Imene El-Taani
email: eltaani.imene@usthb.dz

Mohand-Cherif Boukala
email: mboukala@usthb.dz

Samia Bouzefrane
email: samia.bouzefrane@cnam.fr

Anissa Imen

Robust approach for host-overload detection based on dynamic safety parameter

Keywords: consolidation, host-overload detection, neural network prediction, Markov model, energy-efficiency, SLA violation

Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.

I. Introduction

Finding efficient energy-aware strategies to manage resources on data centers become an important challenge for cloud providers. The energy inefficiency is due mainly to poor management of servers' resources. It has been proven [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF] that a server that runs at 10% of CPU usage, consumes more than 50% of the maximum of its power. To deal with this problem, the virtualization technology is proposed to improve resource utilization, by allowing a PM (Physical Machine) to be shared by multiple VMs (Virtual Machines).

Dynamic VM consolidation is an effective approach to improve energy efficiency while assuring an acceptable level of QoS (Quality of Service) based on SLA (Service Level Agreement). The dynamic VM consolidation process can be divided into four sub-problems:

• Overloaded-host detection: The VMs demands, in this case, exceed the available resources on the hosts. To avoid such situation, some VMs must be migrated to other hosts. • Underloaded-host detection: The host is considered as underloaded if its resource usage falls below some underload threshold. To address this problem, all VMs from uderloaded hosts must be migrated, and then the hosts are switched off to save energy.

• VMs selection: Once an overloaded host is detected, some of its VMs must be selected for migration. This migration will cost an extra consumption of CPU and network resources from source and destination hosts. So, the selection process is crucial for resource management. Different parameters can be considered to select the migrated VMs [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF]. One of the most utilized policy is MMT (Minimum Migration Time) which selects the VM that requires the minimum migration time between all the host's VMs. The migration time is calculated as a ratio of the memory assigned to the VM by the available network bandwidth. • VMs placement : The goal is to find a better allocation mapping VMs-to-PMs based on the current resources of the selected VMs. In our previous work [START_REF] El-Taani | Energy-Aware VM placement based on intra-balanced resource allocation in data centers[END_REF], we presented a VM placement algorithm based on intrabalanced resource allocation, using the cosine and Jaccard distances.

VM migration is a resource-intensive procedure that causes performance degradation of the running applications. This degradation is due to the extra consumption of CPU and bandwidth to ensure the in-cycle consolidation process. To minimize the number of migrations, it is necessary to avoid the detection of unreliable overloaded/underloaded hosts. Starting from this idea, we design a new approach for overloaded-host detection based on neural network and Markov models. The neural network is used to predict the future host CPU-requirements. The confidence of this prediction is measured through a dynamic safety parameter based on Markov model.

The remaining of this article is structured as follows : In Section II, we give an overview of the research works that deal with host's overload. In section III, we describe the principle of our new approach and its steps. Section IV presents the performance evaluation of our proposed model. Finally, conclusions and future works are presented in Section V.

II. related work on host-overload detection

In the literature, we identify two categories that are related to host-overload detection: adaptive utilization threshold and workload prediction methods.

A. Adaptive utilization threshold methods

The idea is to set an upper threshold, and consider the hots, for which the total CPU utilization exceeds this threshold, as overloaded. This upper threshold can be static as in [START_REF] Beloglazov | Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[END_REF] or dynamic [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF]. The problem with static thresholds is that they are manually adjusted, and this is unsuitable for the dynamic nature of workload. Therefore, Beloglazov and Buyya in [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF] propose a statistical utoadjustment of the upper threshold based on historical VMs utilization.

They designed two robust statistic thresholds based on the Median Absolute Deviation (MAD) and the In-terQuartile Range (IQR). The upper threshold T u is calculated as follows [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF]:

T u = 1 -s × StatisticM easure (1)
Where s is a safety parameter which defines a tradeoff between energy consumption and SLA violation. The higher is s, the lower is the SLA violation, but the higher is the energy consumption.

StatisticM easure is the MAD or the IQR method.

