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) is used to construct automatically such clusters. The procedure is data driven and depends on the asymptotic level of the test. We illustrate our clustering algorithm via numerical studies and through two real datasets: a panel of financial datasets and insurance dataset of losses and allocated loss adjustment expense.

INTRODUCTION AND MOTIVATIONS

The knowledge of the companies that dominate the capitalization of international stock markets and their classification can allow portfolio managers a much more active strategy and a better diversification of risks. In particular, the knowledge of their dependence structure makes it possible to group together various portfolios with similar risks.

In this paper, we propose a data-driven strategy to regroup portfolios or risks having the same dependence structure. Their similarities are measured through their copulas and our procedure is based on simultaneous multiple comparisons. The implementation of our clustering procedure therefore requires a multiple comparison method that has been introduced in Ngounou- [START_REF] Ngounou-Bakam | Nonparametric estimation of copulas and copula densities by orthogonal projections[END_REF]. This K-sample test is a data-driven procedure with a chi-square limit distribution making the method very fast and very easy to implement. The algorithm is based on this test procedure and is also data-driven, depending only on the asymptotic level of the test. The basic idea of this algorithm is to use the test statistics to measure the proximity between populations. If the statistics are close, it is proposed to form a cluster with their associated populations and the test procedure accepts or rejects the validity of the cluster.

Our method applies to K(≥ 2) iid sample observed on K populations, eventually paired. This is the case in the considered problem of portfolios. Our approach differs from recent based copulas clustering algorithms as for instance: the clustering methods which rely on hierarchical Kendall copula with Archimedean clusters (see [START_REF] Su | Modelling hierarchical clustered censored data with the hierarchical kendall copula[END_REF], [START_REF] Joe | Multivariate models for dependent clusters of variables with conditional independence given aggregation variables[END_REF], among others); a clustering algorithm based on the likelihood of the copula, called CoClust, which has been introduced in Di Lascio and [START_REF] Lascio | A copula-based algorithm for discovering patterns of dependent observations[END_REF] and further developed and implemented in Di Lascio and [START_REF] Lascio | CoClust: copula based cluster analysis[END_REF]; Di Lascio (2018); Di Lascio and [START_REF] Marta | Clustering dependent observations with copula functions[END_REF]; the clustering algorithms where an iid sample from a finite mixture model is usually considered (see for instance [START_REF] Kosmidis | Model-based clustering using copulas with applications[END_REF]; [START_REF] Zhang | Mixtures of gaussian copula factor analyzers for clustering high dimensional data[END_REF] and reference therein); the approach which relies on time-varying copula-based estimators via minimization of the value-at-risk (see [START_REF] De | Dynamic tail dependence clustering of financial time series[END_REF]) and the copula-based fuzzy clustering algorithm for spatial time series, called COFUST (see [START_REF] Disegna | Copula-based fuzzy clustering of spatial time series[END_REF]). All these previous works concern parametric copulas and classify each individual and not populations.

A numerical study first shows the good behaviour of the proposed clustering algorithm. We then apply the procedure on financial assets [ a detailler un peu le ou les jeux de donnees ici].

The paper is organized as follows: in Section 2 we set up notation and we recall the main result of the the test statistic presented in Ngounou-Bakam and Pommeret (2022), making the paper self-contained. Section 3 presents the clustering algorithm. Section 4 is devoted to the numerical study and Section 5 contains two real-life illustrations.

NOTATION AND TEST PROCEDURE

Let briefly recall here the test procedure proposed in [START_REF] Ngounou-Bakam | K-sample test for equality of copulas[END_REF]. Let X = (X 1 , • • • , X p ) be a p-dimensional continuous random variable with joint probability distribution function (pdf) F X that can be expressed in terms of copula as

F X (x 1 , • • • , x p ) = C(F 1 (x 1 ), • • • , F p (x p )), (1) 
where F j denotes the marginal pdf of X j , and C denotes the copula associated to X. Writing

U j = F j (X j ), for j = 1, • • • , p,
we have for all u j ∈ (0, 1)

C(u 1 , • • • , u p ) = F U (u 1 , • • • , u p ), with U = (U 1 , • • • , U p )
, and deriving this expression p times with respect to u 1 , • • • , u p , we get an expression of the density copula

c(u 1 , • • • , u p ) = f U (u 1 , • • • , u p ), (2) 
where f U denotes the joint density of the vector U. Write L = {L n ; n ∈ N} the set of orthogonal Legendre polynomials (see Appendix ?? for more detail). Write j = (j 1 , • • • , j p ) ∈ N p and define

ρ j 1 ,••• ,jp = E(L j 1 (U 1 ) • • • L jp (U p )), (3) 
the j-th copula coefficient associated to U. Note that ρ 0 = 1 where 0 = (0, • • • , 0), and ρ j = 0 if only one element of j is non null. The sequence (ρ j ) j∈N p * permits to summarize the copula and we propose a clustering procedure based on the distances between these coefficients.

