,z
such that M = NQ,z(λ). Then, R2 (λ) = ∅ and
thus, P (Q,λ)

Θ|Z=z (R2 (λ)) = 0, which together with Lemma 25,

implies that P (Q,λ)
Θ|Z=z (R1 (λ)) = 0 and consequently,

P
(Q,λ)
Θ|Z=z (R0 (λ)) = 1. (411)

This contradicts the assumption that the function Lz is sepa-
rable (Definition 5). Hence, M⊃ NQ,z(λ1).
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Finally, the strict inclusion NQ,z(λ2) ⊃ N ?
Q,z is proved by

contradiction. Assume that there exists a λ ∈ KQ,z such
that N ?

Q,z = NQ,z(λ). That is,{
θ ∈M : Lz (θ) 6 δ?Q,z

}
= N ?

Q,z (412)
= NQ,z(λ) (413)

=

ß
θ ∈M : Lz (θ) 6 K

(1)
Q,z

Å
− 1

λ

ã™
. (414)

Hence, three cases might arise:
(a) there exists a λ ∈ KQ,z , such that δ?Q,z < K

(1)
Q,z

(
− 1
λ

)
and it holds thatß

ν ∈M : δ?Q,z < Lz (ν) 6 K
(1)
Q,z

Å
− 1

λ

ã™
= ∅;

(b) there exists a λ ∈ KQ,z , such that δ?Q,z > K
(1)
Q,z

(
− 1
λ

)
and

it holds thatß
ν ∈M : K

(1)
Q,z

Å
− 1

λ

ã
< Lz (ν) 6 δ?Q,z

™
= ∅;

or (c) there exists a λ ∈ KQ,z , such that δ?Q,z =

K
(1)
Q,z

(
− 1
λ

)
.

The cases (a) and (b) are absurd. Hence, the proof is complete
only by considering the case (c). In the case (c), it holds
that,

R1 (λ)=
{
ν ∈M : Lz (ν) < δ?Q,z

}
, (415)

and from the definition of δ?Q,z in (49), it holds that

P
(Q,λ)
Θ|Z=z (R1 (λ)) = 0. (416)

From Lemma 25 and (416), it follows that,

P
(Q,λ)
Θ|Z=z (R2 (λ)) = 0. (417)

Finally, by noticing that

1=P
(Q,λ)
Θ|Z=z (R0 (λ)) + P

(Q,λ)
Θ|Z=z (R1 (λ))

+P
(Q,λ)
Θ|Z=z (R2 (λ)) (418)

=P
(Q,λ)
Θ|Z=z (R0 (λ)) , (419)

reveals a contradiction to the assumption that the function Lz
is separable with respect to P

(Q,λ)
Θ|Z=z (and thus, separable

with respect to Q by Lemma 17). This completes the proof
of (132).

APPENDIX S
PROOF OF THEOREM 8

The proof of (133) is based on the analysis of the derivative
of P (Q,λ)

Θ|Z=z (A) with respect to λ, for some fixed set A ⊆
B (M). More specifically, given a γ ∈ KQ,z , it holds
that

P
(Q,γ)
Θ|Z=z (A)=

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) , (420)

and from the fundamental theorem of calculus [55, Theo-
rem 6.21], it follows that for all (λ1, λ2) ∈ KQ,z × KQ,z
with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z (A)− P (Q,λ2)

Θ|Z=z (A)

=

∫ λ1

λ2

d

dγ
P

(Q,γ)
Θ|Z=z (A) dγ (421)

=

∫ λ1

λ2

d

dγ

∫
A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ (422)

=

∫ λ1

λ2

∫
A

d

dγ

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ, (423)

where the equality in (422) follows from (420); and the
equality in (423) holds from Lemma 7 and the dominated
convergence theorem [39, Theorem 1.6.9].

For all θ ∈ suppQ, the following holds,

d

dλ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=
d

dλ

exp
Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

(424)

=

1
λ2 Lz (θ) exp

Ä
−Lz(θ)

λ

ä∫
exp

Å
−Lz (ν)

λ

ã
dQ (ν)

−
1
λ2 exp

Ä
−Lz(θ)

λ

ä ∫
Lz (α) exp

Å
−Lz (α)

λ

ã
dQ (α)Å∫

exp

Å
−Lz (ν)

λ

ã
dQ (ν)

ã2 (425)

=
1

λ2
Lz (θ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

− 1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

∫
Lz (ν)

dP
(Q,λ)
Θ|Z=z

dQ
(ν) dQ (ν) (426)

=
1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

Å
Lz (θ)−

∫
Lz (ν)dP

(Q,λ)
Θ|Z=z (ν)

ã
. (427)

Plugging (427) into (423) yields,

P
(Q,λ1)
Θ|Z=z (A)− P (Q,λ2)

Θ|Z=z (A)

=

∫ λ1

λ2

∫
A

1

γ2

dP
(Q,γ)
Θ|Z=z

dQ
(α)Å

Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z (ν)

ã
dQ (α) dγ (428)

=

∫ λ1

λ2

∫
A

1

γ2

Å
Lz(α)−

∫
Lz(ν)dP

(Q,γ)
Θ|Z=z(ν)

ã
dP

(Q,γ)
Θ|Z=z(α)dγ.

