
HAL Id: hal-03849513
https://hal.science/hal-03849513v1

Submitted on 11 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust approach for host-overload detection based on
dynamic safety parameter

Imene El-Taani, Mohand-Cherif Boukala, Samia Bouzefrane, Anissa Imen
Amrous

To cite this version:
Imene El-Taani, Mohand-Cherif Boukala, Samia Bouzefrane, Anissa Imen Amrous. Robust approach
for host-overload detection based on dynamic safety parameter. IEEE Ficloud (The 9th Interna-
tional Conference on Future Internet of Things and Cloud), Aug 2022, Rome, Italy. �10.1109/Fi-
Cloud57274.2022.00044�. �hal-03849513�

https://hal.science/hal-03849513v1
https://hal.archives-ouvertes.fr

Robust approach for host-overload detection based on dynamic safety
parameter

Imene El-Taani
MOVEP Lab

USTHB
Algiers, Algeria

eltaani.imene@usthb.dz

Mohand-Cherif Boukala
MOVEP Lab

USTHB
Algiers, Algeria
mboukala@usthb.dz

Samia Bouzefrane
CEDRIC Lab

Cnam
Paris, France

samia.bouzefrane@cnam.fr

Anissa Imen AMROUS

USTHB
Algiers, Algeria
aamrous@usthb.dz

Abstract—Host-overloading detection is an impor-
tant phase in the dynamic Virtual Machines (VMs)
consolidation process. Using machine learning to pre-
dict the future workload on a host, is a very promising
technique to avoid the overload host situation. In this
work, we propose a novel approach for overloaded hosts
detection, based on neural network and Markov model.
The neural network is trained on a workload data set
composed of VMs CPU-utilization history. The trained
model is then used to predict the future usage for
a given Physical Machine(PM), by summing up the
predicted utilization of all its VMs. The confidence of
this prediction is measured through a dynamic safety
parameter, based on Markov model. The obtained
results show that our approach outperforms the state
of the art algorithms such as: MAD, IQR and LRR.

Index Terms—VM consolidation, host-overload de-
tection, neural network prediction, Markov model,
energy-efficiency, SLA violation.

I. Introduction

Finding efficient energy-aware strategies to manage re-
sources on data centers become an important challenge
for cloud providers. The energy inefficiency is due mainly
to poor management of servers’ resources. It has been
proven [1] that a server that runs at 10% of CPU usage,
consumes more than 50% of the maximum of its power.
To deal with this problem, the virtualization technology
is proposed to improve resource utilization, by allowing
a PM (Physical Machine) to be shared by multiple VMs
(Virtual Machines).
Dynamic VM consolidation is an effective approach to

improve energy efficiency while assuring an acceptable
level of QoS (Quality of Service) based on SLA (Service
Level Agreement). The dynamic VM consolidation process
can be divided into four sub-problems:

• Overloaded-host detection: The VMs demands, in this
case, exceed the available resources on the hosts. To
avoid such situation, some VMs must be migrated to
other hosts.

• Underloaded-host detection: The host is considered
as underloaded if its resource usage falls below some
underload threshold. To address this problem, all
VMs from uderloaded hosts must be migrated, and
then the hosts are switched off to save energy.

• VMs selection: Once an overloaded host is detected,
some of its VMs must be selected for migration. This
migration will cost an extra consumption of CPU and
network resources from source and destination hosts.
So, the selection process is crucial for resource man-
agement. Different parameters can be considered to
select the migrated VMs [1]. One of the most utilized
policy is MMT (Minimum Migration Time) which
selects the VM that requires the minimum migration
time between all the host’s VMs. The migration time
is calculated as a ratio of the memory assigned to the
VM by the available network bandwidth.

• VMs placement : The goal is to find a better allocation
mapping VMs-to-PMs based on the current resources
of the selected VMs. In our previous work [2], we
presented a VM placement algorithm based on intra-
balanced resource allocation, using the cosine and
Jaccard distances.

VM migration is a resource-intensive procedure that
causes performance degradation of the running applica-
tions. This degradation is due to the extra consumption
of CPU and bandwidth to ensure the in-cycle consoli-
dation process. To minimize the number of migrations,
it is necessary to avoid the detection of unreliable over-
loaded/underloaded hosts. Starting from this idea, we
design a new approach for overloaded-host detection based
on neural network and Markov models. The neural net-
work is used to predict the future host CPU-requirements.
The confidence of this prediction is measured through a
dynamic safety parameter based on Markov model.
The remaining of this article is structured as follows :

In Section II, we give an overview of the research works
that deal with host’s overload. In section III, we describe
the principle of our new approach and its steps. Section
IV presents the performance evaluation of our proposed
model. Finally, conclusions and future works are presented
in Section V.