In this way assume that we observe K iid samples, possibly paired, with associated copulas denoted by

C 1 , • • • , C K .
Our aim is to regroup populations having the same copula coefficients, that is, satisfying the following equality

H 0 : ρ (i 1 ) j = • • • = ρ (i k ) j , ∀j ∈ N p * , (4) 
where i 1 , • • • , i k are the label of the tested populations and ρ (i k ) stands for the copula coefficients associated to

C i k . Clearly if C 1 = • • • = C K then H 0 is immediately satisfied.
In order to implement our clustering algorithm we propose to use the statistic based on the estimation of these quantities proposed in Ngounou-Bakam and Pommeret (2022). We denote by

X (1) = (X (1) 1 , • • • , X (1) p ), • • • , X (K) = (X (K) 1 , • • • , X (K) p ),
the K continuous random variables associated to the K populations, with joint cumulative distribution function (cdf) ) , and with associated copulas

F (1) , • • • , F (K
C 1 , • • • , C K , respectively. Assume that we observe K iid samples from X (1) , • • • , X (K) , possibly paired, denoted by (X (1) i,1 , • • • , X (1) 
i,p ) i=1,••• ,n 1 , • • • , (X (K) i,1 , • • • , X (K) i,p ) i=1,••• ,n K .
We assume that

for all 1 ≤ k < ℓ ≤ K, n k /(n k + n ℓ ) → a kℓ , with 0 < a kℓ < ∞. (5) 
We will denote by

F (k) j
the marginal cdf of the jth component of X (k) and we write

U (k) i,j = F (k) j (X (k) i,j ).
For testing (4) we first estimate the copula coefficients by

ρ (k) j 1 •••jp = 1 n k n k i=1 L j 1 ( U (k) i,1 ) • • • L jp ( U (k) i,p )), (6) 
where

U (k) i,j = F (k) j (X (k) i,j ),
and where F denotes the empirical distribution functions associated to F . Considering the null hypothesis H 0 as expressed in (4), the test procedure is based on the sequences of differences

r (ℓ,m) j := ρ (ℓ) j -ρ (m) j , for 1 ≤ ℓ ≤ m ≤ K, and j ∈ N p * ,
with the convention that r (ℓ,m) j

= 0 when only one element of j is different of zero. In order to select automatically the number of copula coefficients, for any vector j = (j 1 , • • • , j p ) we denote by

∥j∥ 1 = |j 1 | + • • • + |j p |,
its L 1 norm and for any integer d > 1 we write S(d) = {j ∈ N p ; ∥j∥ 1 = d and there exists k ̸ = k ′ such that j k > 0 and j k ′ > 0}.

The set S(d) contains all non null positive integers j = (j 1 , • • • , j p ) with norm d and such that j k < d for all k = 1, • • • , p.

We also introduce the following set of indexes:

V(K) = {(ℓ, m) ∈ N 2 ; 1 ≤ ℓ < m ≤ K}.
Clearly V(K) contains v(K) = K(K -1)/2 elements which represent all the pairs of populations that we want to compare.

We construct an embedded series of statistics as follows

V 1 = V (1,2) D(n) , V 2 = V (1,2) D(n) + V (1,3) D(n) , • • • , V v(K) = V (1,2) D(n) + • • • + V (K-1,K) D(n) ,
or equivalently,

V k = (ℓ,m)∈V(K);rank V (ℓ,m)≤k V (ℓ,m) D(n) ,
where

V (ℓ,m) k = n j∈H(k) (r (ℓ,m) j ) 2 (7) 
where the set H(k) contains the k first integers of N p with respect to the order of S(d) and where

D(n) := min argmax 1≤k≤d(n) (V (1,2) k -kq n ) , (8) 
where q n and d(n) tend to +∞ as n → +∞, kq n being a penalty term which penalizes the embedded statistics proportionally to the number of copula coefficients used. Moreover, we have the following relation: for all k ≥ 1 and j

