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1  |  INTRODUC TION

Cancer appeared following the major transition of life from uni-  to 
multicellularity during the late Precambrian, about 1 billion years ago 
(Aktipis et al., 2015; Domazet- Loso & Tautz, 2010). Multicellularity 

required the division of labour between cells and the evolution of 
reproductive altruism, where nonreproductive cells transmit their 
genes to future generations indirectly via those that are propagat-
ing by gametes (Szathmáry & Smith, 1995). However, these societies 
are vulnerable to cheater cells that fail to conform to their assigned 
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Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate 
a very complex relationship between the need of tissue repair and controlling the 
emergence of abnormally proliferating cells. The trade- off is balanced by natural and 
sexual selection and mediated via both intrinsic and environmental factors. Here, we 
explore the effects of telomere- cancer dynamics on life history traits and strategies 
as well as on the cumulative effects of genetic and environmental factors. We show 
that telomere- cancer dynamics constitute an incredibly complex and multifaceted 
process. From research to date, it appears that the relationship between telomere 
length and cancer risk is likely nonlinear with good evidence that both (too) long and 
(too) short telomeres can be associated with increased cancer risk. The ability and 
propensity of organisms to respond to the interplay of telomere dynamics and onco-
genic processes, depends on the combination of its tissue environments, life history 
strategies, environmental challenges (i.e., extreme climatic conditions), pressure by 
predators and pollution, as well as its evolutionary history. Consequently, precise in-
terpretation of telomere- cancer dynamics requires integrative and multidisciplinary 
approaches. Finally, incorporating information on telomere dynamics and the expres-
sion of tumour suppressor genes and oncogenes could potentially provide the syner-
gistic overview that could lay the foundations to study telomere- cancer dynamics at 
ecosystem levels.

K E Y W O R D S
cell proliferation, mate- choice, parasites, parental effect, Peto's paradox, pollution, predator- 
prey interactions
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role, and exploit the society for their own reproductive benefit, that 
is, malignant, cancerous cells (Ducasse et al., 2015; Nunney, 2017; 
Box 1). Because multicellular organisms that are unable to control 
cheater cells prior to and during the reproductive period have re-
duced fitness, selection for enhanced anticancer mechanisms has 
been strong over the eons of evolution. This has yielded a diversity of 
within- individual cheat- prevention mechanisms operating at different 
levels ranging from genomes to cells and tissues, as well as the whole 
organism (Boutry et al., 2020; DeGregori, 2011; Nunney, 2013).

One of the key controls of cell proliferation in some mammals is 
suppression of telomerase expression and concomitant shortening 
of telomeres in somatic cells. Telomeres and replenishment of telo-
meric sequences via telomerase activity (Jafri et al., 2016) or other al-
ternative pathways (Dilley & Greenberg, 2015; Sun et al., 2010) allow 
cell proliferation as they protect the end of chromosomes from fray-
ing and sticking together. Maintaining telomere length (henceforth 
TL) above a critical length permits unlimited cell proliferation, which 
is one of the hallmarks of cancer (Hanahan & Weinberg, 2011), allow-
ing malignant cell development and progression (Jafri et al., 2016). 
Concomitantly, limiting cell proliferation and thus inhibiting tumour 
formation via telomeric fail- safe, results in replicative senescence 
and in the progressive degradation of tissue function with advanc-
ing age (Weinstein & Ciszek, 2002). Evolutionary senescence theory 
predicts a balance between tissue repair and cancer suppression, 
that is, longer telomeres facilitating repair, shorter ones limiting can-
cer formation (Weinstein & Ciszek, 2002). In species experiencing a 
high likelihood of mortality and thus short lifespan due to environ-
mental factors, the balance is proposed to shift towards relatively 
short telomeres, reduced tissue repair and reduced cancer risk; while 
in species where environmentally- driven mortality is less frequent 
and long lifespans are predominant, the balance is proposed to shift 
towards relatively longer telomeres, enhanced tissue repair, but con-
comitantly increased tumour risk (i.e., the reserve capacity theory 
by Weinstein & Ciszek, 2002, but see Risques & Promislow, 2018a).

Here, we review the literature and provide a perspective on 
how the ecology of organisms' shapes and drives the evolution of 
the complex relationships between TL, ageing and cancer develop-
ment throughout life, within and across species. First, we provide a 
short overview of how telomeres can contribute directly to cancer 
development. Next, we discuss how the interconnected relation-
ships between telomeres and cancer (henceforth “cancer- telomere 
dynamics”) can shape organismal life history strategies.