II. related work on host-overload detection

In the literature, we identify two categories that are
related to host-overload detection: adaptive utilization
threshold and workload prediction methods.

A. Adaptive utilization threshold methods
The idea is to set an upper threshold, and consider

the hots, for which the total CPU utilization exceeds this
threshold, as overloaded. This upper threshold can be
static as in [3] or dynamic [1]. The problem with static
thresholds is that they are manually adjusted, and this is
unsuitable for the dynamic nature of workload. Therefore,
Beloglazov and Buyya in [1] propose a statistical uto-
adjustment of the upper threshold based on historical VMs
utilization.
They designed two robust statistic thresholds based

on the Median Absolute Deviation (MAD) and the In-
terQuartile Range (IQR). The upper threshold Tu is cal-
culated as follows [1]:

Tu = 1− s × StatisticMeasure (1)

Where s is a safety parameter which defines a trade-
off between energy consumption and SLA violation. The
higher is s, the lower is the SLA violation, but the higher
is the energy consumption.
StatisticMeasure is the MAD or the IQR method.
In [4], authors propose an intelligent and adaptive upper

threshold based on Dynamic Fuzzy Q-learning (DFQL).
They design an algorithm that interacts with some char-
acteristics of host environment to learn when to decide
that this host is overloaded. The main drawback of this
method is that it takes a long time until the convergence
of the learning procedure.

B. Workload prediction methods
Workload prediction methods attempt to anticipate the

resource demands by applying time series and machine
learning approaches to predict the future resource usage.
Effective prediction of resources can allow a load balancing
and will help to avoid the SLA violation.
The predictive model extracts patterns from actual

workload and analyzes the n previous workload values in
order to predict upcoming workload on the data center at
time instance n + 1.
Many researches are conducted in the literature. In [1],

a host is considered as overloaded if:

PFRU × s = 1 (2)

Where s is the safety parameter similarly to the one of
equation(1) and PFRU is the Predicted Future Resource
Utilisation.
Markov-model prediction method is proposed in [5]

where the authors designed a MadMCHD (Median Abso-
lute Deviation Markov CHain Detection) algorithm that
detects the future load state among : Overloaded, Normal
and Under-loaded states. If the overloaded or underloaded
state is detected for the future load, the migration process
is triggered.
The ARIMA (Autoregression Integrated Moving Aver-

age) model and its improved versions are one of the most

widely used technique for resource demand prediction in
cloud computing [6][7][8]. Chen and Wang in [9] proposed
a hybrid method for short-term host usage prediction
that combines the ensemble empirical mode decomposi-
tion (EEMD), runs test (RT) and ARIMA. The non-
stationary host usage is decomposed into relatively stable
intrinsic mode fonctions, using the EEMD method, and
the ARIMA is used to predict the future value of each
component. The result model involves a better time and
error prediction compared to the ARIMA baseline.
Another relevant type of techniques for host workload

prediction includes neural and deep learning methods
[10][11]. The authors in [12] proposed an adaptive two-
stage multi-neural network model (ATSMNN), based on
artificial neural networks (ANNs), which is composed of
one classification model that is trained to classify the work-
load into two categories. Then, two prediction NN models
are used to predict the workload according to the identified
category from the first stage. The obtained results show a
more accurate prediction compared to ARIMA, LR, and
NN.

III. proposed model

As it was mentioned in equation (2), a host-overload
detection decision depends on two elements: the predicted
future resource utilization and the safety parameter. In
contrast to the existing workload prediction methods
which rely on a fixed safety parameter, our model considers
a dynamic one.
The workload prediction is performed using a neural

network (NN) trained on each VM historical utilization.
Then, the predicted host usage is estimated by summing
up the predicted values of its VMs. To make this prediction
more confident, the safety parameter is designed, based
on Markov Model, to take into account only the historical
data of the current host.