= 1, • • • , c(k + 1) V (1,2) c(1)+c(2)+•••+c(k)+j = T (1,2) k+1,j , were c(k) denotes the cardinal of S = (⌈) with the convention c(1) = 0. We have V 1 < • • • < V v(K)
. The first statistic V 1 compares the first two populations 1 and 2. The second statistic V 2 compares the populations 1 and 2, and, in addition, the populations 1 and 3. And so on. To choose automatically the appropriate number k we introduce the following penalization procedure, mimicking the Schwarz criteria procedure [START_REF] Schwarz | Estimating the dimension of a model[END_REF]:

s(n) = min argmax 1≤k≤v(K) V k -kp n . (9) 
We make the following assumption:

(A) d(n) (p+4) = o(q n ), (A') d(n) (p+4) = o(p n ),
and we recall here main result of Ngounou-Bakam and Pommeret (2022).

Theorem 2.1. Assume that (A) and (A') hold. Then under H 0 , s(n) converges in probability towards 1 as n → +∞. Moreover,

V s(n) / σ 2 (1, 2)) converges in law towards a χ 2 1 distribution, where σ 2 (1, 2) is given in Appendix.
It is important to note that if p n = o(n) then the test is consistent against alternative where at least one copula coefficient differs between two copulas.

CLUSTERING PROCEDURE

Clustering principle

In the sequel we propose to adapt the previous test procedure to obtain a data-driven method to cluster K populations into N subgroups characterized by a common dependence structure. The number N of clusters is unknown and will be automatically chosen by the previous procedure and validated by our testing method.

More precisely, assume that we observe K iid samples from K populations, possibly paired. The clustering algorithm starts by choosing the two populations that are the most similar in terms of dependence structure, through their copulas.

In this way, it chooses the smaller two-sample statistic. If the equality of both associated copulas is accepted these two populations form the first cluster. Then the algorithm proposes the closer population of this cluster, that is the smaller statistic having a common population index. While the test accepts the simultaneous equality of the copulas, the cluster growths. If the last test is rejected then the cluster is closed and the last rejected population forms a new cluster. One can iterate this several times until every sample is associated with a cluster.

Clustering algorithm

We can summarize the clustering algorithm as follows:

Algorithm: K-sample copulas clustering

1 Initialization: c = 1. Set S = {C 1 , • • • , C K } and S 0 = ∅ ; 2 Select {ℓ ⋆ , m ⋆ } = argmin{V (ℓ,m)) D(n) ; ℓ ̸ = m ∈ S \ c k=1 S k-1 } ; 3 Test H0 between all ρ (ℓ ⋆ ) j and ρ (m ⋆ ) j ; 4 if H0 is not rejected then 5 S 1 = {C ℓ ⋆ , C m ⋆ }; 6 else 7 STOP. There is no cluster. 8 end 9 while S \ c k=1 S k ̸ = ∅ do 10 Select {j ⋆ } = argmin{T (i,j) D(n) ; i ∈ S c , j ∈ S \ c k=1 S k };
11 Test H0 the simultaneous equality of all the ρ (i) j , i ∈ S c and ρ

(j ⋆ ) j ; 12 if H0 not rejected then 13 S c = S c {C j ⋆ }; 14 else 15 S c+1 = {C j ⋆ }; 16 c = c + 1 ; 17 end 18 end
This clustering procedure can solve several complex problems in a very short time and is useful in practice, particularly in risk management and more generally in the world of actuarial science and finance markets by making it possible to detect mutualizable risks and not mutualizable; but also to build a well-diversified portfolio.

Tuning the algorithm

As evoked in Remark ?? we can choose the penalty q n = p n = α log(n). We fix α = 1 in the proofs of this paper for simplicity. But in practice we can empirically improve this tuning factor by using the following data-driven procedure:

• Assume we observe K populations.

• We merge all populations to get only one (larger) population.

• Split randomly this population into K ′ > 2 sub-populations.

• Clearly these K ′ sub-populations have the same copula and then the null hypothesis H0 is satisfied.

• We then approximate numerically the value of the factor α > 0 such that the selection rule retains the first component, that is s(n) = 1. From Theorem ?? this is the asymptotic expected value under the null.

• We can repeat N times such a procedure to get N K ′ -sample under the null.

Finally we fix α = min{α > 0; such that s(n) = 1 for the previous N selection rules}.