In [START_REF] Masoumzadeh | An intelligent and adaptive threshold-based schema for energy and performance efficient dynamic VM consolidation[END_REF], authors propose an intelligent and adaptive upper threshold based on Dynamic Fuzzy Q-learning (DFQL). They design an algorithm that interacts with some characteristics of host environment to learn when to decide that this host is overloaded. The main drawback of this method is that it takes a long time until the convergence of the learning procedure.

B. Workload prediction methods

Workload prediction methods attempt to anticipate the resource demands by applying time series and machine learning approaches to predict the future resource usage. Effective prediction of resources can allow a load balancing and will help to avoid the SLA violation.

The predictive model extracts patterns from actual workload and analyzes the n previous workload values in order to predict upcoming workload on the data center at time instance n + 1.

Many researches are conducted in the literature. In [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF], a host is considered as overloaded if:

P F RU × s = 1 (2
)
Where s is the safety parameter similarly to the one of equation [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF] and PFRU is the Predicted Future Resource Utilisation.

Markov-model prediction method is proposed in [START_REF] Bani | Markov Prediction Model for Host Load Detection and VM Placement in Live Migration[END_REF] where the authors designed a MadMCHD (Median Absolute Deviation Markov CHain Detection) algorithm that detects the future load state among : Overloaded, Normal and Under-loaded states. If the overloaded or underloaded state is detected for the future load, the migration process is triggered.

The ARIMA (Autoregression Integrated Moving Average) model and its improved versions are one of the most widely used technique for resource demand prediction in cloud computing [START_REF] Samani | PCVM.ARIMA: predictive consolidation of virtual machines applying ARIMA method[END_REF][7] [START_REF] Nadjar | Hierarchical VM scheduling to improve energy and performance efficiency in IaaS Cloud data centers[END_REF]. Chen and Wang in [START_REF] Chen | A Hybrid Method for Short-Term Host Utilization Prediction in Cloud Computing[END_REF] proposed a hybrid method for short-term host usage prediction that combines the ensemble empirical mode decomposition (EEMD), runs test (RT) and ARIMA. The nonstationary host usage is decomposed into relatively stable intrinsic mode fonctions, using the EEMD method, and the ARIMA is used to predict the future value of each component. The result model involves a better time and error prediction compared to the ARIMA baseline.

Another relevant type of techniques for host workload prediction includes neural and deep learning methods [START_REF] Huang | Deep recurrent model for server load and performance prediction in data center[END_REF] [START_REF] Ricardo | Developing Machine Learning and Deep Learning Models for Host Overload Detection in Cloud Data Center[END_REF]. The authors in [START_REF] Lei | Two-stage adaptive classification cloud workload prediction based on neural networks[END_REF] proposed an adaptive twostage multi-neural network model (ATSMNN), based on artificial neural networks (ANNs), which is composed of one classification model that is trained to classify the workload into two categories. Then, two prediction NN models are used to predict the workload according to the identified category from the first stage. The obtained results show a more accurate prediction compared to ARIMA, LR, and NN.

III. proposed model

As it was mentioned in equation (2), a host-overload detection decision depends on two elements: the predicted future resource utilization and the safety parameter. In contrast to the existing workload prediction methods which rely on a fixed safety parameter, our model considers a dynamic one.

The workload prediction is performed using a neural network (NN) trained on each VM historical utilization. Then, the predicted host usage is estimated by summing up the predicted values of its VMs. To make this prediction more confident, the safety parameter is designed, based on Markov Model, to take into account only the historical data of the current host.

A. Neural network model for CPU-usage prediction

Several steps are involved in using neural networks for CPU-usage prediction. The neural network is trained and evaluated in an off-line mode, and then is used in a live prediction. The training and evaluation steps include:

1) The generation of the training data base: based on the sliding window technique, the VMs historical CPU-usage is fragmented into input and target data. For a given, T-length VM historical vector, v h = {cpu 1 , cpu 2 ,, cpu n , cpu n+1 , ...cpu T } and a window slide of size n, the neural network input and target data are structured as follows:

X = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ Cpu 1 Cpu 2 ... Cpu n Cpu 2 Cpu 3 ... Cpu n+1 . . Cpu T -n Cpu T -n ... Cpu T -1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (3) Y = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ Cpu n+1 Cpu n+2 . . Cpu T ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (4)
The window slide size is fixed through a set of experiments.