A. Neural network model for CPU-usage prediction
Several steps are involved in using neural networks for

CPU-usage prediction. The neural network is trained and
evaluated in an off-line mode, and then is used in a live
prediction. The training and evaluation steps include:
1) The generation of the training data base: based on
the sliding window technique, the VMs historical
CPU-usage is fragmented into input and target data.
For a given, T-length VM historical vector, vh =
{cpu1, cpu2,, cpun, cpun+1, ...cpuT } and a window
slide of size n, the neural network input and target
data are structured as follows:

X =

⎡
⎢⎢⎢⎢⎣

Cpu1 Cpu2 ... Cpun

Cpu2 Cpu3 ... Cpun+1
.
.

CpuT −n CpuT −n ... CpuT −1

⎤
⎥⎥⎥⎥⎦

(3)

Y =

⎡
⎢⎢⎢⎢⎣

Cpun+1
Cpun+2

.

.
CpuT

⎤
⎥⎥⎥⎥⎦

(4)

The window slide size is fixed through a set of
experiments.

2) The training of the neural network: our model is
composed of 4 layers, an input layer, two hidden
layers, and an output layer. The number of neurons
is fixed to one for the output layer, while it is adapted
to windows size in the input layer, and fixed to 200
in the case of the hidden one. The ReLu (Rectified
Linear Unit activation) activation function [13] is
used in each node, and the Adam optimizer [13] is
employed to adapt the estimation of gradient descent
training algorithm.

3) The evaluation of the trained neural network : the
prediction accuracy is evaluated using the root of
mean squared error (RMSE) metric:

RMSE =

√√√√ 1
m

m∑
i=1
(yi − ŷi)2 (5)

Where yi and ŷi are the actual and predicted work-
loads. As the RMSE value is close to zero, the
predicted values are close to the real values.

Once the neural network has been trained and evalu-
ated, it will be used within the overloaded-host detection
algorithm (Algorithm.1). This latter will be run periodi-
cally to analyze the workload of all the hosts across the
data center. The algorithm uses the neural network model
(line 3) to predict the future utilization for each VM on
the input host. This prediction is then normalized (line
4) relatively to the total CPU capacity of the current VM
and the target host. The algorithm gets the predicted host
utilization by summing up the normalized prediction of
all its VM (line 5), and then multiplies the sum by the
safety parameter s (line 7) to be more prudent about the
SLA violation. Finally, the overloaded decision is taken
by checking if the future host utilization exceeds the total
CPU on the host (line 8).

B. Markov Model for safety parameter prediction
In this section, we will explain our dynamic estimation

of the safety parameter based on previously observed host
state using Markov model technique.
Our Markov model is defined as a discrete stochastic

variable Xt that can take one of two host state values,
namely, overloaded(O) and Normal load (N). According to
the Markov memoryless propriety, the evolution of state
in the future depends only on the present state and does

Algorithm .1: Overload host detection
Input: host, ANN Model, window size
Output: host overloaded decision: True or False

1 foreach vm ∈host.getVMsList() do
/* get the required vm history vector */

2 HistV ect=getV mHistory(vm, windows size)
/* get the predicted vm usage, using the

trained neural netwok */
3 PredV mUsg=ANN Mdodel.getPred(HistV ect)

/* Normalize the predicted vm usage */
4 PredV mNorm = P redV mUsg×T otalCP UCap(vm)

T otalCP UCap(host)
/* Calculate the predicted host usage */

5 PredHostUsg+=PredV mNorm
6 end
7 FinalPredHostUsg=PredHostUsg×s
8 return FinalPredHostUsg > 1

not depend on the past history as it is announced by the
following formula :

P (Xt+1|Xt, Xt−1, ..., X1) = P (Xt+1|Xt) (6)

We assume that the transition probabilities between states
are time-homogeneous, which means that they are inde-
pendent of time t:

P (Xt+1 = si|Xt = sj) = P (Xt+T +1 = si|Xt+T = sj) (7)

Where T is positive integer and sj , sj ∈ {O, N}.
For a given hot state, the goal is to compute the

probability to be on an overloaded or not overloaded state
in the next time step. To compute these probabilities, we
start by tagging the host history as it is illustrated in
Fig. 1.

0.86 0.69 0.79 0.71 0.87 0.73 1.07 1.10 0.68 0.84

State = Overloaded if CPUusage > 1
State = Normal Else

N N N N N N O O N N

Fig. 1. Tagging the host history

The probability that the next host state will be over-
loaded is calculated as follows:

ProbaNextOver = P (Xt+1 = O|Xt = sj)

= P (Xt+1 = O, Xt = sj)
P (Xt = sj)

(8)

Where sj ∈ {O, N}

TABLE I
The energy consumption at different load levels.