2  |  HOW TELOMERES CONTRIBUTE TO 
C ANCER DE VELOPMENT

2.1  |  Short telomeres and cancer development

Telomere shortening has been associated with repressing the emer-
gence of cancer cells, as short telomeres present a barrier to cell 
proliferation (e.g., the Hayflick limit in human cells; Shay & Wright, 
2000). With every somatic cell division, TL shortens slightly, and 

once a critical length is reached, cell cycle arrest ensues and cell 
division ceases (cellular or replicative senescence). In vitro studies 
and investigation of familial and nonfamilial human cancer cases 
have provided support for telomere shortening being a barrier to 
tumorigenesis (Huang et al., 2013; Lorbeer & Hockemeyer, 2020; 

BOX 1 Definitions

Cancer: An abnormal growth of cells that has crossed basal 
membrane boundaries and/or spread into locations distant 
from the site of initiation.
Cheating cells: Cells that break shared rules in multicellular 
organisms (such as genetically encoded phenotypes or be-
haviours), and thus acquire fitness advantage (higher pro-
liferation) for the cheater.
Chromatin: The combination of DNA and protein that 
makes chromosomes.
Chromothripsis: Also known as “chromosome shattering” is 
a single catastrophic event when first chromosomes frag-
ment into many pieces and then DNA repair processes join 
the fragments back together in a random order.
Constitutive telomere length (TL): The length of telomeres 
in normal somatic tissues of individuals affected by cancer 
(vs. TL in their cancerous tissues).
Cooperation: Coordination of benefits and actions to facil-
itate shared goals to augment fitness of the larger ensem-
ble, the organism.
Dicentric chromosomes: Abnormal chromosomes that con-
tain two centromeres.
Kataegis: Several hundred base pairs long mutational clus-
ters occurring in a small region of DNA in cancer genomes. 
Kataegis thought to result from DNA repair errors at the 
site of genome rearrangements.
Neoplasia: The formation of new, abnormal growth of 
tissue.
Oncogenesis: The complex, multistep process by which 
normal cells turn into cancerous cells, leading to cancer 
development.
Tetraploidization: Whole genome doubling resulting in 
chromosomal anomaly when normally diploid cells con-
tain four copies of each chromosome (instead of two). 
Tetraploidization is frequent in solid tumours, leads to 
chromosomic rearrangements and is associated with poor 
cancer prognosis.
Tumour: Abnormal mass of tissue resulting from indepen-
dent and unrestrained proliferation and growth of cells. 
Tumours that do not invade nearby tissues are benign, 
tumours that spread to neighbouring tissue and/or other 
parts of the body through the blood and lymph systems 
are malignant.
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Maciejowski & de Lange, 2017; Schmutz et al., 2020). On the other 
hand, in incipient cancer cells with ineffective cell cycle arrest, re-
duced TL can also lead to extensive genomic instability, that can 
promote cancer cell initiation and progression (Maciejowski & de 
Lange, 2017). Indeed, short telomeres have been observed in most 
solid cancers (Shay, 2016). Accumulation of cells harbouring chro-
mosomes with short leucocyte telomeres (henceforth leucocyte 
telomere length [LTL]) with age has also been associated with in-
creased cancer incidence in humans (reviewed in Willeit et al., 2010). 
However, a recent study did not find such association, but rather 
showed that short LTL with advancing age was associated with in-
creased mortality risk from noncancer causes (Arbeev et al., 2020).

2.2  |  Long telomeres and cancer development

The complex role of TL in cancer emergence is further demonstrated 
by studies showing association between cancer and constitutively 
short (reviewed in Savage et al., 2013) and long (Haycock et al., 2017) 
TL. The association of longer genetically determined LTL with higher 
risk of certain cancers (prostate, melanoma, thyroid, kidney, and 
genitourinary tumours) has been confirmed by recent genome- wide 
association studies (Codd et al., 2021; Giaccherini et al., 2021). The 
causal association between longer LTL and risk of several cancers 
may be explained by the theory proposed by Aviv et al. (2017), who 
suggested a modification of the two- hit hypothesis developed by 
Moolgavkar and Knudson (1981) and Meza et al. (2008). The two- 
stage clonal expansion model proposes the need of two mutational 
hits to occur for cancer formation: the first occurring at the stem- cell 
level resulting in a clone with replicative advantage, and the second 
mutational hits transforming the expanding clone into cancer (Aviv 
et al., 2017). According to Aviv et al. (2017), the first cancer initi-
ating mutations occurring in stem cells are independent of TL, but 
the second hits that contribute to malignant transformation are TL 
dependent. Individuals with longer telomeres may face an increased 
risk of acquiring a second episode necessary for oncogenesis, due 
to the longer expansion phase before entering cellular senescence 
(Aviv et al., 2017).

