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Motivation

Entry games are very popular in the empirical IO literature, mainly because they
can estimate features of some industry while observing the decision of firms to
enter or not in independent markets and their characteristics (see Berry and Reiss,
2007, for a survey).
Entry games are games with multiple equilibria. There is no longer unicity of the
model predictions. We can not estimate them with standard econometric
procedures without imposing further assumptions.
There are incomplete models because the selection mechanism is indeed unknown
in the regions of multiple equilibria. Standard solutions often used are the
following ones:

Postulating some selection mechanism (Bjorn and Vuong, 1984, Berry, 1992, Cleeren
et al., 2010, among others ...),
Working from an outcome which is invariant, like the number of active firms at the
equilibrium, e.g. Berry (1992),
Using the recent literature on moment inequalities like in Ciliberto and Tamer, 2009,
Beresteanu et al., 2011, Galichon and Henry, 2011, Chesher and Rosen, 2019.
Remark that multiple equilibria does not necessary imply set identification.
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This paper I

In this paper, we consider the estimation of an entry game with simultaneous
move, in the complete information setting. We consider a setting à la Berry
(1992), with discrete covariates and Nash equilibrium concept.
It is part of a broader agenda on the estimation of games with multiple equilibria.
We estimate the model through moment inequalities (we invert a test, i.e. a set
of values for the parameters is admissible if the moment inequalities are satisfied).
The moment inequalities necessary to sharply characterize the identified set (see
Beresteanu et al. 2011) are derived in closed form through the characterization of
the set of predicted probabilities.
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This paper II

However, when the number of players/firms starts to be ”big enough” (5, 6 or 7
players), the number of inequalities required to sharply define the identified set is
very important (2114 for N = 5, 1 114 242 inequalities for N = 6 and 68 723 671
298 for N = 7 without expl. variables). Therefore, we propose a moment selection
procedure based on the geometry of the problem and which does not require to
evaluate all of them.
We also propose a way to calculate the critical value of the test statistic, which is
calculated once for all and we compare, in a Monte Carlo Section, our procedure
with existing methods.
Among the blossoming and huge literature on set identification and moment
inequality models, here are four papers which are close to ours

Ciliberto and Tamer, Eca 2009, estimate a set identified entry game. They tackle
the numerical issues that arise in a game with many players by estimating an outer
set. It is not sharp.
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This paper III

Beresteanu et al. (2011) and Galichon and Henry (2011) propose an explicit
characterization of the identified set by a collection of many moment inequalities.
Galichon and Henry propose an algorithm that selects among this infinity of moment
inequalities the sequence of non redundant ones.
Chesher and Rosen (2019) use revealed preference arguments to derive moment
inequalities and apply it to the case of entry with two types.
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Set identification in Econometrics I

In a (potentially) set identified model, observing the whole population is not
sufficient to recover a unique value of the parameter. It generally arises when
there is some missing information. In the Entry example, this is the selection
mechanism in the regions of multiple equilibria.
The literature on set identification (largely developed by Manski and his
coauthors) provides a guideline to analyze such problems without adding any extra
assumptions but collecting all values for which any acceptable arbitrary additional
assumptions would obtain. The identifying power of different assumptions may be
compared in terms of the size of the set which is identified.
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Set identification in Econometrics II

Estimation and inference are usually tackled by bounding this missing information
and transforming the problem into moment inequalities (like in Ciliberto and
Tamer, 2009, or Manski and Tamer, 2002). There is a huge literature on moment
inequality models, among which Chernozhukov et al. (2007), Rosen (2008),
Andrews and Soares (2010), Bugni (2010), Canay (2010), Romano and Shaikh
(2008,10), Chernozhukov et al. (2012), Andrews and Shi (2013), Aradillas-Lopez
and Rosen (2016) or Chesher and Rosen (2019).
Another path consists of characterizing the geometry of the problem. The
identified set may be convex (like in Beresteanu and Molinari, 2008, or Bontemps
et al. 2012) or the model is a model with convex predictions, i.e. testing a point
in the identified set is equivalent to testing that another point belongs to the
convex set (Galichon and Henry, 2009, 2011, Beresteanu et al. 2011, Bontemps,
Magnac and Pacini, 2020).