2) The training of the neural network: our model is composed of 4 layers, an input layer, two hidden layers, and an output layer. The number of neurons is fixed to one for the output layer, while it is adapted to windows size in the input layer, and fixed to 200 in the case of the hidden one. The ReLu (Rectified Linear Unit activation) activation function [START_REF] Pomerat | On Neural Network Activation Functions and Optimizers in Relation to Polynomial Regression[END_REF] is used in each node, and the Adam optimizer [START_REF] Pomerat | On Neural Network Activation Functions and Optimizers in Relation to Polynomial Regression[END_REF] is employed to adapt the estimation of gradient descent training algorithm.

3) The evaluation of the trained neural network : the prediction accuracy is evaluated using the root of mean squared error (RMSE) metric:

RM SE = 1 m m i=1 (y i -ŷi) 2 (5)
Where y i and ŷi are the actual and predicted workloads. As the RMSE value is close to zero, the predicted values are close to the real values. Once the neural network has been trained and evaluated, it will be used within the overloaded-host detection algorithm (Algorithm.1). This latter will be run periodically to analyze the workload of all the hosts across the data center. The algorithm uses the neural network model (line 3) to predict the future utilization for each VM on the input host. This prediction is then normalized (line 4) relatively to the total CPU capacity of the current VM and the target host. The algorithm gets the predicted host utilization by summing up the normalized prediction of all its VM (line 5), and then multiplies the sum by the safety parameter s (line 7) to be more prudent about the SLA violation. Finally, the overloaded decision is taken by checking if the future host utilization exceeds the total CPU on the host (line 8).

B. Markov Model for safety parameter prediction

In this section, we will explain our dynamic estimation of the safety parameter based on previously observed host state using Markov model technique.

Our Markov model is defined as a discrete stochastic variable X t that can take one of two host state values, namely, overloaded(O) and Normal load (N). According to the Markov memoryless propriety, the evolution of state in the future depends only on the present state and does

P (X t+1 |X t , X t-1 , ..., X 1) = P (X t+1 |X t) (6)
We assume that the transition probabilities between states are time-homogeneous, which means that they are independent of time t:

P (X t+1 = s i |X t = s j) = P (X t+T +1 = s i |X t+T = s j) (7)
Where T is positive integer and s j , s j ∈ {O, N }. For a given hot state, the goal is to compute the probability to be on an overloaded or not overloaded state in the next time step. To compute these probabilities, we start by tagging the host history as it is illustrated in Fig. 1. 0.86 0.69 0.79 0.71 0.87 0.73 1.07 1.10 0.68 0.84

State = Overloaded if CP U usage > 1 State = N ormal Else N N N N N N O O N N Fig. 1.

Tagging the host history

The probability that the next host state will be overloaded is calculated as follows:

P robaN extOver = P (X t+1 = O|X t = s j) = P (X t+1 = O, X t = s j) P (X t = s j) (8)
Where s j ∈ {O, N }

P (X t+1 = O|X t = N) = P (X t+1 = O, X t = N) P (X t = N) = P (X t+1 = O, X t = N) P (X t = N, X t-1 = N) + P (X t = N, X t-1 = O) = 1 9 (9)
Similarly, the

P (X t+1 = O|X t = O) = 1 9
and the safety parameter is then calculated, based on the following formula :

s = 1 + P robaN extOver (10
)
The value of s in equation 10 is designed to support or adjust the neural network prediction. This adjustment will take into account only the historical data of the current host. The higher is the ProbaNextOver, the greater is the s value, and this will make the overload host detection more prudent.

It is worthy to mention that our Markov probabilities are calculated after collecting 10 historical observations. If it is not the case, a fixed safety parameter is considered.

IV. PERFORMANCE EVALUATION

This section describes the simulation setup of our cloud computing environment and the evaluation of the proposed overloaded-host detection algorithm.

A. Simulation setup

Our simulation setup has been configured with CloudSim toolkit [START_REF] Calheiros | CloudSim: A novel framework for modeling and simulation of cloud computing infrastructures and services[END_REF], An open source and flexible Java library that allows the simulation of VM placement and consolidation. Our environment is modeled by a a data center consisting of 800 physical machines. Each machine, is modeled as one of those two types:

• HP ProLiant ML110 G4 with 2 cores of 1860 MIPS.