2.3  |  Short telomeres, gene expression 
regulation and cancer

Shortening of the telomere cap may, however, contribute to dis-
ease development and ageing long before evoking DNA damage re-
sponses, by regulating the expression of genes in the subtelometric 
regions (Robin et al., 2014). When telomeres are long, chromosome 
looping brings them back to the chromatin, and hence they can influ-
ence the transcription of genes up to 60 Mb away from chromosome 
ends, a phenomenon termed telomere position effect (TPE) over 
long distance (TPE- OLD; reviewed in Vinayagamurthy et al., 2020). 
Due to the physical association with telomeres, genes in the subtelo-
metric regions, such as the reverse transcriptase gene (hTERT)— the 

key component of the telomerase enzyme, get downregulated. 
Progressive shortening of telomeres throughout ageing leads to dis-
sociation of the loop leading to gene activation, including hTERT. 
Telomerase is known to be reactivated in more than >90% of human 
cancers, and it has recently been shown to be under direct tran-
scriptional control of a component of the telomere loop (telomeric 
repeat– binding factor 2, TRF2, Sharma et al., 2020). Shortened tel-
omeres have also been demonstrated to have genome- wide epige-
netic influence by altering DNA methylation, histone modifications 
and nucleosome positioning, and thus, to ultimately drive transitions 
in cell lineage commitment, for example, transdifferentiation or the 
epithelial- to- mesenchymal transition leading to cancer progression 
(reviewed in Harrington & Pucci, 2018).

2.4  |  The antagonistic pleiotropic effect of 
telomere shortening on cancer development

Furthermore, replicative senescence paradoxically is a cancer de-
fense that can promote cancer later in life (Cleal et al., 2018). This 
is a form of antagonistic pleiotropy since it is protective early in life 
through a limitation of cellular division either in case of oncogene 
activation or following telomere erosion (Campisi, 2001; Wright 
& Shay, 2001), but this tumour- preventive function over time also 
yields to reduced tissue regenerative capability that decreases the 
number of cells able to replace damaged cells. The reduced regen-
eration can favour cancer in old organisms because it promotes 
ecological niches within tissues suitable for malignant cells (Campisi, 
2002; Capp & Thomas, 2020; Giaimo & d'Adda di Fagagna, 2012; 
Krtolica et al., 2001). Another antagonistic pleiotropic effect has 
recently been demonstrated: the loss of telomere protection may 
initiate telomere crisis, when telomere shortening leads to telomere 
fusions and the formation of dicentric chromosomes that drive ge-
nome instability (Artandi & DePinho, 2010). Dicentric chromosomes 
can alter normal chromosome segregation and DNA repair mecha-
nisms resulting in chromosome shattering, mutation accumulation 
and genome duplications and thus, promote cancer progression via 
processes such as chromothripsis, kataegis and tetraploidization 
(Maciejowski & de Lange, 2017; Martínez & Blasco, 2017; Box 1). In 
conclusion, the relationship between TL and cancer risk is probably 
nonlinear with good evidence that both (too) long and (too) short 
telomeres can be associated with an increased cancer risk.

3  |  A LIFE-  HISTORY PERSPEC TIVE: 
INDIVIDUAL LE VEL TELOMERE— C ANCER 
DYNAMIC S

Individuals often show substantial variation in their survival and 
reproductive prospects within a population, that is, the individual 
quality concept (Wilson & Nussey, 2010). High- quality individuals 
are expected to be larger (Naguib & Gil, 2005), show more elabo-
rate secondary sexual traits (Vanpé et al., 2007), provide superior 
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parental care (Viblanc et al., 2020), able to mount stronger im-
mune responses (Le Vaillant et al., 2015) and an improved ability 
to respond to environmental challenges (Forsythe et al., 2021). 
Telomere shortening with advancing age (Arbeev et al., 2020) has 
been associated with various physiological (e.g., Angelier et al., 
2018) and life history parameters (e.g., Sudyka et al., 2014) as well 
as with altered breeding performance (e.g., Sudyka et al., 2019). 
Consequently, “the telomere– individual quality hypothesis” pro-
poses that “long telomeres should be either directly or indirectly 
associated with better life- long performance, and thus, with higher 
individual quality” (Angelier et al., 2019). However, as discussed 
above, longer telomeres may enable more cell divisions and higher 
possibility to acquire cancer causing mutations throughout the life 
of an individual (Aviv et al., 2017). Tumour suppressor mechanisms, 
such as cell- cycle controls, DNA repair, programmed cell death, im-
mune surveillance etc. (reviewed in Harris et al., 2017) may be able 
to counter the cancer initiating impact of longer telomeres. We, 
therefore, propose that the “telomere –  individual quality hypoth-
esis” should also include the effects of cancer suppression. Trade- 
offs between constantly eliminating premalignant lesions and other 
somatic functions may also alter the organism's resource allocation 
strategy (Boutry et al., 2020; Ujvari et al., 2016). Longer or shorter 
telomeres may decrease and/or increase the risk of cancer and thus 
necessitate the fine scale balancing of the organism's energy and 
physiological status. Below we propose a few perspectives on how 
the cancer- telomere dynamics could influence the individual qual-
ity framework.

3.1  |  Rapid growth, body size and secondary 
sexual characteristics may influence telomere— 
cancer dynamics

Larger body size and conspicuous secondary sexual characteristics, 
such as ornamentation and colouring often provide fitness advan-
tage, but may also impose costs on survival, due to energetic trade- 
offs between reproduction and survival, including the organism's 
allocation in combating cancer (Boddy et al., 2015). Faster growth 
can require shorter cellular generation times leading to faster tel-
omere shortening (Monaghan & Ozanne, 2018; Pauliny et al., 2015) 
and the potential accumulation of mutations (Araten et al., 2005) 
that may initiate cancer development. Indeed, positive associations 
between higher growth rate and cancer risk have been observed in 
dogs and humans (Harris et al., 2017; Nunney, 2018).