(429)

Note that for all α ∈ NQ,z (λ2), it holds that for all γ ∈
(λ2, λ1),

Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z (ν) 6 0, (430)
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and thus,∫
NQ,z(λ2)

1

γ2

Å
Lz(α)−

∫
Lz(ν)dP

(Q,γ)
Θ|Z=z(ν)

ã
dP

(Q,γ)
Θ|Z=z(α)60.

(431)

The equalities in (429) and (431), with A = NQ,z (λ), imply
that

P
(Q,λ1)
Θ|Z=z (NQ,z (λ2))− P (Q,λ2)

Θ|Z=z (NQ,z (λ2))60. (432)

The inequality 0 < P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) in (133) is

proved by contradiction. Assume that for some λ ∈
KQ,z it holds that 0 = P

(Q,λ)
Θ|Z=z(NQ,z(λ2)). Then,

P
(Q,λ)
Θ|Z=z(R0(λ2)) + P

(Q,λ)
Θ|Z=z(R1(λ2)) = 0, which implies

that P (Q,λ)
Θ|Z=z(R2(λ2)) = 1, which is a contradiction. See for

instance, Lemma 26. This completes the proof of (133).

The proof of strict inequality in (133) is divided into two parts.
The first part shows that if for all pairs (λ1, λ2) ∈ KQ,z×KQ,z
with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (433)

then the function Lz is separable with respect to Q. The second
part of the proof shows that if the function Lz is separable
with respect to Q, then, for all pairs (λ1, λ2) ∈ KQ,z ×KQ,z
with λ1 > λ2, the inequality in (433) holds.

The first part is as follows. In the proof of Theorem 7 it is
shown (see (429)) that for all pairs (λ1, λ2) ∈ KQ,z × KQ,z
with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z (NQ,z (λ2))− P (Q,λ2)

Θ|Z=z (NQ,z (λ2))

=

∫ λ1

λ2

∫
NQ,z(λ2)

1

γ2

Å
Lz(α)−K(1)

Q,z

Å
−1

γ

ãã
dP

(Q,γ)
Θ|Z=z(α)dγ.

(434)

Assume that for a given pair (λ1, λ2) ∈ KQ,z × KQ,z ,
with λ1 > λ2, the inequality in (433) holds. Then,
from (434),

0

>

∫ λ1

λ2

∫
NQ,z(λ2)

1

γ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

γ

ãã
dP

(Q,γ)
Θ|Z=z (α)dγ

=

∫ λ1

λ2

∫
R1(λ2)

1

γ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

γ

ãã
dP

(Q,γ)
Θ|Z=z (α)dγ,

(435)

where the equality in (435) follows from noticing
that R0 (λ2) and R1 (λ2) form a partition of NQ,z (λ2),
with the sets R0 (λ2), R1 (λ2) and NQ,z (λ2) defined
in (357a), (357b), and (127), respectively.

The inequality in (435) implies that the set R1 (λ2) is nonneg-
ligible with respect to P

(Q,γ)
Θ|Z=z , for some γ ∈ (λ2, λ1). Hence,

from Lemma 26, it follows that both sets R1 (λ2) and R2 (λ2)

are nonnegligible with respect to P (Q,γ)
Θ|Z=z .

From the arguments above, it has been proved that given a
pair (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2, if

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (436)

then there always exists a positive γ ∈ (λ1, λ2) such that
the sets R1 (λ2) and R2 (λ2) are not negligible with respect
to P (Q,γ)

Θ|Z=z . Moreover, such sets R1 (λ2) and R2 (λ2) satisfy
for all (ν1,ν2) ∈ R2 (λ)×R1 (λ),

+∞ > Lz (ν1)> K
(1)
Q,z

Å
− 1

λ

ã
>Lz (ν2) , (437)

which together with Definition 17 verify that the function Lz is
separable with respect to P (Q,γ)

Θ|Z=z (and thus, with respect to Q
by Lemma 17). This ends the first part of the proof.