Possibility of using the tools of the convex literature (Rockafellar, 1970), in
particular the support function.
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Set identification in Econometrics III

Kaido and Santos (2014) prove that it is optimal to estimate the support function
when the identified set is convex.

Ultimately, moment inequalities are collected.

See surveys in Annual Review of Economics: Tamer (2010), Molchanov and Molinari
(2015), Bontemps and Magnac (2017).
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Outline

Organization of the talk

1. Introduction

2. The geometric characterization of an entry game

3. Testing a point in the identified set.

4. Inference.

5. Some Monte Carlo simulations.

C. Bontemps and R. Kumar A geometric Approach to Inference in Set identified Entry Games



Introduction An example with three players Testing a point in the identified set Inference Monte Carlo Experiments Conclusion

Outline

1 Introduction

2 An example with three players

3 Testing a point in the identified set

4 Inference

5 Monte Carlo Experiments

6 Conclusion

C. Bontemps and R. Kumar A geometric Approach to Inference in Set identified Entry Games



Introduction An example with three players Testing a point in the identified set Inference Monte Carlo Experiments Conclusion

The specification I

A simple entry game with three firms and no explanatory variable.
The action of firm i to enter (yi ,m = 1) or not enter (yi ,m = 0) in market m, is
depending on firm i ’s profitability βi , the other firms’ actions and a profit shocks εi ,m
known by both firms.

yi ,m = 1{βi +αi
∑
j 6=i

yj,m +εi ,m > 0}.

The profit when a firm does not enter is normalized to 0.
The joint distribution of (ε1,m,ε2,m,ε3,m), F (·), is assumed to be known (up to a
vector of parameters). We also assume that all αi ’s are negative.
The econometrician observes, in each market, one of the eight different outcomes
(y1,y2,y3), from which he can estimate eight choice probabilities.
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Regions of multiple equilibria with three players I

We first check what are the model predictions for the eight possible outcomes for a
given value of the parameters.
First, the two outcomes with no entry or all players entering are uniquely determined
as there is no multiple equilibria in this case:

P0,0,0 = P [εi <−βi , i = 1, . . . ,3;θ] ,

and
P1,1,1 = P [εi ≥−2αi −βi , i = 1, . . . ,3;θ] ,

Additionally, we have eight regions with multiple equilibria, four when there is one
active firm at the equilibrium and four when there are two active firms at the
equilibrium (see Berry, 1992). We now characterize the set of choice probabilities for
one active firm.
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Regions of multiple equilibria with three players II

R(1)
1,2(θ) is the region where either firm 1 enter or firm 2 enters but the model does

not predict which one enters. It is defined by εi ∈ [−βi ;−βi −αi ], i = 1,2 and
ε3 <−β3. The probability of R(1)

1,2(θ) is

∆(1)
1,2(θ) = P(ε ∈R(1)

1,2(θ)).

We can define similarly R(1)
2,3(θ), R(1)

1,3(θ), ∆(1)
2,3(θ) and ∆(1)

1,3(θ).
R(1)

1,2,3(θ) is the region where any firm is profitable in the monopoly case but not
in the duopoly case. This is the region εi ∈ [−βi ;−βi −αi ], i = 1,2,3. ∆(1)

1,2,3(θ) is
defined similarly.
Remark that the values ∆ can be either computed analytically or simulated (see
Berry, 1992, or Ciliberto and Tamer, 2009).
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Regions of multiple equilibria with three players III

Similarly R(1)
i (θ) are the regions of unique prediction. For i = 1 this is the region

of ε that predicts unambiguously the outcome (1,0,0). It is the region defined by
the union of (ε1 >−β1,εj ≤−βj , j = 2,3) and
(ε1 >−β1−α1,εj ≤−βj −αj , j = 2,3).
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A parametrization of the set of the predicted choice probabilities I