• HP ProLiant ML110 G5 with 2 cores of 2660 MIPS. Table I illustrates the energy consumption of the aforementioned physical machines.

We consider five types of virtual machines which correspond to Amazon EC2, all of which are single-core instances. Their specifications are shown in Table II.

For all our experiments, the real workloads provided by the CoMon project PlanetLab are used [START_REF] Park | CoMon"A Mostly-Scalable Monitoring System for Planet Lab[END_REF]. The VM's traces provide the CPU utilization by thousands of VMs located at different servers around the world. The neural network is trained in off-line mode using Python language and Keras library [START_REF] Chollet | Keras: The python deep learning library[END_REF]. The obtained model is then used for live prediction in CloudSim based on DeepLearning4j [START_REF] Steven | Wekadeeplearning4j: A deep learning package for weka based on deeplearning4j[END_REF] library. The neural network model is trained with traces of 1024 VMs.

B. Performance Metrics

The performance of our proposed approach is evaluated through the following metrics:

1) Total energy consumption (E) : in our work, this metric is computed from realistic values provided by the SPECpower benchmark implemented in CloudSim. Table I illustrates the energy consumption of the aforementioned physical machines used in our simulation. 2) SLA Violations(SLAV): it measures the performance degradation experienced by each VM. This degradation is due to overloaded hosts, and to VM migration process. So, this metric is performed based on the SLA violation Time per Active Host (SLATAH) combined to the Performance Degradation due to Migrations (PDM) as defined in the following:

SLAV = SLAT AH × P DM (11
)
where SLATH is computed as in Formula (12) :

SLAT AH = 1 N N i=1 T si T ai (12
)
Where N is defined as the total number of hosts, T si is the total time during which host i has experienced 100% and caused the SLA violation, and T ai is defined as the total time where a host i is in an active mode.

P DM = 1 M M j=1 C dj T rj (13
)
Where M is the total number of VMs, C dj is the estimated performance degradation of the V Mj due to migrations. This estimation is set, in our experiments, to 10% of CPU utilization. C rj is the total CPU capacity required by the V M j over its lifetime.

ESV = E × SLAV (14)
4) Number of Migrations: in order to avoid the additional SLAV caused by migration process, a good consolidation approach must reduce the total number of VM migrations.

C. Results and discussions

To investigate the prediction performance of the proposed neural network model, we compute the RMSE for different historical windows length: 6, 8, 10, 12, 14. The best RMSE value was 8,61 and it corresponds to history window length of 10.

It is worthy to mention that for all our experiments, the Minimum Migration Time (MMT) algorithm [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF] is used for VM selection phase whereas the VM placement is based on the Power-Aware Best Fit Decreasing (PABFD) algorithm [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF]. Our proposed algorithm didn't deal with the underloaded host detection, where we kept the simple strategy proposed by [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF] and implemented in CloudSim [START_REF] Calheiros | CloudSim: A novel framework for modeling and simulation of cloud computing infrastructures and services[END_REF], that selects the host with the minimum CPU utilization as underloaded.

To evaluate our proposed approach, we compare it to the state-of-the-art algorithms proposed in [START_REF] Beloglazov | Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[END_REF]:

• MAD (Median Absolute Deviation) • IQR (Inter Quartile Range) • LRR (Local Robust Regression).
We start by evaluating the ESV metric for the aforementioned algorithms at different static safety parameter values. Table III depicts the obtained results from which we can retain the best static safety parameter values for each algorithm that are 2.6, 1.3, 1.3, 1.4 for MAD, IQR, LRR, NN respectively. These values will be fixed for next experiments. Moreover, we can conclude that the NN model provides the best ESV value, with 0.30, compared to the other algorithms. This result proves that a good prediction of the near workload future yields to a better trade-off between saving energy and avoiding the SLA violation.