Mechanisms required to generate impressive ornaments may 
also enable rapid cell proliferation (and accelerated telomere short-
ening) or lead to diversion of resources from somatic maintenance 
(DNA repair or immune defences), thus elevating cancer risk by in-
creasing accumulation of somatic mutations (Boddy et al., 2015). 
As sexual signals have shown to provide honest indication of indi-
vidual quality, including information on telomere dynamics (Taff & 
Freeman- Gallant, 2017), they may also indicate the individual's tu-
mour suppressor capacity throughout its life.

3.2  |  Reproduction, parental care and 
intergenerational transfer may influence telomere— 
cancer dynamics

Although telomeres have been proposed to be potential biomarkers 
associate with the cost of reproduction, a recent survey by Sudyka 
(2019) found limited experimental evidence for reproduction to 
cause telomere shortening. Nevertheless, correlative studies pro-
pose that direct and indirect conditions provided by the parent, such 
as exposure to maternal corticosterone (Haussmann et al., 2012), 
provisioning variations between parents (due to environmental con-
ditions; Boonekamp et al., 2014 or behavioural differences; Adams 
et al., 2015), could affect offspring TL, and thus Viblanc et al. (2020) 
put forward the “telomere— parental quality hypothesis”. Here, we 
propose to include the additional dimension of cancer suppres-
sion, as high- quality individuals and high- quality parenting can have 
a synergistic effect on telomere shortening and associated cancer 
emergence in offspring. Trade- offs between constantly eliminating 
premalignant lesions and other somatic functions, may also alter the 
organism's strategy as well as its ability to provide paternal care, and 
concomitantly influence offspring TL and fitness.

3.3  |  Parasites, environmental condition and 
pollution may unbalance telomere— cancer dynamics

Despite the growing interest in infection– telomere interactions, 
there is considerable lack of knowledge and evidence on how this 
interaction may affect and contribute to increased cell proliferation 
and cancer initiation. The only empirical data on individual differ-
ences in TL (measured from ear biopsies) and capacity to respond to 
cancer so far arises from Tasmanian devils (Sarcophilus harrisii) and 
their transmissible cancer, Tasmanian devil facial tumour disease 
(DFTD). Positive association was found between TL and age at first 
infection with the transmissible clonal cell line, suggesting a later 
infection and decreased susceptibility to DFTD in individuals with 
longer telomeres (Smith et al., 2020). The authors proposed that ei-
ther increased immune system function and/or protection against 
oxidative damage may underpin their observations. Attenuation of 
TL in immune cells and thus immune capacity (Haussmann et al., 
2005), accumulation of senescent cells impairing wound repair at 
site of infection and secretion of proinflammatory modulators due 
to ageing may promote the establishment and growth of malignant 
cells as seen in fibroblast cells (Krtolica et al.,2001). In addition, 
DFTD in devils may potentially initiate significant oxidative damage, 
and thus individuals with longer telomeres may be able to sustain 
oxidative damage and senescence, and also control tumour growth 
better than individuals with shorter telomeres (Smith et al., 2020). 
Interestingly while female devils appear to be tolerating DFTD bet-
ter than males and most tumour regressions have been observed in 
females (Ruiz- Aravena et al., 2018), no sex specific TL differences 
have so far been observed in Tasmanian devils (based on ear bi-
opsies, Smith et al., 2020). While the studies on Tasmanian devils 
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demonstrate the association between TL and infection with a trans-
missible cancer and show that individuals with relatively long telom-
eres may have an advantage in immune capacity, tissue repair, and 
controlling tumour growth, further studies are needed to decipher 
the underlying mechanism and pathways.

The increased anthropogenic impacts on our environment is 
predicted to result in that the synergistic interaction between envi-
ronmental stressors, parasites, telomere shortening and cancer de-
velopment will be accelerated in the future (Giraudeau et al., 2018, 
2019; Greaves, 2015; Meitern et al., 2020; Monaghan, 2014; Sepp 
et al., 2019). For example, inverse associations have been observed 
in TL and air pollution (Zhao et al., 2018), traffic noise pollution 
(Dorado- Correa et al., 2018) and chemical pollutants (Angelier et al., 
2019; Blévin et al., 2016; Stauffer et al., 2017). It should be noted, 
however, that a significant portion of the literature published on this 
topic also found an absence of correlations between some pollut-
ants and TL or shortening (Blévin et al., 2016; Grunst et al., 2020), or 
noted even opposite patterns (i.e., perfluoroalkyl substances [PFAS] 
in seabirds, for example Blévin et al., 2017; Sebastiano et al., 2020). 
To the best of our knowledge, no studies have ever investigated the 
association between pollution exposure, TL and cancer in any wild 
species. As human studies found associations between shortened 
telomeres and lung cancer development in areas with high levels 
of environmental radon (Autsavapromporn et al., 2018) and smoke 
exposure (Xue et al., 2020), investigating further this topic would 
be of great interest for wildlife ecologists. A recent study, how-
ever, investigating cancer defences in the urban habitat did not find 
any difference in the expression of cancer- related genes between 
urban and rural great tits (Parus major, Giraudeau et al., 2020). The 
lack of differences in anticancer defences between urban and rural 
birds may be the result of evolutionary mismatch as urban birds live 
in a highly oncogenic environment that they have not adapted to 
(Giraudeau et al., 2020). In urban environments, developing nest-
lings had shorter telomeres than in the rural population, and birds 
with short telomeres selectively disappeared at a higher rate during 
their first year of life in the city (Salmón et al., 2016, 2017). These 
results suggest that only individuals inheriting long telomeres and/or 
able to limit their shortening survive in urban environments that are 
known to present high levels of pollutants with negative effects on 
the antioxidant balance. It remains to be determined if this process 
influences the levels of defences against cancer (i.e., trade- offs of 
resource allocation) and/or the more direct relationships between 
telomeres and the development of cancer.