The second part of the proof is under the assumption that
the empirical risk function Lz in (3) is separable with respect
to Q (and thus, with respect to P

(Q,γ)
Θ|Z=z by Lemma 17).

That is, from Definition 17, for all γ ∈ KQ,z , there exist
a positive real cγ > 0 and two subsets A(γ) and B(γ) of M
nonnegligible with respect to P (Q,γ)

Θ|Z=z in (25) that verify that
for all (ν1,ν2) ∈ A(γ)× B(γ),

Lz (ν1)> cγ >Lz (ν2) . (438)

In the proof of Theorem 7, cf. (429), it has been proved that
given a pair (α1, α2) ∈ KQ,z × KQ,z , with α1 > γ > α2, it
holds that for all subsets A of M,

P
(Q,α1)
Θ|Z=z (A)− P (Q,α2)

Θ|Z=z (A)

=

∫ α1

α2

∫
A

1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(α)

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP (α)dλ

=

∫ α1

α2

∫
A

1

λ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP

(Q,λ)
Θ|Z=z (α)dλ. (439)

Hence, two cases are studied. The first case considers
that

cγ < K
(1)
Q,z

Å
− 1

γ

ã
, (440)

with cγ in (438). The second case considers that

cγ > K
(1)
Q,z

Å
− 1

γ

ã
. (441)

In the first case, it follows from (127) that

B (γ) ⊂ NQ,z (γ) , (442)

which implies that

P
(Q,γ)
Θ|Z=z (NQ,z (γ))>P (Q,γ)

Θ|Z=z (B (γ)) (443)
>0, (444)

where, the inequality in (444) follows from the fact that B (γ)

is nonnegligible with respect to P (Q,γ)
Θ|Z=z . This implies that the

set NQ,z (γ) is not negligible with respect P (Q,γ)
Θ|Z=z . Moreover,

from (127) and (442), it follows that for all α ∈ NQ,z (γ) and
for all λ ∈ (γ, α1),

Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z (ν)<Lz (α)− cγ (445)

<0, (446)
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where the inequality in (445) follows from (440); and the
inequality in (446) follows from (438). Thus,∫ α1

γ

∫
NQ,z(γ)

1

λ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP

(Q,λ)
Θ|Z=z (α)dλ<0,

which implies, from (439), that

P
(Q,α1)
Θ|Z=z (NQ,z (γ))− P (Q,γ)

Θ|Z=z (NQ,z (γ))<0. (447)

Assume now that cγ > K
(1)
Q,z

Ä
− 1
γ

ä
. Hence, the following

holds

A (γ) ⊆ R2 (γ) , (448)

which implies that

P
(Q,γ)
Θ|Z=z (R2 (γ))>P (Q,γ)

Θ|Z=z (A (γ)) (449)
>0, (450)

where the inequality in (450) follows from the fact that A (γ)

is nonnegligible with respect to P
(Q,γ)
Θ|Z=z . This implies that

the set R2 (γ) is not negligible with respect P (Q,γ)
Θ|Z=z . From

Lemma 25, it follows that bothR1 (γ) andR2 (γ) are nonneg-
ligible with respect to P (Q,γ)

Θ|Z=z . Using this result, the following
holds,

P
(Q,γ)
Θ|Z=z (NQ,z (γ))>P (Q,γ)

Θ|Z=z (R1 (γ)) (451)
>0, (452)

which proves the set NQ,z (γ) is nonnegligible with respect
to P (Q,γ)

Θ|Z=z .

From (127) and Theorem 5, it follows that for all α ∈
NQ,z (γ) and for all λ ∈ (γ, α1),

0>Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z (ν) (453)

>Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z (ν) . (454)

Thus,∫ α1

γ

∫
NQ,z(γ)

1

λ2

Å
Lz (α)−K(1)

Q,z

Å
− 1

λ

ãã
dP

(Q,λ)
Θ|Z=z (α)dλ<0,

which implies, from (439), that

P
(Q,α1)
Θ|Z=z (NQ,z (γ))− P (Q,γ)

Θ|Z=z (NQ,z (γ))<0. (455)

This completes the proof.

APPENDIX T
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The proof is based on the following two observations. First,
note that (NQ,z (λ2))

c
= R2 (λ2), with the set R2 (·) defined

in (357c). Second, note that

NQ,z (λ1)=NQ,z (λ2) ∪ (NQ,z (λ1) ∩R2 (λ2)) , (456)

and the fact that the setsNQ,z (λ2) and (NQ,z (λ1) ∩R2 (λ2))
are disjoint. Hence, for all i ∈ {1, 2},

P
(λi)
Θ|Z=z(NQ,z(λ1))

=P
(λi)
Θ|Z=z

Å
NQ,z(λ2)∪(NQ,z(λ1)∩R2(λ2))

ã
(457)

=P
(λi)
Θ|Z=z

Å
NQ,z (λ2)

ã
+P

(λi)
Θ|Z=z

Å
NQ,z (λ1) ∩R2 (λ2)

ã
(458)

=P
(λi)
Θ|Z=z

Å
NQ,z (λ2)

ã
, (459)

where the equality in (458) follows from Lemma 3 and the
equality in (134).