In our simulation we fixed arbitrarily K ′ = 3, which seems to give a very correct empirical level. Note that this transformation only slightly modified the empirical results.

Concerning the value of d(n), the condition (A) is an asymptotic condition and from our experience choosing d(n) = 3 or 4 is enough to have a very fast procedure which detects alternatives such that copulas differ by a coefficient with a norm less or equal to d(n).

NUMERICAL STUDY OF THE ALGORITHM

Simulation design

In order to evaluate the performance of the algorithm, we consider the following classical copulas families: the Gaussian copulas, the Student copulas, the Gumbel copulas, the Frank copulas, the Clayton copulas and the Joe copulas which we denote for hereafter Gaus, Stud, Gumb, Fran, Clay and Joe respectively. For the explicit functional forms and properties of these copulas we refer the reader to Nelsen (2007) and ?. For each copula C, the sample is generated with a given kendall's τ parameter, and we denote this model briefly by C(τ ). When τ is close to zero the variables are close to the independence. Conversely, if τ is close to 1 the dependence becomes linear.

Clustering simulation

We consider the following designs:

• A100: n = 100, p = 3, K = 6 populations with 3 groups C 1 = Gumb(0.8)

and C 2 = C 3 = Gaus(0.2) and C 4 = C 5 = C 6 = Clay(0.9)

• A500 = A100 with n = 500

• B100: n = 100, p = 5, K = 4 different populations with 4 groups C 1 = Gumb(0.8), C 2 = Gaus(0.2), C 3 = Clay(0.9), C 4 = Gumb(1)

• B500 = B100 with n = 500

• C100: n = 100, p = 4, K = 5 populations with one group 5) = Clay(0.9)

C (1) = C (2) = C (3) = C (4) = C (
• C500 = C100 with n = 500

• D100: n = 100, p = 2, K = 10 populations with two unbalanced groups

C 1 = C 2 = • • • = C 9 =
Clay(0.9) and C 10 = Gumb(0.9)

• D500 = D100 with n = 500

We applied the clustering algorithm described in Section 3. The results are summarized below:

• Results for A100:

-In 82.5 % of cases the algorithm found 3 groups. In such cases, 74 % of the time it was the 3 correct groups.

-In 11.4 % of cases the algorithm found 4 groups -In 5 % of cases the algorithm found 2 groups -In 0.1 % of cases the algorithm found 5 groups.

-Note that the first group (with the Gumbel copula) was well identified 99 % of the time.

• Results for A500: The three groups were well identified in 92 % of cases. In other cases the algorithm essentially obtained 4 groups (merging populations of the second and the third group).

• Results for B100: In 78 % of cases the null hypothesis was rejected and we obtained 4 different groups. In other cases the algorithm merged two groups (Clayton with Normal or Clayton with Gumbel) and then proposed 3 clusters.

• Results for C100: In 70 % of cases the algorithm found one group. In other cases it gave two groups.

• Results for D100: More than 80% of cases the algorithm found the 2 correct groups. In other cases the algorithm found 3 group obtained by a rejection of one of the 9 similar populations. 

REAL DATASETS

Financial data

The knowledge of the companies that dominate the capitalization of international stock markets and their classification can allow portfolio managers a much more active strategy and a better diversification of risks. We build 33 portfolios.

From the 500 component stocks of the S&P 500 stock market index, which are issued by 500 large capitalization companies traded on American stock exchanges, we choose in each sector following the Global Industry Classification (there exists 11 stock market sectors)

• the stocks index of the 3 most high weighted companies. We denote Sih, i = 1, • • • , 11 hereafter,

• the stocks index of the 3 companies with the middle weight. We denote

Sim, i = 1, • • • , 11 hereafter,
• the stocks index of the 3 companies with the lowest weight. We denote Siℓ, i = 1, • • • , 11 hereafter.

Table 6 presents the weight, symbol, company and sector of each selected stock index.

The data employed are weekly closing adjusted prices from January, 26 th , 2006 to December, 30 th , 2021 for a total of 825 observations. Data are available from Yahoo Finance and we consider the rate returns series by using the standard continuously compounded return formula. We note that each price of stock is expressed in the reference country currency.

The application of non-parametric tests of randomness [START_REF] Wang | Nonparametric tests for randomness[END_REF]; Cho and White (2011); Gibbons and Chakraborti (2014)) to these weekly rates of return for each of the 33 stocks in Table 6 reveals that there is no evidence that these series are not iid.