Host type
Host CPU usage 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant ML110 G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant ML110 G5 93.7 97 101 105 110 116 121 125 129 133 135

Based on the illustrated example of Fig 1, the future
host state is calculated as:

P (Xt+1 = O|Xt = N) = P (Xt+1 = O, Xt = N)
P (Xt = N)

= P (Xt+1 = O, Xt = N)
P (Xt = N, Xt−1 = N) + P (Xt = N, Xt−1 = O)

= 19

(9)

Similarly, the P (Xt+1 = O|Xt = O) = 1
9

and the safety parameter is then calculated, based on the
following formula :

s = 1 + ProbaNextOver (10)

The value of s in equation 10 is designed to support or
adjust the neural network prediction. This adjustment will
take into account only the historical data of the current
host. The higher is the ProbaNextOver, the greater is the
s value, and this will make the overload host detection
more prudent.
It is worthy to mention that our Markov probabilities

are calculated after collecting 10 historical observations. If
it is not the case, a fixed safety parameter is considered.

IV. PERFORMANCE EVALUATION

This section describes the simulation setup of our cloud
computing environment and the evaluation of the pro-
posed overloaded-host detection algorithm.

A. Simulation setup
Our simulation setup has been configured with

CloudSim toolkit [14], An open source and flexible Java
library that allows the simulation of VM placement and
consolidation. Our environment is modeled by a a data
center consisting of 800 physical machines. Each machine,
is modeled as one of those two types:

• HP ProLiant ML110 G4 with 2 cores of 1860 MIPS.
• HP ProLiant ML110 G5 with 2 cores of 2660 MIPS.
Table I illustrates the energy consumption of the afore-

mentioned physical machines.
We consider five types of virtual machines which cor-

respond to Amazon EC2, all of which are single-core
instances. Their specifications are shown in Table II.
For all our experiments, the real workloads provided by

the CoMon project PlanetLab are used [15]. The VM’s
traces provide the CPU utilization by thousands of VMs
located at different servers around the world.

TABLE II
VMs Caracteristiques

VM Type Large Med Small Micr Nano
Processor (MIPS) 2500 2000 1000 500 250
Memory (MB) 2048 2048 1024 1024 512
Bandwidth (GB/s) 1 1 1 1 1

The neural network is trained in off-line mode using
Python language and Keras library [16]. The obtained
model is then used for live prediction in CloudSim based
on DeepLearning4j [17] library. The neural network model
is trained with traces of 1024 VMs.
B. Performance Metrics
The performance of our proposed approach is evaluated

through the following metrics:
1) Total energy consumption (E) : in our work, this
metric is computed from realistic values provided
by the SPECpower benchmark implemented in
CloudSim. Table I illustrates the energy consump-
tion of the aforementioned physical machines used
in our simulation.

2) SLA Violations(SLAV): it measures the performance
degradation experienced by each VM. This degrada-
tion is due to overloaded hosts, and to VM migration
process. So, this metric is performed based on the
SLA violation Time per Active Host (SLATAH)
combined to the Performance Degradation due to
Migrations (PDM) as defined in the following:

SLAV = SLATAH × PDM (11)

where SLATH is computed as in Formula (12) :

SLATAH = 1
N

N∑
i=1

Tsi

Tai
(12)

Where N is defined as the total number of hosts, Tsi

is the total time during which host i has experienced
100% and caused the SLA violation, and Tai is
defined as the total time where a host i is in an active
mode.

PDM = 1
M

M∑
j=1

Cdj

Trj
(13)

Where M is the total number of VMs, Cdj is the
estimated performance degradation of the V Mj due
to migrations. This estimation is set, in our exper-
iments, to 10% of CPU utilization. Crj is the total
CPU capacity required by the V Mj over its lifetime.