Finally, under the assumption that the empirical function Lz
in (3) is separable, it holds from Theorem 8 that

P
(Q,λ1)
Θ|Z=z(NQ,z(λ2)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)). (460)

Plugging (459) into (460), with i = 1, yields,

P
(Q,λ1)
Θ|Z=z(NQ,z(λ1)) < P

(Q,λ2)
Θ|Z=z(NQ,z(λ2)), (461)

and this completes the proof.

APPENDIX U
PROOF OF THEOREM 14

Consider the following lemma.

Lemma 27: Given two probability measures P1 and P2

over (M,B (M)), with P2 absolutely continuous with respect
to P1, the following holds for all z ∈ (X × Y)

n,

Rz (P2)− Rz (P1) (462)

6inf
t<0

Ç
D(P2‖P1)+log

(∫
exp(t (Lz(θ)−Rz(P1)))dP1(θ)

)
t

å
,

where the functions Lz and Rz is defined in (3) and in (18),
respectively.

Proof: From [56, Corollary 4.15, Page 100], it follows that the
probability measures P1 and P2 in (M,B (M)) satisfy the
following equality:

D(P2‖P1)=sup
f

∫
f(θ)dP2(θ)−log

∫
exp(f(θ))dP1(θ), (463)

where the supremum is over the space of all measurable func-
tions f with respect to (M,B (M)) and (R,B (R)), such
that

∫
exp (f (θ)) dP1 (θ) <∞. Hence, for all z ∈ (X × Y)

n
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and for all t ∈ (−∞, 0), it follows that the empirical risk
function Lz in (3) satisfies that

D (P2‖P1) (464)

>
∫
tLz (θ) dP2 (θ)− log

∫
exp (tLz (θ)) dP1 (θ) (465)

>
∫
tLz (θ) dP2 (θ)

− log

∫
exp (tLz (θ) + tRz (P1)− tRz (P1)) dP1 (θ) (466)

=

∫
tLz (θ) dP2 (θ)− tRz (P1)

− log

∫
exp (tLz (θ)− tRz (P1)) dP1 (θ) (467)

=tRz(P2)−tRz(P1)−log

∫
exp(tLz(θ)−tRz(P1))dP1(θ), (468)

which leads to

Rz(P2)−Rz(P1)

6
D(P2‖P1)+log

∫
exp(t(Lz(θ)−Rz(P1)))dP1(θ)

t
. (469)

Given that t can be chosen arbitrarily in (−∞, 0), it holds
that

Rz(P2)−Rz(P1)

6 inf
t∈(−∞,0)

D(P2‖P1)+log
∫

exp(t(Lz(θ)−Rz(P1)))dP1(θ)

t
, (470)

which completes the proof.

From Lemma 27, it holds that the probability measure P (Q,λ)
Θ|Z=z

in (25), satisfies for all P ∈ 4Q (M,B (M)),

Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 inf
t∈(−∞,0)

(
D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
t

+
log
Ä∫

exp
Ä
t
Ä
Lz(θ)−K(1)

Q,z

(
−1
λ

)ää
dP

(Q,λ)
Θ|Z=z(θ)

ä
t

)
, (471)

where the function K(1)
Q,z is defined in (109) and satisfies (113).

Moreover, for all t ∈ (−∞, 0),

log

Å∫
exp

Å
t

Å
Lz (θ)−K(1)

Q,z

Å
− 1

λ

ããã
dP

(Q,λ)
Θ|Z=z(θ)

ã
=log

Å∫
exp (t Lz (θ)) dP

(Q,λ)
Θ|Z=z(θ)

ã
− tK(1)

Q,z

Å
− 1

λ

ã
(472)

=Jz,Q,λ(t)− tK(1)
Q,z

Å
− 1

λ

ã
(473)

6
1

2
t2β2

Q,z, (474)

where the equality in (473) follows from (145); the inequality
in (474) follows from Theorem 10; and the constant βQ,z is
defined in (167).