We begin by considering the populations (denoted pop in Table 6) of each group (high (h), middle (m) and lower (ℓ)).

Applying the clustering procedure with nominal level α = 5%, we obtain 6,4 and 8 clusters of group ℓ, group m and group h, respectively. The Figures 1,2 and 3 displays the dendrogram of groups (Grp.) ℓ, m and h respectively. In the three dendrogram we observe that the sector Material is isolated. Moreover at 1% level (see Figures ?? ?? and ??), the number of clusters and the elements of each cluster remain unchanged. But it is clear that moving this level is an interesting way to reduce or increase the number of clusters. By looking at the three groups, we now ask whether if there are populations in different groups of similar dependence structure. To this end, we apply the clustering algorithm to all 33 populations with 5% nominal level. We get 12 clusters of populations and the associated dendrogram is presented in Figure 4. We observe that clusters C4,C5 and C9 contain only the populations of group ℓ and clusters C8, C11 and C12 only the populations of group h.

We thus obtain a way to group stocks with the same dependence structure into homogeneous portfolios, while forcing these portfolios not to have the same behavior. This allows for risk diversification, for example. 

Insurance data

Insurance is an area in which the knowledge of the dependence structure between several portfolios can be useful in pricing particularly for risk pooling or price segmentation. As an illustration purposes, we consider the well-known example of pricing insurance contracts involving pairs of dependent variables which consist to compute the premium of a reinsurance treaty on a policy with unlimited liability, some retention level of the losses and a prorata sharing of ALAEs. ALAEs in this context are types of insurance company expenses that are specifically attributable to the settlement of individual claims such as lawyers' fees and claims investigation expenses. The database at issue is the SOA Group Medical Insurance Large Claims Database over the period 1991-92 and is available online at the web page of Society of Actuaries. The database includes more than 171,000 claims of 25, 000 or more, representing over $10 billion in total charges with information collected from 26 insurers. Each row of the database presents a summary of claims for an individual claimant in fields. Fields include diagnosis, type of coverage (HMO, PPO, Indemnity, etc.), claimant status (E-employee or D-dependent), claimant gender (M-male or F-Female) claimant age and charges split into hospital and non-hospital. We refer to [START_REF] Grazier | Group medical insurance large claims database collection and analysis[END_REF] for a detailed and thorough description of the data.

Here, we deal with the 1991 data of females, insured by a Preferred Provider Organization (PPO) plan. We split the variables losses (hospital charges) and ALAEs (other charges) by ten-year age groups shown in Applying our algorithm procedure at 5% level, we obtained four clusters and the dendogram is presented in Figure 5. It appears that the dependence structure of claim charges change over age where it shows that the status of the policy holder is irrelevant and that premiums charged to both types of individuals should be the same if the size of the observations are substantially identical. 
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 12 Figure 1: Clustering of group ℓ at 5% level. c 1 , • • • , c 6 denote the clusters and s 1 , • • • , s 11 are defined in Table6.
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	1	2	3	4	5	6	1	2	3	4	5	6
	1 100 0	0	0	0	0	1 100 0	0	0	0	0
	2	100 100 0	0	0	2	100 73 29 30 29
	3		100 0	0	0	3		100 22 25 21
	4			100 100 100	4		100 78 82
	5				100 100	5				100 79
	6					100	6					100
	Table 1: Population associations (in %) under model A100 (n=100). Left: theoret-
	ical; Right: observed. The true associations are {1}; {2, 3}; {4, 5, 6}.			
	1	2	3	4	5	6	1	2	3	4	5	6
	1 100 0	0	0	0	0	1 100 0	0	0	0	0
	2	100 100 0	0	0	2	100 93	0	0	0
	3		100 0	0	0	3		100 0	0	0
	4			100 100 100	4		100 99 99
	5				100 100	5				100 100
	6					100	6					100
			1	2	3	4	1	2	3	4		
		1 100 0	0	0	1 100 0	0	0		
		2		100 0	0	2	100 12 11		
		3			100 0	3		100 10		
		4				100	4		100		
	Table 3: Population associations (in %) under model B100. Left: theoretical; Right:
	observed. The true associations are {1}; {2}; {3}; {4}.					

Population associations (in %) under model A500 (n=500). Left: theoretical; Right: observed. The true associations are {1}; {2, 3}; {4, 5, 6}.
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