3.4  |  Genetic and environmental factors have 
additive effect on telomere— cancer dynamics

Similar to other traits, individual differences in TL (Bauch et al., 
2021; Dugdale & Richardson, 2018) and cancer susceptibility (Sepp 
et al., 2019; Ujvari et al., 2018) have both been shown to be influ-
enced by environmental and genetic factors, thus an individual's 
quality and capacity to respond to cancer development and ageing 

may be influenced by dynamic interactions between intrinsic and 
environmental factors, as already shown above. Loss of genetic di-
versity and inbreeding clearly have a negative impact on an organ-
ism's capacity to respond to internal and external challenges, and 
the combined effect of genetic and environmental impairment may 
accelerate telomere attrition and cancer development. Giraudeau 
et al. (2019) has proposed that telomere dynamics are not only an in-
tegrative mediator that assembles and relates the information about 
physiological status (e.g., oxidative stress levels, inflammation status 
and stress reactivity) to the potential pace- of- life strategy and lifes-
pan of an individual, but also to be a messenger across generations, 
where offspring would receive information about the internal and 
external environment through the gametes. By expanding, the “tel-
omere messenger hypothesis” (Giraudeau, Angelier, et al., 2019) to 
cancer, one can consider the possibility of telomeres not only being a 
mediator of cancer development during the lifespan of an organism, 
but also a predictor and emissary of the capacity of future genera-
tions to respond to malignant transformations.

4  |  A LIFE-  HISTORY PERSPEC TIVE: 
TELOMERE AND C ANCER DYNAMIC S 
ACROSS SPECIES

Given the functional relationships linking telomere dynamics to 
the risk of developing cancer among organisms, we may predict 
that species- specific TL and dynamics might have— at least to some 
extent— evolved to buffer the risk of developing cancer (Gorbunova 
et al., 2014; Pepke & Eisenberg, 2021). So far, research performed on 
telomere dynamics and cancer prevalence at the interspecific scale 
have been limited and siloed with no cross- talk between these areas. 
In the following section, we will discuss how the recent advances in 
both fields can enrich each other and could lead to a unified life his-
tory view of the telomere- cancer conundrum.

So far, the most thorough comparison of TL and telomerase 
activity at the interspecific scale has been performed in mammals 
(Gomes et al., 2011; Pepke & Eisenberg, 2021). Using adult TL and 
telomerase activity measured in cultured fibroblasts of more than 
60 species, (Gomes et al., 2011) documented a negative association 
between telomerase activity and body mass, which matches similar 
observations made across rodents (Gomes et al., 2011; Gorbunova & 
Seluanov, 2009). Based on the work of Gomes et al. (2011), it appears 
that small mammalian species are more efficient in maintaining or 
elongating their telomeres, which should ultimately increase the risk 
of uncontrolled cell proliferation. This size- dependent expression of 
telomerase is -  at least at first glance -  in line with the observations 
that large- bodied animals do not show higher cancer prevalence 
than small- bodied animals, the so- called “Peto's paradox” (Nunney 
et al., 2015). Indeed, while long- lived and large- bodied animals are 
particularly at risk of cancer development due to their larger number 
of somatic cells, and the higher number of potential cell replication, 
that could lead to the accumulation of cancer- causing mutations, the 
empirical evidence published so far suggest that these species do 
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not display higher prevalence of cancer (see Vincze et al., 2022 for 
a comparative analysis in mammals). The repression of telomerase 
in large species might constitute efficient anticancer defences and 
strategies to buffer the high cancer risk associated with large size 
(Risques & Promislow, 2018b).

However, the picture might not be so straightforward, as re-
cently shown by Pepke and Eisenberg (2021), and various elements 
suggest that our understanding of cancer risk and telomere dynam-
ics is still at its infancy. With the help of additional sensitivity anal-
yses, Pepke and Eisenberg (2021) reanalysed the data set of Gomes 
et al. (2011) and also identified inverse association between TL and 
lifespan, as well as between TL and mass. The authors found that 
longer telomeres predict higher cancer risk across the studied spe-
cies, thus supporting their hypothesis of shorter TL being the result 
of selection for cancer suppression in larger and longer lived species 
(Pepke & Eisenberg, 2021).