The set of predicted choice probabilities for the three outcomes (1,0,0), (0,1,0) and (0,0,1) can be
written as function of these values:[ P1,0,0

P0,1,0
P0,0,1

]
=

 ∆(1)
1 (θ) +u(1,1)

1,3 ∆(1)
1,3(θ) + u(1,1)

1,2 ∆(1)
1,2(θ) +u(1,1)

1,2,3∆(1)
1,2,3(θ)

∆(1)
2 (θ) +u(2,1)

2,3 ∆(1)
2,3(θ) + (1 − u(1,1)

1,2 )∆(1)
1,2(θ) +u(2,1)

1,2,3∆(1)
1,2,3(θ)

∆(1)
3 (θ) +(1 − u(1,1)

1,3 )∆(1)
1,3(θ) + (1 − u(2,1)

2,3 )∆(1)
2,3(θ) +(1 − u(1,1)

1,2,3 − u(2,1)
1,2,3)∆(1)

1,2,3(θ)

 .
The u’s are bounded by 0 and 1. It is a parametrization of the following convex set, labeled B1(θ):

P (1, 0, 0)

P (0, 1, 0)

P (0, 0, 1)

B
(1)
1,2,3

B
(1)
2,1,3

B
(1)
2,3,1

B
(1)
3,2,1

B
(1)
3,1,2

B
(1)
1,3,2

Similarly we obtain an equivalent characterization for the outcomes with two entering
firms.
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Testing that a point θ belongs to the identified set I

Let P0 be the true probability vector generated by the true parameter θ0 and the true selection
mechanism η0 which the econometrician does not know. The identified set ΘI is the set of parameters
θ such that the set of predicted choice probabilities A(θ) contains the observed choice probabilities P0.
In other words, it exists some u’s between 0 and 1 such that

1 P0
0,0,0 = P [εi <−βi , i = 1, . . . ,3;θ]

2 The point (P0
1,0,0,P0

0,1,0,P0
0,0,1) belongs to the set B1(θ), detailed above:

P (1, 0, 0)

P (0, 1, 0)

P (0, 0, 1)

B
(1)
1,2,3

B
(1)
2,1,3

B
(1)
2,3,1

B
(1)
3,2,1

B
(1)
3,1,2

B
(1)
1,3,2

3 The point (P0
0,1,1,P0

1,0,1,P0
1,1,0) belongs to a similar set, B2(θ).

4 P0
1,1,1 = P [εi ≥ −2αi −βi , i = 1, . . . ,3;θ].
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Comparison with existing methods I

First the two outcomes with zero firm and all firms entering leads to two equalities.
Ciliberto-Tamer (2009)

∆(1)
1 (θ)≤ P0

1,0,0 ≤∆(1)
1 (θ) + ∆(1)

1,3(θ) + ∆(1)
1,2(θ) + ∆(1)

1,2,3(θ)

∆(1)
2 (θ)≤ P0

0,1,0 ≤∆(1)
2 (θ) + ∆(1)

2,3(θ) + ∆(1)
1,2(θ) + ∆(1)

1,2,3(θ)

∆(1)
3 (θ)≤ P0

0,0,1 ≤∆(1)
3 (θ) + ∆(1)

2,3(θ) + ∆(1)
1,3(θ) + ∆(1)

1,2,3(θ)

A revealed preference argument would give the upper bounds of CT 2009.