Plugging (474) into (471) yields for all t ∈ (−∞, 0),

Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
6 inf
t∈(−∞,0)

D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
+ 1

2 t
2β2
Q,z

t
. (475)

Let the c ∈ R be defined as follows:

c , Rz (P )− Rz
Ä
P

(Q,λ)
Θ|Z=z

ä
. (476)

Hence, from (475), it follows that for all t ∈ (−∞, 0),

c t− 1

2
t2β2

Q,z 6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (477)

The rest of the proof consists in finding an explicit expression
for the absolute value of c in (477). To this aim, consider the
function φ : R→ R such that

φ(α) =
1

2
α2β2

Q,z, (478)

and note that φ is a positive and strictly convex function
with φ(0) = 0. Let the Legendre-Fenchel transform of φ be
the function φ∗ : R→ R, and thus for all x ∈ R,

φ∗(x) = max
t∈(−∞,0)

xt− φ(t). (479)

In particular, note that

φ∗(c) 6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (480)

Note that for all x ∈ R and for all t ∈ (−∞, 0), the
function φ? in (479) satisfies

x t− 1

2
t2β2

Q,z 6 φ?(x) = xα?(x)− φ (α?(x)) , (481)

where the term α?(x) represents the unique solution in α
within the interval (−∞, 0) to

d

dα
(xα− φ (α)) = x− αβ2

Q,z = 0. (482)

That is,

α?(x)=
x

β2
Q,z

. (483)

Plugging (483) into (481) yields,

φ?(x)=
x2

2β2
Q,z

. (484)

Hence, from (480) and (481), given c in (476) for all t ∈
(−∞, 0),

c t− 1

2
t2β2

Q,z 6 φ?(c) 6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (485)

and thus,
c2

2β2
Q,z

6 D
Ä
P‖P (Q,λ)

Θ|Z=z

ä
. (486)

This implies that

c 6
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
(487)

and
c > −

√
2β2

Q,zD
Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (488)

which leads to∣∣∣∣∫ Lz(θ)dP (θ)−
∫

Lz(θ)dP
(Q,λ)
Θ|Z=z(θ)

∣∣∣∣
6
√

2β2
Q,zD

Ä
P‖P (Q,λ)

Θ|Z=z

ä
, (489)

and completes the proof.
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APPENDIX V
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Under the condition that λ ∈ KQ,PZ
, from Theorem 13 and

Definition 8, it follows that the generalization error GQ,λ (PZ)
in (194) satisfies

GQ,λ (PZ) = λ

∫ (
D
Ä
P

(Q,λ)
Θ|Z=ν‖Q

ä
+D

Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
−D
Ä
P

(Q,λ)
Θ ‖Q

ä)
dPZ(ν), (490)

= λ

(∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν)

+

∫
D
Ä
P

(Q,λ)
Θ ‖P (Q,λ)

Θ|Z=ν

ä
dPZ(ν)

)
, (491)

where the equality in (491) follows from the fact that∫ (
D
Ä
P

(Q,λ)
Θ|Z=ν‖Q

ä
−D
Ä
P

(Q,λ)
Θ ‖Q

ä)
dPZ(ν)

=

∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖Q

ä
dPZ(ν)−D

Ä
P

(Q,λ)
Θ ‖Q

ä
(492)

=

∫ Ñ∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

é
PZ(ν)

−D
Ä
P

(Q,λ)
Θ ‖Q

ä
(493)

=

∫ Ñ∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

é
dPZ(ν)

−
∫

log

Ç
dP

(Q,λ)
Θ

dQ
(θ)

å
dP

(Q,λ)
Θ (θ) (494)

=

∫ Ñ∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

é
dPZ(ν)

−
∫ Ç∫

log

Ç
dP

(Q,λ)
Θ

dQ
(θ)

å
dP

(Q,λ)
Θ|Z=ν(θ)

å
dPZ(ν) (495)

=

∫ (∫ (
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dQ
(θ)

é
+log

Ç
dQ

dP
(Q,λ)
Θ

(θ)

å)
dP

(Q,λ)
Θ|Z=ν(θ)

)
dPZ(ν) (496)

=

∫ (∫
log

Ñ
dP

(Q,λ)
Θ|Z=ν

dP
(Q,λ)
Θ

(θ)

é
dP

(Q,λ)
Θ|Z=ν(θ)

)
dPZ(ν) (497)

=

∫
D
Ä
P

(Q,λ)
Θ|Z=ν‖P

(Q,λ)
Θ

ä
dPZ(ν). (498)

The equality in (495) follows from (192); and the equality
in (496) follows from the fact that the measures Q and
P

(Q,λ)
Θ|Z=ν , with ν ∈ suppPZ , are mutually absolutely con-

tinuous. This completes the proof.
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