The relationship between telomerase activity and body mass is 
not linear. In mammals, telomerase activity appears repressed in al-
most every species weighting more than 2 kg (Gomes et al., 2011; 
Gorbunova & Seluanov, 2009). Yet, cancer prevalence is predicted to 
increase as a function of both body size and lifespan over the entire 
range of life history strategies (Peto et al., 1977). In other words, 
large and long- lived species such as Proboscidea or Ceteacea are 
theoretically expected to display more cancer than any species of 
Cervids, although all species from these taxa are above the 2 kg 
threshold. However, observations made from zoo necropsies in 191 
species of mammals highlight that cancer mortality risk is largely in-
dependent of both body mass and adult life expectancy across spe-
cies (Vincze et al., 2022).

Other anticancer defences and strategies have been docu-
mented (Harris et al., 2017; Seluanov et al., 2018). These mecha-
nisms, being shared across species or unique for a given species 
(Aviv et al., 2017) include for example the duplication of tumour 
suppressor genes (TP53) in elephants (Abegglen et al., 2015; Sulak 
et al., 2016), genes involved in DNA repair (proliferating cell nuclear 
antigen, PCNA) in whales (Keane et al., 2015), enhanced sensitivity 
to contact inhibition and slower cell proliferation in long- lived naked 
mole rats (Seluanov et al., 2009; Tian et al., 2018), and efficient 
prevention of damage caused by oxidative stress in long- lived bats 
(Zhang et al., 2013). Therefore, the relative influence of telomerase 
repression on cancer risk limitation is yet to be quantified as large 
species with telomerase activity might have also evolved additional 
tumour suppressor mechanisms. In mammals, some studies have 
shown telomere elongation in white blood cells and buccal mucosa 
(e.g., Fairlie et al., 2016; Hoelzl et al., 2016; Lemaître et al., 2021) and 
telomerase was detected in some tissues (e.g., in antlers of sika deer, 
Cervus nippon, Sun et al., 2010), and in cultured fibroblasts of sev-
eral small- sized mammals (Gomes et al., 2011). One important step 
to take would therefore be to quantify telomerase activity across 
a wide range of biological tissues in mammals and other species. 
Moreover, evidence of telomerase activity throughout the lifespan 
and across various tissues have been reported in a long- lived seabird 
(Haussmann et al., 2005, 2007). We could thus predict that contrary 

to mammals, large (and long- lived) birds might face a non- negligible 
risk in developing cancer. To test if the assumption is correct, it 
would be crucial to get accurate estimates of cancer prevalence 
among for example, long- lived sea birds. It is interesting to note that 
a recent study in common gulls reported a complex downregulation 
of the expression of eight cancer- related genes with age, a process 
that might be interpreted as a mechanism suppressing cancer risk 
for five of the genes but as increasing the risk for the three other 
genes differently expressed between young and old gulls (Meitern 
et al., 2020). An important note is, when considering telomerase 
activity in long- lived species and in association with cancer, that a 
detectable telomerase activity not necessarily result in telomere 
elongation as the enzyme has many other functions (e.g., inhibition 
of apoptosis in immune cells, enhancement of cellular inflammatory 
responses and maintenance of mitochondrial function, reviewed in 
Zheng et al., 2019).

Cancer risk should also depend on TL per se, as it determines 
the entrance of cellular senescence (Hayflick & Moorhead, 1961). 
So far, studies that have explored the diversity of TL and dynamics 
patterns across species have led to contrasted results and have un-
fortunately been focused only on birds and mammals. For instance, 
TL is negatively associated with maximum lifespan in mammals 
(Gomes et al., 2011), but not in birds (Criscuolo et al., 2021; Tricola 
et al., 2018). Importantly, oncogenesis is an age- dependent process 
with the risk of developing (most) cancers increasing with age (de 
Magalhães, 2013). Therefore, focusing on the species- differences 
in telomere attrition appears much more relevant in a cancer con-
text than TL per se. In birds, the age- specific rate of decline in TL 
(measured in red blood cells) is negatively associated with maximum 
lifespan (Dantzer & Fletcher, 2015; Tricola et al., 2018). While a 
slower rate of telomere decline might thus constitute a mechanism 
to limit physiological ageing and thus a longer lifespan, it might also 
create a favourable ecosystem for cell proliferation at advanced 
ages, which in return might have promoted the evolution of diverse 
anticancer mechanisms in long- lived species (e.g., Abegglen et al., 
2015; Vincze et al., 2022). Conversely, a steep rate of telomere at-
trition in short- lived species could rapidly lead to the accumulation 
of senescent cells at late ages, which might even be amplified in 
the presence of immune senescence (Ovadya et al., 2018), a wide-
spread biological process in animals (Peters et al., 2019). This accu-
mulation of senescent cells might contribute to the appearance of 
many age- related disorders in short- lived species but at the same 
time opens the door to the development of cancers (Mavrogonatou 
et al., 2020).