C. Bontemps and R. Kumar A geometric Approach to Inference in Set identified Entry Games



Introduction An example with three players Testing a point in the identified set Inference Monte Carlo Experiments Conclusion

Comparison with existing methods II

As for us,

P0
1,0,0 ≤∆(1)

1 (θ) + ∆(1)
1,3(θ) + ∆(1)

1,2(θ) + ∆(1)
1,2,3(θ)

P0
0,1,0 ≤∆(1)

2 (θ) + ∆(1)
2,3(θ) + ∆(1)

1,2(θ) + ∆(1)
1,2,3(θ)

P0
0,0,1 ≤∆(1)

3 (θ) + ∆(1)
2,3(θ) + ∆(1)

1,3(θ) + ∆(1)
1,2,3(θ)

P0
1,0,0 + P0

0,1,0 ≤∆(1)
1 (θ) + ∆(1)

2 (θ) + ∆(1)
1,3(θ) + ∆(1)

1,2(θ) + ∆(1)
2,3(θ) + ∆(1)

1,2,3(θ)

P0
1,0,0 + P0

0,0,1 ≤∆(1)
1 (θ) + ∆(1)

3 (θ) + ∆(1)
1,3(θ) + ∆(1)

1,2(θ) + ∆(1)
2,3(θ) + ∆(1)

1,2,3(θ)

P0
0,1,0 + P0

0,0,1 ≤∆(1)
2 (θ) + ∆(1)

3 (θ) + ∆(1)
1,3(θ) + ∆(1)

1,2(θ) + ∆(1)
2,3(θ) + ∆(1)

1,2,3(θ)

P0
1,0,0 + P0

0,1,0 + P0
0,0,1 ≤∆(1)

1 (θ) + ∆(1)
2 (θ) + ∆(1)

3 (θ) + ∆(1)
1,3(θ) + ∆(1)

1,2(θ) + ∆(1)
2,3(θ) + ∆(1)

1,2,3(θ)
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General Entry Game

We now formalize the general case with N players.

yim = 1

βi +αi
(∑

j 6=i
yjm
)

+εim ≥ 0

 , i = 1, . . . ,N. (1)

Set-up: static game with complete information,pure strategy Nash Equilibria are
assumed.
The linear form is not important as long as we have a parametric form additive in ε
What matters however is that the competitor effect only depends on

∑
j 6=i yjm.

εim can be correlated across i , but they are independent across m.
Discrete covariates are considered in the paper.
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Multiplicity Structure I

The set of predicted choice probabilities A(θ) has a specific structure:
It’s a convex polytope with a specific structure (as the number of active firms is
unique in the multiple equilibria regions).
Its number of vertices can be characterized.
It’s characterization depends, in particular, on the the number of multiple
equilibria regions which we can characterize and count. There are much less than
the maximum number of regions possible. For example, for N = 4 and K = 2, the
two outcomes (1,1,0,0) and (0,0,1,1) can’t be in multiplicity.
We can count them. In our setting, the numbers are:

N Number max
N = 4 43 79
N = 5 194 2078
N = 6 793 1 114 173
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The support function of a convex set I

A convex set can be uniquely characterized by many functions but the literature on set
identification mainly uses the support function.
The support function of a convex set ΘI ⊂ Rd is defined as:

δ∗(q;ΘI) = sup
θ∈ΘI

(q>θ) for all directions, q ∈ Rd .

ΘI

q

δ∗(q;ΘI)
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The support function of a convex set II

Following Rockafellar (1970), it uniquely characterizes set ΘI :

θ ∈ΘI ⇔∀q ∈ Sd−1,q>θ ≤ δ∗(q;ΘI). (2)

The support function implicitly gathers all the inequalities which define the convex set
into one single function. If the set is smooth, there is a continuum of such
inequalities ; if it is a polytope, only a finite number of inequalities is necessary to
characterize the set.
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The Support Function

We derive a closed-form expression for the support function which depends on the
characterization of the multiple equilibria regions we mentioned above.
Following Beresteanu et al. (2011), we give a collection of all moment inequalities
which are necessary to sharply characterize the identified set.
For small values of N, 2 to 5 (and the points of support of the discrete
explanatory variables), it can be solved by brute force.
However, this number increases exponentially. For N = 6, more than 1 million
inequalities per point of support need to be evaluated, for N = 7, more than 60
billions, etc. The core determining class (see Galichon and Henry, 2011 or
Beresteanau et al. 2011) does not help in reducing this number substantially.
We propose an algorithm which selects, without having to evaluate them, the
potentially binding moments. We call it a local moment selection algorithm. The
main idea is to look for the closest vertex of the convex set A(θ) and checking the
supporting hyperplanes in this vertex. This number is still increasing in N, but
proportionally to 2N . For N = 3 one has to test 10 inequalities instead of 18, for
N = 6, 69 inequalities instead of 1 114 242.
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Graphical illustration
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Test Statistic

The support function provides an indirect characterization of the identified set
whether it is point or set identified:

θ ∈ΘI ⇐⇒ P∗ ∈ A(θ)
⇐⇒ ξ∞(θ) = inf

q∈C
δ∗(q;A(θ))−q>P∗ ≥ 0.

where C is the core determining class for A(θ).
We observe sample from m markets and can consistently estimate P∗.
Let P̂ be estimator for P∗ and consider normalized test statistic

ξn(θ) =
√

n inf
q∈C

δ∗(q;A(θ))−q>P̂√
q>Σ̂q

.

C. Bontemps and R. Kumar A geometric Approach to Inference in Set identified Entry Games



Introduction An example with three players Testing a point in the identified set Inference Monte Carlo Experiments Conclusion

The Limiting Distribution:

Let Qθ, be the set of minimizers of δ∗(q;A(θ))−q>P∗ in C, thenξn(θ) d−→
n→∞

inf
q∈Qθ

q>N (0,Σ)√
q>Σq

if P∗ ∈ A(θ),

ξn(θ) a.s−→
n→∞

−∞, if P∗ /∈ A(θ),

It depends on θ only through the number of binding moments, i.e. Qθ.
Σ, usually, depend on θ in models where we have to estimate support function.
However, more broadly in game theoretic models with complete information Σ
doesn’t depend on θ.
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Confidence Region for the Identified Set:

For inference on the identified set, we need to know distribution of

inf
θ∈ΘI

ξn(θ).

We know,

ξn(θ) d−→
n→∞

inf
q∈Qθ

q>N (0,Σ)√
q>Σq

.

But, we don’t know Qθ and ΘI .
But observe that ⋃

θ∈ΘI

Qθ ⊆ C.
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Confidence Region for the Identified Set:

⋃
θ∈ΘI

Qθ ⊆ C implies that for large sample size

inf
θ∈ΘI

ξn(θ)� inf
q∈C

q>N (0,Σ)√
q>Σq

.

Lets define
ĉ2(C,α) := 1−α quantile of min

q∈C

q>N (0, Σ̂)√
q>Σ̂q

where Σ̂ is some consistent estimator of Σ. We can show

liminf
n→∞

inf
P∈P

P (ΘI(P)⊆ C(ĉ2(C,α)))≥ 1−α.

where C(c) =
{
θ ∈Θ : ξn(θ)≥ c

}
.
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Confidence Region for a Point in the Identified Set:

For inference for a point in the identified set, we need to know distribution of

ξn(θ)

We know the limiting distribution of ξn(θ).
We don’t know Qθ. But we know from local geometry

Qθ ⊆ L(θ)

Which still L(θ) depends on θ, but

|L(θ)| ≤ L∗
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Confidence Region for a Point in the Identified Set:

The idea is to develop inference method solely based on L∗.
Define

cL∗ (α) = −Φ−1 (1−α/L∗)√
1−Φ−1 (1−α/L∗)2 /n

where Φ is the distribution function of the standard normal distribution, and Φ−1

is its quantile function.
We can show that

liminf
n→∞

inf
P∈P

inf
θ∈ΘI (P)

P (θ ∈ C(cL∗(α)))≥ 1−α.
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Inference: Summary