TABLE III
Evaluating the ESV metric for several methods at different static safety parameter values

Safety parameter
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

MAD 1,13 1,04 0,97 0,92 0,83 0,80 0,73 0,68 0,65 0,60 0,60 0,55 0,55 0,54 0,53 0,48 0,50 0,50
IQR 0.57 0,53 0,47 0,48 0,51 0,48 0,51 0,50 0,49 0,53 0,54 0,55 0,56 0,56 0,59 0,61 0,59 0,64
LRR 1.04 0.54 0,49 0,52 0,54 0,62 0,70 0,78 0,85 0,92 0,89 0,91 0,93 0,91 0,91 0,93 0,94 0,98
NN 0.49 0.42 0.33 0,30 0.35 0,33 0,39 0,38 0,42 0.39 0,42 0,37 0,37 0,37 0.34 0,34 0,33 0,32

3) Energy Service Level Agreement Violations (ESV):
is a trad-off metric between Energy and SLAV. The
ESV calculation is as follows:

ESV = E × SLAV (14)

4) Number of Migrations: in order to avoid the addi-
tional SLAV caused by migration process, a good
consolidation approach must reduce the total num-
ber of VM migrations.

C. Results and discussions
To investigate the prediction performance of the pro-

posed neural network model, we compute the RMSE for
different historical windows length: 6, 8, 10, 12, 14. The
best RMSE value was 8,61 and it corresponds to history
window length of 10.
It is worthy to mention that for all our experiments,

the Minimum Migration Time (MMT) algorithm [1] is
used for VM selection phase whereas the VM placement is
based on the Power-Aware Best Fit Decreasing (PABFD)
algorithm [1]. Our proposed algorithm didn’t deal with
the underloaded host detection, where we kept the simple
strategy proposed by [1] and implemented in CloudSim
[14], that selects the host with the minimum CPU utiliza-
tion as underloaded.
To evaluate our proposed approach, we compare it to

the state-of-the-art algorithms proposed in [1]:
• MAD (Median Absolute Deviation)
• IQR (Inter Quartile Range)
• LRR (Local Robust Regression).

We start by evaluating the ESV metric for the afore-
mentioned algorithms at different static safety parameter
values. Table III depicts the obtained results from which
we can retain the best static safety parameter values
for each algorithm that are 2.6, 1.3, 1.3, 1.4 for MAD,
IQR, LRR, NN respectively. These values will be fixed for
next experiments. Moreover, we can conclude that the NN
model provides the best ESV value, with 0.30, compared
to the other algorithms. This result proves that a good
prediction of the near workload future yields to a better
trade-off between saving energy and avoiding the SLA
violation.
In the second part of experiments, we introduce our

proposed dynamic safety parameter based on Markov
Model. This parameter is combined to the NN model as it

is described in Section III. We call the combination result
as NN MARK model.
Fig.2 reports the resulting energy consumption, SLA

violation, the number of VM migration and the ESV
metric for each of the considered algorithms. The pro-
posed NN MARK model can reduce energy consump-
tion by 22%, 28.49%, 34.16% and 33.55% compared to
NN, LR, IQR and MAD methods, respectively, as it is
depicted by Fig. 2.a. This reduction is due to the fact
that NN MARK model does not consider a fixed safety
parameter which causes in some situation an unnecessary
migration of VMs and consequently maximizes the number
of active PMs. Fig.2.b clearly depicts that the NN MARK
approach minimizes the number of VMs migration by
about twice compared to the state-of-the art ones. The
safety parameter in the NN MARK model is dynamically
adjusted to the workload history on the current host.
This adjustment allows to decrease the safety parameter
according to the probability that the current host will
be overloaded. Therefore, it is expected that it minimizes
the energy consumption but it will cause some extra SLA
violation. As it can bee seen from Fig.2.c, our proposed
method results in slight more SLA violation compared to
the method based on NN (0.0025 vs. 0.0029). However, is
still more robust if we compare it to LR, IQR and MAD.
Finally in Fig.2.d, we compare the ESV value amongst
all the methods. It is obvious that our proposed method
outperforms in term of ESV, which proves that it presents
the best trade-off between energy minimization and QoS
maximization under a specified SLA.

V. conclusion and future works

In this article, we proposed a new host-overload detec-
tion algorithm based on combining neural network and
Markov model (NN MARK). Our proposed approach
uses the neural network to predict the near future work-
load of PMs, and the Markov model to measure the
confidence of this prediction through a dynamic safety
parameter. The obtained results show that our proposed
approach outperforms the existing solutions in terms of
the total energy consumption, SLA violation, the number
of VM migration, and the ESV metrics. As future works,
we aim to explore other machine learning techniques to
get better RMSE precision in the prediction phase. Fur-
thermore, prediction can be extended to integrate multiple
resources such as : CPU, memory and I/O bandwidth.