In the second part of experiments, we introduce our proposed dynamic safety parameter based on Markov Model. This parameter is combined to the NN model as it is described in Section III. We call the combination result as NN MARK model. Fig. 2 reports the resulting energy consumption, SLA violation, the number of VM migration and the ESV metric for each of the considered algorithms. The proposed NN MARK model can reduce energy consumption by 22%, 28.49%, 34.16% and 33.55% compared to NN, LR, IQR and MAD methods, respectively, as it is depicted by Fig. 2.a. This reduction is due to the fact that NN MARK model does not consider a fixed safety parameter which causes in some situation an unnecessary migration of VMs and consequently maximizes the number of active PMs. Fig. 2.b clearly depicts that the NN MARK approach minimizes the number of VMs migration by about twice compared to the state-of-the art ones. The safety parameter in the NN MARK model is dynamically adjusted to the workload history on the current host. This adjustment allows to decrease the safety parameter according to the probability that the current host will be overloaded. Therefore, it is expected that it minimizes the energy consumption but it will cause some extra SLA violation. As it can bee seen from Fig. 2.c, our proposed method results in slight more SLA violation compared to the method based on NN (0.0025 vs. 0.0029). However, is still more robust if we compare it to LR, IQR and MAD. Finally in Fig. 2.d, we compare the ESV value amongst all the methods. It is obvious that our proposed method outperforms in term of ESV, which proves that it presents the best trade-off between energy minimization and QoS maximization under a specified SLA.

V. conclusion and future works

In this article, we proposed a new host-overload detection algorithm based on combining neural network and Markov model (NN MARK). Our proposed approach uses the neural network to predict the near future workload of PMs, and the Markov model to measure the confidence of this prediction through a dynamic safety parameter. The obtained results show that our proposed approach outperforms the existing solutions in terms of the total energy consumption, SLA violation, the number of VM migration, and the ESV metrics. As future works, we aim to explore other machine learning techniques to get better RMSE precision in the prediction phase. Furthermore, prediction can be extended to integrate multiple resources such as : CPU, memory and I/O bandwidth.

Fig. 2 .

 2 Fig. 2. Simulation results

 Algorithm .1: Overload host detection Input: host, ANN Model, window size Output: host overloaded decision: True or False 1 foreach vm ∈host.getVMsList() do

		/* get the required vm history vector	*/
	2	HistV ect=getV mHistory(vm, windows size)
		/* get the predicted vm usage, using the
		trained neural netwok	*/
	3	P redV mU sg=AN N M dodel.getP red(HistV ect)
		/* Normalize the predicted vm usage	*/
	4	P redV mN orm = P redV mU sg×T otalCP U Cap(vm) T otalCP U Cap(host)
		/* Calculate the predicted host usage	*/
	5	P redHostU sg+=P redV mN orm
	6 end
	7 F inalP redHostU sg=P redHostU sg×s
	8 return F inalP redHostU sg > 1
	not depend on the past history as it is announced by the
	following formula :

TABLE I

 I The energy consumption at different load levels.

	Host type	Host CPU usage	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	HP ProLiant ML110 G4	86	89.4	92.6	96	99.5	102	106	108	112	114	117
	HP ProLiant ML110 G5	93.7	97	101	105	110	116	121	125	129	133	135
	Based on the illustrated example of Fig 1, the future								
	host state is calculated as:											

TABLE III

 III Evaluating the ESV metric for several methods at different static safety parameter values

									Safety parameter								
		1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8
	MAD	1,13	1,04	0,97	0,92	0,83	0,80	0,73	0,68	0,65	0,60	0,60	0,55	0,55	0,54	0,53	0,48	0,50	0,50
	IQR	0.57	0,53	0,47	0,48	0,51	0,48	0,51	0,50	0,49	0,53	0,54	0,55	0,56	0,56	0,59	0,61	0,59	0,64
	LRR	1.04	0.54	0,49	0,52	0,54	0,62	0,70	0,78	0,85	0,92	0,89	0,91	0,93	0,91	0,91	0,93	0,94	0,98
	NN	0.49	0.42	0.33	0,30	0.35	0,33	0,39	0,38	0,42	0.39	0,42	0,37	0,37	0,37	0.34	0,34	0,33	0,32
	3) Energy Service Level Agreement Violations (ESV):										
	is a trad-off metric between Energy and SLAV. The										
	ESV calculation is as follows: