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The paper first considers (1) lattice version of two mutualistic species system. For this system, we address the persistence criteria for different types of mutualism, that is, for obligatory mutualism with degenerate origin, for obligatory-facultative mutualism with non-hyperbolic origin and for facultative mutualism with hyperbolic origin. To do so, we use the blow up technique, the center manifold theory and the persistence results. By the Conley connection matrices and the results of monotonic flow, the dynamics of the interior flows and saddle-saddle connection of this system are established. Next, we analyse two different models with different situations: (2) the obligatory mutualistic interaction between the leaf-cutter ant and its fungus garden by the blow up technique, and (3) bi-directional and unidirectional consumer-resource facultative mutualism using the connection matrices. Facultative as well as obligatory mutualism of system (1) promote permanence. In contrast, obligatory mutualism of system (2) is not permanent. Our systems of mutualism exhibit bistability or tristability regions in the presence of multiple interior equilibria.

Introduction

In order to explain that nearly all species of our earth are in mutualistic interactions, [START_REF] Hale | Ecological theory of mutualism:Robust patterns of stability and thresolds in two-species populaion models[END_REF] identified four types of mutualism by which species interact: seed disposal, pollination, protection and resource exchange including with symbionts. Mycorrhizal fungi and nitrogen-fixing bacteria supply phosphosrus and nitrogen to plants. Interestingly, 1/3 of our crop production is due to animal pollination. [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF], Kang et. al [2012], Hale et. at [2021] and many others studied mutualism between two species with multiple interior fixed points. [START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, I, Limit sets[END_REF][START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, II: Convergence almost everywhere[END_REF] derived many important results for cooperative systems with monotonic flows. In addition to numerical simulations, the results of Hirsch are needed to follow to understand the behavior of flows of mutualistic systems. Studies of mutualism between the species with general functional responses and multiple fixed points are important for an general ecological theory of mutualism. [START_REF] Iwata | A simple population theory for mutualism by the use of lattice gas model[END_REF] introduced a simpler theory of mutualism applying the lattice gas model which corresponds to the mean-field theory of the usual lattice model (represented by differential equations). The equations of the model can escape infinity (remain bounded for all positive time), unlike the Lotka Volterra equations for the population dynamics of mutualism. The authors have shown with linear functional response the convergence of interior solutions either to an interior equilibrium or to the origin, the trivial equilibrium depending solely on numerical methods. In case of obligatory mtualism (an essential feature of mutualism), the dynamics exhibit Allee effect; below a critical population density species go to extinction. Wang and We [2014a] considered the above model with Holling type II functional response of mutualism. Using phase plane analysis and numerical simulations they have shown that the interior fixed point is globally stable ( i.e coexistence ) or the trivial equilibrium attracts interior solutions dragging both the species to extinction. Wang and We [2014b] also derived the same results taking linear functional response. The trivial equilibrium plays an important role for the model; in case of obligatory mutualism the trivial equilibrium is degenerate having both of its eigenvalues are zero and in case of obligatory-facultative mutualism, the origin is not hyberbolic with one zero eigenvalue. Both the cases are needed to analyse analytically. In this paper we study three different two-mutualistic species systems with multiple interior fixed points. Firstly, we consider two mutualistic species interactions using lattice gas system theory [START_REF] Iwata | A simple population theory for mutualism by the use of lattice gas model[END_REF] and with Holling type II functional response of mutualism. That the boundedness of this system and that the two species does not contain any periodic solutions in its phase plane are straightforward. Without using any phase-plane analysis or any numerical simulations we are able to address the main issue of mutualism regarding the persistence or extinction of the two species in case of obligatory mutualism, obligatory-facultative, and facultative mutualism with less conditions. To derive our results we use the center manifold theory [START_REF] Car | Applications of center manifold theory[END_REF] when the origin has one eigenvalue zero in case of obligatory-facultative mutualism, the blow up techniques [START_REF] Dumortier | Singularities of vector fields on the plane[END_REF] when the origin has two zero eigenvalues in case of obligatory mutualism. We show by the index theorem [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF] the existence and local stability of the interior equilibria. The lattice version mutualistic system (1) is uniform persistent with degenerate and non-hyperbolic origin. For the results of coexistence or extinction of any species we use the persitence theory [START_REF] Car | Applications of center manifold theory[END_REF][START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF]. We also use the Conley connection matrix theory [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF][START_REF] Reineck | A connection matrix analysis of ecological models[END_REF] to establish saddle-saddle connection between two saddle fixed points and use the results of monotonic flow to understand the dynamics of interior flows of system (1). Next we address other cases, which are not covered by this lattice version model. We consider another two two-species mutualism systems; (2) system of the obligatory mutualistic interaction between the leaf-cutter ant and its fungus garden at the early stage of colony expansion studied by [START_REF] Kang | Mathematical modelling on obligatory mutualism-interaction between leaf-cutter ants and their fungus garden[END_REF], and (3) system of bi-directional and uni-directional consumer-resource mutualism interaction formulated by Holland and DeAngelies (2010). In system (2), we use blow up technique to desingularize the degenerate trivial equilibrium and obtained the results where both the two species either coexist or go to extinction. For system (3) we consider only facultative-facultative mutualism (as other cases, obligate-facultative mutualism, obligate-obligate mutualism can be treated by similar ways) and study the dynamics of the flows via the Conley connection matrices. All the three models of the paper exhibit bistability or tristability regions in the presence of multiple interior fixed points. The paper uses known results and so does not state any of the results or any of the related definitions (as these will be found in the referred journals or books [START_REF] Butler | Persistence in dynamical systems[END_REF][START_REF] Car | Applications of center manifold theory[END_REF][START_REF] Dumortier | Singularities of vector fields on the plane[END_REF][START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF][START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, I, Limit sets[END_REF][START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, II: Convergence almost everywhere[END_REF][START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF][START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF][START_REF] Sikder | A Lotka-Volterra competition model and its global convergence to a definite axial equilibrium[END_REF][START_REF] Wang | Dynamics of a lattice model[END_REF]). We consider the following equations of a lattice version for the interactions of two mutualistic species.

N ′ 1 = r 1 N 1 [-d 1 + R 1 (N 1 )(1 -N 1 -N 2 )] ≡ F 1 (N 1 , N 2 ) N ′ 2 = r 2 N 2 [-d 2 + R 2 (N 2 )(1 -N 1 -N 2 )] ≡ F 2 (N 1 , N 2 ) (1) with R i (N i ) = 1 + a i N j 1 + b i N j , i, j = 1, 2, i ̸ = j,
where N 1 (t) and N 2 (t) are the two mutualistic population density at time t, with N 1 (0), N 2 (0) ≥ 0. The parameter r i is the birth rate, R i (N I ) is the Holling type II functional response, d i is the death rate of the species N i . See the details for the model deduction and other related explanation regarding lattice gas model equations in [START_REF] Iwata | A simple population theory for mutualism by the use of lattice gas model[END_REF][START_REF] Sikder | Transitions of interaction outcomes of consumer-resource systems via the Conley connetion matrices[END_REF][START_REF] Wang | Dynamics of a mutualism model with saturated response[END_REF].

Cooperative and compititive

In System (1),

∂F 1 /dN 2 = r 1 N 1 a 1 (1 + b 1 N 2 ) 2 (1 -N 1 -N 2 ) -r 1 N 1 [1 + a 1 N 2 1 + b 1 N 2 ] (2) ≥ r 1 N 1 a 1 (1 + b 1 N 2 ) 2 (1 -N 1 -N 2 ) ≥ 0 if N 1 + N 2 ≤ 1. By symmetry, ∂F 2 /dN 1 ≥ 0, if N 1 + N 2 ≤ 1. Moreover, ∂F 2 /dN 1 ≤ 0, if N 1 + N 2 ≥ 1 and ∂F 2 /dN 1 ≤ 0, if N 1 + N 2 ≥ 1. That is, sys- tem (1) is cooperative if N 1 + N 2 ≤ 1 and competitive if N 1 + N 2 ≥ 1. Whenever system (1) is competitive, then N ′
1 < 0 and N ′ 2 < 0 and system collapses to the origin. In this case the attractor-repellor pair is {0, ∞}. This confims the observations in nature that the species are in mutualism relationship when there are at low densities for their growth and survival but after reaching higher densities they compete with each other for the resources. If the resources are limited they may go to extinction. The paper deals with system (1) when it is cooperative. The following result is straightforward (see [START_REF] Sikder | Transitions of interaction outcomes of consumer-resource systems via the Conley connetion matrices[END_REF]). Lemma 0.1 Solutions of (1) are uniformly bounded and there are no periodic orbits in the positive plane N 1 ≥ 0 and N 2 ≥ 0.

The boundary isolated invariant sets are the origin 0(0, 0), and the-one species equilibrium P 1 (1-d 1 , 0) and P 2 (0, 1-d 2 ). The eigenvalues of 0 are r i (1-d i ), i = 1, 2. The eigenvalues of P i are -r i (1 -d i ) and -r j D j , where

D j = d j -d i 1 + a j (1 -d i ) 1 + b j (1 -d i ) , i, j = 1, 2, i ̸ = j.
It is evident that P i exists, if (1 -d i ) > 0 holds. The 0 always exists. The eigenvalues of the origin and the one-species equilibrium are derived from the Jacobian matrix at the respective equilibrium. We do not need to find the nature of the isoclinies N ′ i = 0, i = 1, 2, and thus our analysis does not depend on the phase plane analysis. The order of equation of N i is important to conclude the number of feasible interior fixed points. For this and also for the local stability of an interior equilibrium we use the Index theorem. We now state our main results with positve r i . Theorem 0.1

(i) Let d i < 1 and D i < 0 hold, i = 1, 2.
Then there exists one or three twospecies equilibria in the positive plane, if it is one, it is globally stable and if there are three, one is a saddle point and the other two are sinks. System (1) is also UP (uniform persistent).

(ii) Let d 1 < 1, and D 2 > 0, or d 2 < 1, and D 1 > 0, hold. Then there exists either no or two two-species equilibria, one is sink, the other is a saddle point. System (1) is not UP.

(iii) Let d i = 1, or r i = 0 and d i ̸ = 1, for i = 1, 2 Then by the blow up technique, solutions near the origin are moved into the interior of the positive plane and there exists either one or three two-species equilibria, provided a 1 , a 2 > 1 and a 1 a 2 > a 1 + a 2 . System (1) is also UP. 

v) d i > 1, for i = 1, 2.
Then there exists either no or two interior equilibria. System (1) is not UP.

Proof: (i) Solutions of (1) are uniformly bounded by Lemma (0.1). By the condition, d i < 1 the origin 0 is unstable along both the N i direction and by the condition D i < 0, for i = 1, 2., the one species fixed points P 1 and P 2 are nonsaturated along their orthogonal direction. So by the Index theorem of ecological systems [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF], there exists either one interior equilibrium E with index (+1) or three E i , i = 1, 2, 3, with the sum of indices of E 1 , E 2 , and E 3 are (+1). It is clear that the equation of N i is a cubic, so in the interior there can exist at most three intersections. Any interior equilibrium cannot be a center, as there are no periodic solutions by Lemma (0.1). That System (1) is UP follows by the Theorem of Butler and Waltman [START_REF] Butler | Persistence in dynamical systems[END_REF].

(ii) Let d 1 < 0, and D 2 > 0, then P 2 exists and stable along its orthogonal direction with index (+1). P 1 does not exist. The origin is stable along the N 1 direction and unstable along the N 2 direction. By the Index theorem there exist either no interior equilibrium or two interior fixed points E 1 and E 2 , with the sum of indices (+1). Out of two one is sink and the other is a saddle point. Since P 2 is a saturated boundary equilibrium, interior solutions converge to P 2 and system is not UP.

(iii) For the given conditions the origin is degenerate singular point with its both eigenvalues are zeros. We desingularize this singular point by the blow up technique along both the N 1 and N 2 directions. To apply the blow up along the N 2 direction, we let

N 1 = N 2 M 2 and N 2 = N 2 .
Then, from (1) and cancelling the common factor N 2 we get the following equations

N ′ 2 = r 2 N 2 a 2 M 2 1+b 2 N 2 M 2 -(1 + M 2 )(1 + a 2 N 2 M 2 1+b 2 N 2 M 2 (3) 
M ′ 2 = M 2 { r 1 a 1 1+b 1 N 2 -r 1 (1 + M 2 )(1 + a 1 N 2 1+b 1 N 2 ) -r 2 ( a 2 M 2 1+b 2 N 2 M 2 ) (4) + r 2 (1 + M 2 )(1 + a 2 N 2 M 2 1 + b 2 N 2 M 2 )}
The singular points of system (3-4) are (0, 0) and ( M2 , 0, ) where

M2 = r 1 (a 1 -1) + r 2 r 2 (a 2 -1) + r 1 M2 is positive if a 1 , a 2 > 1.
The eigenvalues of (0, 0) of system (3-4) are r 1 (a 1 -1) + a 2 and -r 2 . The eigenvalues of ( M2 , 0, ) of system (3 -4) are

-M2 (r 2 (a 2 -1) + r 1 ) and r 1 r 2 (a 1 a 2 -a 1 -a 2 ) r 2 (a 2 -1) + r 1
Thus by the given conditions both the singular points (0, 0) and ( M2 , 0) are saddle points.

Next we apply the N 1 directional blow up by letting

N 2 = N 1 M 1 and N 1 = N 1 .
By symmetry we get the equations

N ′ 1 = r 1 N 1 a 1 M 1 1+b 1 N 1 M 1 -(1 + M 1 )(1 + a 1 N 1 M 1 1+b 1 N 1 M 1 (5) 
M ′ 1 = M 1 { r 2 a 2 1+b 2 N 1 -r 2 (1 + M 1 )(1 + a 2 N 1 1+b 2 N 1 ) -r 1 ( a 1 M 1 1+b 1 N 1 M 1 ) (6) + r 1 (1 + M 1 )(1 + a 1 N 1 M 1 1 + b 1 N 1 M 1 )}
The singular points of system (5-6) are (0, 0) and (0, M1 ) where