MAD IQR LR NN NN-MARK

100

120

140 140.08 141.37

130.16

119.33

93.07

(a)

En
er
gy
(K
w
h)

MAD IQR LRR NN NN-MARK

10

15

20
20.32 20.66 20.39

16.23

7.78

(b)

N
um
be
r
of
V
M
m
ig
ra
tio
n

×1
03

MAD IQR LR NN NN-MARK
2.5%

3%

3.5% 3.4%
3.3%

3.8%

2.5%

2.9%

(c)

SL
A

×1
0−

3

MAD IQR LR NN NN-MARK

0.3

0.4

0.5 0.48 0.47
0.49

0.3

0.27

(d)

ES
V

Fig. 2. Simulation results

References

[1] A. Beloglazov and R. Buyya, ”Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers”, Concurrency Comput.: Pract. Experience, vol. 24, no.
13, pp. 1397-1420, 2012.

[2] I. El-Taani, M.C Boukala, and S. Bouzefrane, ”Energy-Aware
VM placement based on intra-balanced resource allocation in
data centers”, 8th International Conference on Future Internet
of Things and Cloud (FiCloud),IEEE, pp. 400-405, 2021.

[3] A. Beloglazov, J. Abawajy and R. Buyya, ”Energy-aware re-
source allocation heuristics for efficient management of data
centers for cloud computing”, Future Gener. Comput. Syst., vol.
28, no. 5, pp. 755-768, 2012.

[4] S. S. Masoumzadeh and H. Hlavacs, ”An intelligent and adaptive
threshold-based schema for energy and performance efficient
dynamic VM consolidation”, Proc. Eur. Conf. Energy Efficiency
Large Scale Distrib. Syst., pp. 85-97, 2013.

[5] M.S Bani et al., ”Markov Prediction Model for Host Load
Detection and VM Placement in Live Migration”, IEEE Access,
vol. 6, pp. 7190-7205, 2018.

[6] M.C Samani and F.S Esfahani, ”PCVM.ARIMA: predictive
consolidation of virtual machines applying ARIMA method”,
The Journal of Supercomputing, Jun. 2020.

[7] K. Dmytro, T. Sergii and P. Andiy, ”Arima forecast models for
scheduling usage of resources in it-infrastructure”, Proc. 12th
Int. Sci. Techn. Conf. Computer. Sci. Inf. Technol. (CSIT), vol.
1, pp. 356-360, 2017.

[8] A. Nadjar, S. Abrishami and H. Deldari, ”Hierarchical VM
scheduling to improve energy and performance efficiency in IaaS
Cloud data centers”. 5th International Conference on Computer
and Knowledge Engineering (ICCKE), pp. 131-136, 2015.

[9] J. Chen and Y. Wang, ”A Hybrid Method for Short-Term
Host Utilization Prediction in Cloud Computing”, Journal of
Electrical and Computer Engineering, pp. 1-14, 2019.

[10] Z. Huang, J. Peng, H. Lian, J. Guo and W. Qiu, ”Deep recur-
rent model for server load and performance prediction in data
center”, Complexity, vol. 2017, no. 99, pp. 1-10, 2017.

[11] M. S. Ricardo, N. Goel, M. Zaman, R. Joshi, M. Daraghmeh
and A. Agarwal, ”Developing Machine Learning and Deep
Learning Models for Host Overload Detection in Cloud Data
Center”, 12th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON) IEEE ,pp. 0619-
0626,2021.

[12] L. Lei, et al. ”Two-stage adaptive classification cloud workload
prediction based on neural networks.” International Journal of
Grid and High Performance Computing (IJGHPC), 2019.

[13] J. Pomerat, A. Segev and R. Datta, ”On Neural Network
Activation Functions and Optimizers in Relation to Polynomial
Regression”, Proc. - IEEE Int. Conf. Big Data Big Data 2019,
no. 2, pp. 6183-6185, 2019.

[14] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya.
. ”CloudSim: A novel framework for modeling and simulation
of cloud computing infrastructures and services”.arXiv preprint
arXiv:0903.2525. 2009

[15] K. Park and V. S. Pai. CoMon”A Mostly-Scalable Monitoring
System for Planet Lab”. Operating Systems Review, vol. 40, pp.
65-74, 2006.

[16] F. Chollet ” Keras: The python deep learning library”, Available:
https://keras.io/.

[17] L.Steven, et al. ”Wekadeeplearning4j: A deep learning pack-
age for weka based on deeplearning4j” Knowledge-Based Sys-
tems,vol. 178, pp. 48-50. 2019.