Interestingly, the concomitant increase in data availability on both 
cancer prevalence (e.g., (Vincze et al., 2022) and telomere dynamics 
(e.g., Remot et al., 2021) opens the door to promising studies in the 
field of comparative cancer biology. Yet, it is important to stress that 
much attention will have to be devoted on some methodological as-
pects that will be important to standardize. For instance, TL varies 
between tissues (e.g., in painted dragon lizards, Ctenophorus pictus, 
Rollings et al., 2019) and the likelihood to detect a decline in TL over 
the life course depends of the method of telomere measurement 
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(e.g., higher with the telomere restriction fragment [TRF] method 
and quantitative fluorescent in situ hybridisation [qFISH] methods 
than with quantitative PCR [qPCR] approach, see Remot et al., 2021 
for a meta- analysis).

5  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

As emphasized throughout this review, while cancer and telomeres 
appeared to be clearly hand in hand at the cross- roads of trade- offs, 
the telomere- cancer dynamics is an incredibly complex and multi-
faceted process. The association starts not only when large tumours 
manifest, but rather early on as premalignant lesions emerge in the 
body of an organism. The abnormal proliferations are initiated and 
facilitated by short telomeres and further enabled by upregulation of 
telomerase enzyme resulting in unlimited potential for cell prolifera-
tion, while fuelled and supported by oxidative damage and inflam-
matory environments. The ability and propensity of individuals and 
species to respond to the oncogenic processes (from premalignant 
lesions to metastatic cancer), will depend on tissue environments, 
reproductive and life history strategies, environmental challenges 
(e.g., harsh climate, predation, etc.) and the evolutionary history of 
the species. Each step in these processes are the result of complex 
interactions and reciprocal feed- back effects (Thomas et al., 2017), 
and as such, the elucidation of the telomere- cancer dynamics re-
quires integrative, multidisciplinary approaches.

The last decades have seen a burst in the publication of age- 
specific data on TL for a large number of species (see Remot et al., 
2021 for a compilation). Species- specific data on cancer prevalence 
are now required to accurately establish the association between 
telomeres and cancer. This constitutes a real challenge in this field 
since no easily accessible blood biomarkers of cancers have been de-
veloped so far to diagnose cancer in wild vertebrates. Although high 
prevalence of cancer has been observed in some species, for exam-
ple Tasmanian devils and belugas (Delphinapterus leucas; Madsen 
et al., 2017; McAloose & Newton, 2009), and particularly in polluted 
environments (Baines et al., 2021), detecting cancer in wildlife re-
mains challenging. Tumours in wildlife are mostly detected during 
post- mortem surveys, that require histopathological examinations 
and do not allow early detection and monitoring of oncogenesis 
(Madsen et al., 2017). Noninvasive techniques, such as determining 
the ratio of heavy and light copper isotopes (65Cu/63Cu; Gourlan 
et al., 2019), proteome assays (Espejo et al., 2021), flow cytometry 
and molecular techniques (Bramwell et al., 2021; Burioli et al., 2019; 
Skazina et al., 2021) have been showing promising avenues for the 
noninvasive detection of cancer in captive felids, Tasmanian devils 
and bivalves, respectively (the two latter being cases of transmis-
sible cancers). If one could step away from our vertebrate centred 
focus, bivalves could be potential study organisms to investigate 
the cancer and telomere dynamics. Abnormal proliferation of hae-
mocytes, that is, disseminated neoplasia (DN, also referred to as 
haematopoietic or haemic neoplasia) has been documented for over 

60 years and has been found in more than 20 Molluscan species, 
such as clams, mussels, oysters, and cockles (Barber, 2004; Carballal 
et al., 2015) and bivalve transmissible neoplasia (BTN) has now been 
observed in several species (Dujon, Gatenby, et al., 2020). Modelling 
predicts DN being widespread among bivalve marine populations 
(Bramwell et al., 2021). Neoplastic cells can be detected with various 
techniques from bivalve haemolymph and tissue samples (for pro-
tocols see Bramwell et al., 2021; Burioli et al., 2019; Skazina et al., 
2021) and TL has also already been assessed in some species (Gruber 
et al., 2014). For research on vertebrates, promising alternatives in-
clude collaborations with zoos and wildlife health surveillance pro-
grammes that both perform thousands of necropsies with trained 
pathologists every year. Once these data on cancer susceptibility 
are accumulated, it should be possible to analyse whether the re-
lationship between TL and cancer prevalence is linear or whether 
the risk of avoiding cancer is optimal for species displaying inter-
mediate TL (and thus simultaneously buffering both the risk of cell 
proliferation and the accumulation of senescent cells). Moreover, 
as telomere dynamics, telomerase activity and cancer risk might 
all vary with body mass and maximum lifespan, appropriate control 
for allometric rules and pace of life will be required to decipher the 
link between telomere and cancer. For example, analysis by Gomes 
et al. ( 2011) showed that across the mammal phylogeny there is a 
negative association between telomerase activity and body size, 
while TL is negatively associated with longevity. Finally, cancer is a 
group of over 100 different diseases (Mukherjee, 2011) with great 
differences in cancer incidences across organs (Henson & Albores- 
Saavedra, 2004). Among many contributors, the number of stem cell 
divisions (Tomasetti & Vogelstein, 2015), the standing population 
size of an organ (Albanes & Winick, 1988; Roychoudhuri et al., 2006), 
the anatomic site (Noble et al., 2015) as well as the importance of 
each organ for survival until reproduction (Thomas et al., 2016) de-
termine their vulnerability to cancer development. Therefore, the 
highly variable associations between cancer prevalence and TL may 
also differ between cancers in different tissues.