We propose simple methods for both notions of confidence region.
Advantage: computationally very simple compare to existing methods.
Simulation exercise show methods proposed perform reasonable well compare to
existing methods for sample size up to 5000.
We provide extension to include covariates in the paper.
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Simulation Designs:

Consider the simple game with 3 players, no explanatory variable,

yi = 1

β+αi
∑
j 6=i

yj +εi ≥ 0


Design ε Parameter

1 N (0,1) β = .35
α1 = α3 =−.4,α2 =−.4
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Results I

Point-identified case

Test Crit. Normalized Tests Non-normalized Tests
value Volume CR Volume CR

Bound G 1.50 9.40
L 1.14 4.80

Ineq1 G 1.80 9.23
L 1.50 3.96

Ineq4 G 1.27 5.55
L 1.03 3.11

Local L 1.00 1.83
n = 1000.
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Results II

Ignoring α1 = α3. Set identified case.

Test Crit. α1 α1 α2 α2 α3 α3 β β Vol.
value min max min max min max min max CR

Bound G -0.657 -0.166 -0.715 -0.227 -0.684 -0.197 0.253 0.492 1.49
L -0.631 -0.184 -0.688 -0.243 -0.658 -0.214 0.263 0.479 1.06

Ineq1 G -0.714 -0.118 -0.755 -0.165 -0.743 -0.152 0.120 0.488 2.02
L -0.693 -0.134 -0.731 -0.180 -0.721 -0.167 0.132 0.478 1.59

Ineq4 G -0.655 -0.165 -0.716 -0.228 -0.682 -0.196 0.252 0.495 1.36
L -0.634 -0.179 -0.695 -0.240 -0.661 -0.209 0.258 0.483 1.05

Local L -0.630 -0.181 -0.692 -0.242 -0.658 -0.212 0.259 0.481 1.00
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Results III

Another DGP with higher probabilities of multiple equilibria

Type Test Crit. α1 α1 α2 α2 α3 α3 β β Vol.
value min max min max min max min max CR

Bound G -1.146 -0.429 -0.973 -0.233 -1.150 -0.434 0.484 0.843 1.92
L -1.097 -0.446 -0.922 -0.250 -1.101 -0.450 0.492 0.809 1.36

Ineq4 G -1.133 -0.431 -0.943 -0.238 -1.137 -0.435 0.483 0.838 1.33
L -1.099 -0.443 -0.908 -0.252 -1.102 -0.448 0.489 0.816 1.04

Local L -1.099 -0.443 -0.908 -0.252 -1.102 -0.448 0.489 0.816 1.04
Exact -1.093 -0.446 -0.904 -0.254 -1.097 -0.451 0.491 0.814 1.00
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Results IV

A four player case.

Test Crit. α1 α1 α2 α2 β β Vol.
value min max min max min max CR

Bound G -0.602 -0.232 -0.455 -0.062 0.253 0.682 2.60
L -0.576 -0.240 -0.430 -0.072 0.260 0.648 2.04

Ineq1 G -0.573 -0.242 -0.421 -0.095 0.176 0.631 2.21
L -0.542 -0.254 -0.394 -0.106 0.197 0.593 1.55

Ineq3 G -0.575 -0.247 -0.423 -0.097 0.259 0.633 1.80
L -0.547 -0.258 -0.399 -0.108 0.271 0.600 1.30

Ineq4 G -0.561 -0.243 -0.417 -0.083 0.250 0.645 1.55
L -0.525 -0.259 -0.381 -0.101 0.267 0.598 1.00

Local L -0.526 -0.258 -0.381 -0.100 0.267 0.598 1.00
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Conclusion and perspectives

A geometric approach of the entry game with complete information
Provides both the collection of non redundant moments and a geometric selection
of the (potentially) binding moments without evaluating them
Improvements with respect to existing methods even in cases where all the
moment inequalities can be evaluated.
Empirical applications are now considered on airlines while relaxing the assumption
that the impact of one competitor’s entry does not depend on its identity.
Continuous covariates are also considered.
Full paper is available on the TSE website.
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