Le Petit Prince multilingual naturalistic fMRI corpus - Archive ouverte HAL
Article Dans Une Revue Scientific Data Année : 2022

Le Petit Prince multilingual naturalistic fMRI corpus

Résumé

Neuroimaging using more ecologically valid stimuli such as audiobooks has advanced our understanding of natural language comprehension in the brain. However, prior naturalistic stimuli have typically been restricted to a single language, which limited generalizability beyond small typological domains. Here we present the Le Petit Prince fMRI Corpus (LPPC–fMRI), a multilingual resource for research in the cognitive neuroscience of speech and language during naturalistic listening (OpenNeuro: ds003643). 49 English speakers, 35 Chinese speakers and 28 French speakers listened to the same audiobook The Little Prince in their native language while multi-echo functional magnetic resonance imaging was acquired. We also provide time-aligned speech annotation and word-by-word predictors obtained using natural language processing tools. The resulting timeseries data are shown to be of high quality with good temporal signal-to-noise ratio and high inter-subject correlation. Data-driven functional analyses provide further evidence of data quality. This annotated, multilingual fMRI dataset facilitates future re-analysis that addresses cross-linguistic commonalities and differences in the neural substrate of language processing on multiple perceptual and linguistic levels.
Fichier principal
Vignette du fichier
Li et al. - 2022 - Le Petit Prince multilingual naturalistic fMRI cor.pdf (3.85 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03849524 , version 1 (11-11-2022)

Licence

Identifiants

Citer

Jixing Li, Shohini Bhattasali, Shulin Zhang, Berta Franzluebbers, Wen-Ming Luh, et al.. Le Petit Prince multilingual naturalistic fMRI corpus. Scientific Data , 2022, 9 (1), pp.530. ⟨10.1038/s41597-022-01625-7⟩. ⟨hal-03849524⟩
35 Consultations
41 Téléchargements

Altmetric

Partager

More