M1 = r 2 (a 2 -1) + r 1 r 1 (a 1 -1) + r 2 M2 is positive if a 1 , a 2 > 1.
The eigenvalues of (0, 0) of system (5-6) are -r 1 and r 2 (a 2 -1) + a 1 . The eigenvalues of (0, M1 ) of system (5 -6) are

-M2 (r 1 (a 1 -1) + r 2 ) and r 2 r 1 (a 1 a 2 -a 1 -a 2 ) r 1 (a 1 -1) + r 2
Thus by the given conditions both the singular points (0, 0) and (0, M1 ) are saddle points. Hence the solutions of System (1) are moved away from the degenerat fixed point (0, 0) towards the interior of the positive plane. The result follows from the Index theorem [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF] and the Theorem of Butler and Waltman [START_REF] Butler | Persistence in dynamical systems[END_REF].

(iv) For the given condition the origin has a zero eigenvalue and it is not hyperbolic. We cannot conclude any decision regarding its stability or instability by linearization. By the Center manifold theorem [START_REF] Butler | Persistence in dynamical systems[END_REF] in this case there exists a center manifold. For that we first assume d 1 = 1, and that

N 2 = aN 2 1 + bN 3 1 .
Using the equations of System (1), the equation

N ′ 2 = (2aN 1 + 3bN 2 1 )N ′ 1 .
becomes

r 2 a(-d 2 + 1)N 2 1 + [r 2 a(b 2 + a 2 -d 2 b 2 -1) + r 2 b(-d 2 + 1) + 2ar 1 )]N 3 1 + 0(N 4 1 ) = 0 (7)
Comparing the coefficient of N 2 1 , N 3 1 ....., it is found that a = 0 and b = 0. That is, the equation of the center manifold is N 2 = 0. The equation restricted to the center manifold is

N ′ 1 = -r 1 N 2 1 < 0.
For sufficiently small N 1 , solutions moves towards the origin along the center manifold but the origin is unstable along the N 2 direction. The origin cannot belong to the omega limit set ω(x) of any positive solution x. If it belongs, then P 2 ∈ ω(x), which is not possible as P 2 is unstable along its orthogonal direction by D 2 < 0. Boundary flow is acyclic. The result follows from the Index theorem [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF] and the Theorem of Butler and Waltman [START_REF] Butler | Persistence in dynamical systems[END_REF] Next we consider r 1 = 0 and d 1 ̸ = 1. In this case we also found that a = 0 and b = 0. So the result will be the same as before. (v) The origin is a saturated fixed point and the result follows from above. Proof is complete. □ Explanation of the results: (a) By (i) of the above theorem whenever the mutualism is facultative, system (1) can persist permanently on one or switching between two stable interior steady states. (b) By (ii), species 1 cannot persist in the absence of species 2, if there is no interior equilibrium. P 1 is globally stable. If there exists two interior equilibria, system (1) exhibits bistability; below the stable manifold of the interior saddle point solutuions converge to P 1 and solutions above the stable manifold of the saddle converge to the another stable interior fixed point. By symmetry the same conclusion happens for species 2 in the absence of species 1. (c) In case (iii) the mutualism is obligatory, that is neither species can survive in the absence of the other. The result shows that the two species on obligatory mutualism can persist permanently either on one or switching between two interior fixed points. (d) For case (iv), the mutualism is obligatory-facultative and system can persist as above as (iii). (e) Case (v) tells that the origin is globally stable whenever there is no interior fixed point. System (1) exhibits bistability, if there exist two interior fixed points, solutions may approach to the origin and also to the stable interior fixed point.

Connection Matrix and Monotonicity

Following the results of Theorem (0.1) the possible dynamics of the flow of system (1) are as follows. Here we are not studying the positions of equilibria either by phase plane analysis with the knowledge of the nature of the isoclines or by numerical simulations. We only know the number and the local stability of interior fixed points by the Index theorem with the help of finding the order of the equation of N i . To establish the connections between the equilibria we use the Conley connection matrix theory [START_REF] Franzosa | The connection matrix theory for Morse decomposition[END_REF][START_REF] Reineck | A connection matrix analysis of ecological models[END_REF][START_REF] Sikder | A Lotka-Volterra competition model and its global convergence to a definite axial equilibrium[END_REF] and the properties of the monotonicity of the system. This helps us to determine the bistability of the system (1). System (1) is cooperative and irreducible [START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF]. Assume that

e 1 = [ N1 , N2 ] ≡ v 1 , e 2 = [ N1 , N2 ] ≡ v 2 and e 3 = [ Ñ1 , Ñ2 ] ≡ v 3
, where e 1 , e 3 are sinks and e 3 is a saddle point. Now, if [e 1 , e 3 ], or [e 3 , e 1 ], form a order interval, i.e, v 1 < v 3 or v 3 < v 1 , then e 2 lies in between e 1 and e 3 or e 3 and e 1 , i.e, v 1 < v 2 < v 3 or v 3 < v 2 < v 1 by Theorem E1 [START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF]. Lemma 0.2 In each case of facultative-facultative mutualism, obligate-facultative mutualism and obligate-obligate mutualism system (1) exhibits bistability in the positive plane N 1 ≥ 0 and N 2 ≥ 0.

Proof: (Facultative-Facultative Mutualism) For this mutualism, whenever the system (1) admits three interior equilibria, we consider the following connection matrix with the fixed points: E 3 (sink), E 2 (saddle point), E 1 (sink) and the origin 0 (which has unstable manifolds along its both orthogonal directions), P 1 (saddle point), P 2 (saddle point). Assume that E 1 (resp.E 3 ) lie near P 1 (resp.P 2 ).

E 1 E 3 E 2 P 1 P 2 0 A = E 1 E 3 E 2 P 1 P 2 0         0 0 1 x z 0 0 0 1 y u 0 0 0 0 0 0 v 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0        
The conditions A 2 = 0 and rank A = 2, imply that x = 1, y = 0, and z = 0, u = 1, and v = 1. That is there exists connections 0 → E 2 , P 1 → E 1 and P 2 → E 3 . The x-coordinate of E 1 (resp. y-coordinate of E 3 ) is greater than the x ( resp.y)coordinate of P 1 (resp.P 2 ) if E 1 (resp.E 3 ) lies near P 1 (resp.P 2 ). E 1 and E 3 are sinks. The saddle E 2 lies in between E 1 and E 3 . The unstable manifolds of E 2 lie in the II and IV quadrant of E 2 with respect to E 2 and the connections 0 → E 2 , and ∞ → E 2 , divide the positive plane into two regions from which interior solutions can converge either to E 1 or E 3 depending on initial conditions. Thus system (1) exhibits bistability. (Obligatory-Facutative Mutualism) In this case we consider the following connection matrix with fixed points; The origin 0 (having one dimensional stable manifold), E 1 (saddle point), E 2 (sink), and P 1 (sink).

E 2 P 1 0 E 1 B = E 2 P 1 0 E 1     0 0 x 1 0 0 1 y 0 0 0 0 0 0 0 0    
For the conditions B 2 = 0 and rank B = 2, we get the following two possible matrices from matrix B..

E 2 P 1 0 E 1 B 1 = E 2 P 1 0 E 1     0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0     E 2 P 1 0 E 1 B 2 = E 2 P 1 0 E 1     0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0    
We now compute the transition matrix T when the flow due to B 1 (the upper left block of T ) is deformed to the flow for B 2 (the lower right block of T ). The block in the upper right of T measures connections from parameter value 1 to parameter value 0.

E 2 P 1 0 E 1 E 2 P 1 0 E 1 T = E 2 P 1 0 E 1 E 2 P 1 0 E 1             0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            
By the square zero condition the last two unknown entries in the row corresponding to 0 become 1 and 1, and the last two unknown entries in the row corresponding to E 1 are 0 and 1. The entry E 1 → 0 is nonzero. There may be a connection from E 1 to 0. But this is not possible, because the attracting block containing E 1 does not contain 0. So there cannot be a connection E 1 to 0. (P 1 and E 3 are sinks and by monotonicity E 1 lies between E 2 and P 1 ). As the entry from 0 to E 1 is zero and the entry from E 1 to E 1 is one, there is a connection 0 to E 1 drafting from 0 to E 1 across the parameter interval (see [START_REF] Reineck | A connection matrix analysis of ecological models[END_REF]. That is the saddle saddle connection 0 → E 1 exists by the connection matrix theory. In this case system (1) exhibits bistability. From one side of the unstable manifold of E 1 , some solutions may converge to the E 2 and from other side of the unstable manifold of E 1 , to P 1 depending on initial conditions. (Obligate-obligate mutualism) In this case the fixed points the origin 0 (sink), interior fixed points E 1 (saddle point), E 2 (sink) form a Morse Decomposition and the connection matrix is of the form

0 E 2 E 1 ∆ = 0 E 2 E 1   0 0 1 0 0 1 0 0 0   Since 0 and E 2 form an ordered interval [0, E 2 ], E 1 lies in between them.
There are connections from E 1 to the origin 0 and to E 2 . The stable manifolds of E 1 lies in II and IV quadrant with respect to E 1 . Below the stable manifold of E 1 solutions move to 0 and above the stable manifold of E 1 solutions move to E 2 . System (1) exhibits bistability. Proof is complete. □

System of Leaf-cutter ant and its fungus garden

The model of [START_REF] Kang | Mathematical modelling on obligatory mutualism-interaction between leaf-cutter ants and their fungus garden[END_REF] of obligatory mutualisms between leafcutter ants and their fungus garden at the early stage of colony expansion is of the form

A ′ = [r 1 F -d 1 A] A F ′ = r 2 aA 2 b+aA 2 -d 2 F -αA F (8)
where, A(t) (resp.F (t)) is the total biomass of ants (resp.fungus) at time t, r 1 (r 2 ) is the maximum growth rate of ants (fungus). b is a half saturation constant. The parameters a = p 2 q(1 -q) and α = cr 1 , with p (resp.q) means proportion of ants that are workers (resp.that take care of fungus).c is the conversion rate between ants and fungus. We assum that

2br 2 aA (b + aA 2 ) > α,
otherwise fungus garden cannot grow. Solutions of system ( 8) are uniformly bounded.

Lemma 0.3 In case of obligate-obligate mutualism system (8) exhibits bistability in the positive plane A ≥ 0 and M ≥ 0.

Proof: The trivial equilibrium 0(0, 0) of ( 8) always exists and it is a degenerate singular point and thus system ( 8) is obligatory mutualism. For desingularization of 0(0, 0) we use blow up technique along the A-direction. So we let A = A and F = M A. Then using the equations of (8) and cancelling the common factor we have

A ′ = [r 1 M -d 1 ] A M ′ = ( r 2 aA b+aA 2 -d 2 M -α) -(r 1 M -d 1 ) M (9) 
Singular points of ( 9) are (A, M ) = (0, 0) and (0, M ), where M = d 1 -α d 2 +r 1 > 0 whenever d 1 > α. The singular point (A, M ) = (0, 0) is saddle point with one eigenvalue positive and the other one is negative. The (0, M ), is sink having its both eigenvalues are negative for d 1 > α.. (Similiar results will follow if we allow the blow up along the F direction). Any solution of (9) tending to the singular point (0, M ) in the positive (A, M ) plane corresponds to a solution of system (8) tending to the origin (0, 0) with the slope M . Thus solutions near the origin (0, 0) of ( 8) move towards the (0, 0). of [START_REF] Hirsch | Systems of differential equations which are competitive or cooperative, II: Convergence almost everywhere[END_REF]. That is, the trivial fixed point (0, 0) of ( 8) is a saturated equilibrium on the boundary of the positive bounded region of (A, F ) system. By the Index theorem , then the system (8) admits either no interior equilibrium or two interior fixed points E 1 ( Ā1 , F1 ) and E 2 ( Ā2 , F2 ), with the sum of indices of saturated fixed points is (+1). Let E 1 is a saddle point. It is obvious that 0 < E 1 < E 2 . 0 and E 2 form an ordered interval [0, E 2 ] and E 1 lies in between them. There are connections E 1 → 0 and E 1 → E 2 . The stable manifolds of E 1 lie in the II and IV quadrant of E 1 with respect to E 1 divide the positive plane into two regions. The interior solutions which lie below the stable manifold of E 1 converge to 0 and the interior solutions above the stable manifold of E 1 converge to E 2 . Thus system (8) exhibits bistability.

Density Dependent Consumer-Resource Mutualisms

We finally, consider the following system of density dependent bi-directional and uni-directional (when q 2 = 0) consumer-resource mutualisms between two species populations M 1 and M 2 , formulated and studied numerically by Holland and DeAngelies (2010).

M ′ i = M i r i + c i ( α ij M j h j +M j ) -q i ( β i M j e i +M i ) -d i M i (10) 
where, α ij (resp.β i ) is the saturation level and h i (resp.e i ) is the half-saturation constant of resource consumption species j (resp.resouce supplied species i) in the functional response (resp.resource function). The c i and q i are conversion rates for i, j, = 1, 2 (mod 2).

Lemma 0.4 Solutions of system (10) are uniformly bounded in the positive plane M 1 ≥ 0 and M 2 ≥ 0. There are no periodic orbits in the system whenever (i) q 2 ̸ = 0, and M 1 < q 1 β 1 d 2 , and M 2 < q 2 β 2 d 1 , or, (ii)q 2 = 0, and [START_REF] Sikder | Transitions of interaction outcomes of consumer-resource systems via the Conley connetion matrices[END_REF]. Solving the isoclines M ′ i = 0, we find that the equation of M i is of order 5. Thus there exists at most five intersections the isoclines M ′ i = 0, in the interior of the positive phase plane. The trivial equilibrium 0(0, 0) always exists and its eigenvalues are r i > 0, i = 1, 2. The one species fixed points are E 1 (r 1 /d 1 , 0) and E 2 (0, r 2 /d 2 ). Eigenvalues of E i are -r i and ρ i ≡ r j + c j α ij r i h i d i +r i -q j β j r i d i e j , i, j = 1, 2, i ̸ = j (mod 2). In the following, we assume that (i) r i > 0, i = 1, 2,i.e, mutualism is facultative-facultative and (ii) ρ i > 0, i.e, E i is saturated along its orthogonal direction. Thus there exists three interior fixed points I i , i = 1, 2, 3, by the Index theorem with the sum of indices of saturated fixed points is (+1). Out of three, two are saddle points and the remaining one is sink. Let

M 1 < q 1 β 1 d 2 and M 2 > d 1 K , where K = q 1 β 1 (e 1 +M 1 ) 2 -d 2 /M 1 . Proof: See
e 1 = (M 1 1 , M 1 2 ), e 2 = (M 2 1 , M 2 
2 ) and e 3 = (M 3 1 , M 3 2 ) be fixed points, where e 1 and e 3 are sinks and e 3 is a saddle point of a monotone system or a monotone system. Then e 1 ≤ e 2 ≤ e 3 by Theorem E1 of Smith and Waltman [START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF]. Lemma 0.5 In case of facultative-facultative mutualism, system (10) exhibits tristability or bistability in the positive plane M 1 ≥ 0 and M 2 ≥ 0.

Proof: The connection matrix of system [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF] is of the form with the above assumption.

E 1 E 2 I 2 I 1 I 3 0 H = E 1 E 2 I 2 I 1 I 3 0         0 0 0 x 1 y 1 0 0 0 0 x 2 y 2 0 0 0 0 x 3 y 3 0 0 0 0 0 0 z 1 0 0 0 0 0 z 2 0 0 0 0 0 0        
Using the conditions H 2 = 0 and rank H = 2, from H we get the following four possible matrices, (i) H 1 with the entites x 1 = 1, x 2 = 0, x 3 = 1, y 1 = 0, y 2 = y 3 = 1, z 1 = z 2 = 0 and the other entries are same as H, (ii) H 2 with x 1 = x 2 = 0,

x 3 = 1, y 1 = y 2 = 0, y 3 = 1, z 1 = z 2 = 1, (iii) H 3 with x 1 = 1, x 2 = 0, x 3 = 1, y 1 = 1, y 2 = 0, y 3 = 1, z 1 = z 2 = 1,
and (iv)

H 2 with x 1 = 0, x 2 = 1, x 3 = 1, y 1 = 0, y 2 = 1, y 3 = 1, z 1 = z 2 = 1.
For definiteness, assume that I 1 (resp.I In connection matrix H 1 , as the entry from 0 to I 1 (also from 0 to I 3 ) is zero, there exists two connections from 0 to I 1 (also from 0 to I 3 ). One connection from 0 to I 1 (also from 0 to I 3 ) always exists by Dancer-Hess Lemma [START_REF] Wang | Dynamics of a lattice model[END_REF] (as there is no other fixed point between them). To get the other connection from 0 to I 1 (also from 0 to I 3 ), this conection must cross over either I 1 , or I 2 , or I 3 , but in that case this connection would intersect the unstable manifold of I 1 , or I 3 , or the stable manifold of I 2 . More generally, any orbit cannot cross IV to I or III to IV quadrant of any equilibrium with respect to that equilibrium as the system is cooperative. The unstable manifold of I 1 , or I 3 , (or the stable manifold of I 2 ) lies in the III and I quadrant (or in the II and IV quadrant) of the respective fixed point. This is not possible. So the connection matrix H 1 cannot occur. Also see [START_REF] Smith | The Theory of Chemostat, Dynamics of microbial competition[END_REF].

For matrix H 3 , the connection from I 3 to E 1 , is not possible as it would intersect the stable manifold from 0 to I 3 or from 0 to I 1 . It cannot move over I 2 or I 1 . So the matrix H 3 also cannot occur. By the same reasoning the matrix H 4 cannot occur. The connection matrix H 2 can only occur. There exits connection 0 → I 1 and 0 → I 2 . The unstable manifolds along the III and I quadrant of I 1 (resp.I 3 ) with respect I 1 (resp.I 3 ) including the connection 0 → I 1 (resp.0 → I 2 ) divide the feasible region of the phase plane into three regions so that solutions may converge to I 2 or E 2 , or E 1 depending on their initial points. Thus system (10) exhibits tristability for facultative-facultative mutualism for q 2 ̸ = 0. Now we consider the uni-directional consumer-resource mutualism. For this mutualism q 2 = 0 in equations [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF]. Solving the isoclines of M ′ i = 0, with q 2 = 0 the equation of M i becomes of order four. Thus there exists at most four intersections of the isoclines M ′ 1 = 0 and M ′ 2 = 0 in the positive plane of M 1 M 2 system. We assume that E 1 is non-saturated and E 2 is saturated. Then by the Index theorem there must exist two interior fixed points, I 1 and I 2 , where say, I 1 is a saddle point and I 2 is sink. Moreover, since E 2 and I 2 are sinks, the saddle point I 1 lies between E 2 and I 2 . The coordinates of E 2 , I 1 and I 2 can be related by ≤ . The connection matrix with the equilibria 0, E 2 , I 2 , E 1 and I 1 is of the form

E 2 I 2 I 1 E 1 0 ∆ = E 2 I 2 I 1 E 1 0       0 0 x y 0 0 0 z u 0 0 0 0 0 v 0 0 0 0 w 0 0 0 0 0      
Using the conditions ∆ 2 = 0 and rank ∆ = 2, from ∆ we get the following possible connection matrices (i)

∆ 1 with x = 1, z = 1, y = u = 0, v = 0, w = 1, (ii) ∆ 2 with x = y = 1, z = u = 0, v = w = 1, (iii) ∆ 3 with x = y = 0, z = u = 1, v = w = 1.
Now, from the above three possible matrices ∆ i , i = 1, 2, 3, the occurence of actual connection matrix is derived by applying the properties of the monotonic flow. In matrix ∆ 1 , as the entry from 0 to I 1 is zero, there are two connections from 0 → I 1 . There is always a connection 0 → I 1 . The other connection 0 → I 1 is not possible as it must cross over either I 1 , or I 2 and in that case it would intersect either the unstable manifold of I 1 or the stable manifold of I 2 . So the matrix ∆ 1 cannot occur in the planar flow. The matrix ∆ 2 cannot occur. If it occurs, the connection E 1 → E 2 intersects the connection 0 → I 1 It cannot cross over I 2 , or I 1 . The matrix ∆ 3 only can occur. In this case the connections are 0 → I 1 , 0 → E 1 , I 1 → I 2 , and E 1 → I 2 . The unstable manifolds in the III and I quadrant of I 1 including the connection 0 → I 1 divide the feasible phase plane into two regions so that interior solutions converge either to E 2 or I 2 . Thus system [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF] with q 2 = 0 exhibits bistability in case of facultative-facultative mutualism.

Conclusion

For systems of two mutualistic species our analysis is without phase plane analysis. This paper establishes the existence and local stability of interior fixed points by the Index theorem with the knowledge of the order of equation of any species. We analyse facultative-facultative (F-F) mutualism, obligatefacultative (O-F) mutualism, and obligate-obligate (O-O) mutualism of a system by setting both, or neither of r 1 and r 2 to zero. In case F-O (resp. O-O) mutualism interaction, the trivial equilibrium becomes a nonhyperbolic (resp. degenerate) singular point, and the Center manifold theory (resp. the blow up technique) is used to derive the results. It is found that not only (F-F) mutualism with hyperbolis origin but also (O-F) mutualism with non-hyperbolic origin and (O-O) mutualism with degenerate origin of system (1) promote permanence or uniform persistence of the two species. In contrast to that the obligatory mutualism of system (2) is not permanent. Without numerical simulations, by the Conley connection matrix and the results of monotonic flows the paper reveals the dynamics of the flows. In Lemma (0.5), from the four possible matrices H i , i = 1, 2, 3, 4 or three ∆ i , i = 1, 2, 3, the occurence of the actual connection matrix (which depends on the positions of fixed points and the position of the stable or unstable manifold of a fixed point) is obtained by applying the properties of the monotonic flow. Thus not only the connection matrices but also the properties of monotonic flow show that the systems exhibit bistability or tristability regions analytically in the presence of multiple interior fixed points.

The mathematical tools used in this paper can be used for linear or more general functional response of mutualism between two species. If the number of species of a mutualistic species system increases more than two, the analysis may not be trivial due to the presence of degenerate trivial equilibrium and certainly with multiple interior equilibria.

(

  iv) Let d 1 = 1, or r 1 = 0 with d 1 ̸ = 1, and D 2 < 0, (d 2 = 1, or r 2 = 0 with d 2 ̸ = 1, and D 1 < 0.) Then the flow restricted to the center manifold moves towards the origin. There exists one or three interior equilibria. System (1) is UP.

(

  

  3 ) lies near E 1 (resp.E 2 ). The x (resp.y) coordinate of I 1 (resp.I 3 ) is greater than the x (resp.y) coordinate of E 1 (resp.E 2 ). More clearly, the coordiates of I 1 (resp.I 3 ) are related by ≤ with the coordiates of E 1 (resp.E 2 ). Since E 2 and I 2 are sinks, the saddle point I 3 lies between E 2 and I 2 . Similarly I 1 lies between E 1 and I 2 . Also the coordinates of E 2 , I 3 and I 2 or E 1 , an I 1 and I 2 will be related by ≤ . Moreover, I 3 cannot lie on the boundary of the order interval [E 2 , I 2 ] or on the boundary of the open region containing the order interval [E 2 , I 2 ], as that would violate the Index theorem. That is, I 3 will always be an interior equilibrium and it is distinct from I 2 .Similarly I 1 cannot lie on the boundary of the order interval [E 1 , I 2 ] or on the boundary of the open region containing the order interval [E 1 , I 2 ]. [See 14]