Deciphering the telomere- cancer dynamics across species is 
further hampered by individual and tissue- specific variations in the 
ageing process (including telomere maintenance and cancer sup-
pression). For example, while no age- related telomere shortening 
has been observed in the longest- lived rodent, the naked mole- rat 
(Heterocephalus glaber), and the Mahali mole- rat (Cryptomys hotten-
totus mahali), age related senescence and telomere attrition have 
been documented in their close relative, the Damaraland mole- rat 
(Fukomys damarensis; Leonida et al., 2020). The effect of oxidative 
stress on TL has also been shown to be individual and tissue specific 
(Kim & Velando, 2015; Noguera et al., 2015), where certain groups of 
animals (e.g., different sex, or behavioural phenotypes) may have less 
affective antioxidant defences, or tissue types may have different 
adaptive antioxidant capacity (Cattan et al., 2008). Tissue- specific 
gene expression analyses across human tissues have also revealed 
a complex relationship between ageing, cancer and cellular senes-
cence (Chatsirisupachai et al., 2019). While in most tissues, gene ex-
pression patterns change in the opposite direction in ageing and in 
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their corresponding cancers, in the thyroid and uterus the changes 
occur in the same directions. Chatsirisupachai et al. (2019) therefore 
concluded that “in general ageing processes might be opposite to 
cancer, the transcriptomic links between human ageing and cancer 
are tissue- specific”. Similarly, the evolutionary ecology of organs has 
also been predicted to influence cancer development and progres-
sion (Thomas et al., 2016).

Future comparative studies should also attempt to investigate 
the telomere- cancer dynamics not only in a single representative 
species of a taxonomic group, but across several sister species with 
similar lifespan and body size. As shown by Vincze et al. (2022), 
cancer risk varies widely among taxonomic orders in mammals, as-
sociates with diet, but the mortality risk due to cancer is largely in-
dependent of body mass and adult life expectancy across species. 
By conducting TL analyses across broader taxonomic groups (and via 
controlling for phylogenetic relationships) one may discover more 
general patterns along the telomere- cancer dynamics axis and de-
ciphers how life- history evolution shapes cancer resistance. If pos-
sible, additional tissue types (proliferative versus non- proliferative 
tissues) should also be targeted simultaneously, and experimental 
studies could investigate how decreasing antioxidant protection 
or increasing pro- oxidant generation influence mutation rates, TL 
and cancer markers (e.g., inflammatory signals, proliferations rates, 
contact inhibition). Longitudinal studies starting at young age and 
following individuals through their lifetime would allow detailed 
monitoring of how oxidative damage influences telomere attrition, 
inflammation and the emergence of premalignant lesions as individ-
uals embark on their life history. Mate- choice experiments between 
healthy and cancerous individuals (with concurrent measurements 
of oxidative damage and TL) and follow up investigations of their 
reproductive output and fitness would be necessary to identify the 
signatures of natural and sexual selection. Experimental studies of 
Drosophila have shown that social behaviour alters cancer outcomes 
(Dawson et al., 2018), as well as female Drosophila accelerating their 
reproductive effort when affected by cancer (Arnal et al., 2017), but 
whether these phenotypic and reproductive adjustments coincide 
with shorter or longer telomeres (maintained by targeted retrotrans-
position of non- long terminal repeat (non- LTR) retrotransposons as 
Drosophila lack the telomeric repeat motives and telomerase ob-
served in vertebrates, Casacuberta, 2017), higher or lower oxidative 
damage, remains to be answered.

Model systems where cancer can be experimentally induced 
could be used to look at the trade- offs between investing into so-
matic maintenance, reproduction, immune function and cancer 
suppressions, as well as how the microenvironment of tumours in-
fluence inflammation and ageing of a given species.

Finally, incorporating information on TL, antioxidant levels, tu-
mour biomarkers (e.g., expression of tumour suppressor and onco-
genes genes) from various species as well as ecological parameters 
(e.g., pollution levels, climate variables etc.) across ecosystems into 
a cancer- landscape ecology approach (Dujon et al., 2020) could po-
tentially provide the synergistic overview that is needed in order to 
study cancer in ecosystems.
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