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Non-parametric Clustering of Multivariate
Populations with Arbitrary Sizes

BY

Yves I. Ngounou Bakam and Denys Pommeret

Abstract

We propose a clustering procedure to group K populations into subgroups
with the same dependence structure. The method is adapted to paired pop-
ulation and can be used with panel data. It relies on the differences between
orthogonal projection coefficients of the K density copulas estimated from the
K populations. Each cluster is then constituted by populations having signif-
icantly similar dependence structures.A recent test statistic from Ngounou-
Bakam and Pommeret (2022) is used to construct automatically such clusters.
The procedure is data driven and depends on the asymptotic level of the test.
We illustrate our clustering algorithm via numerical studies and through two
real datasets: a panel of financial datasets and insurance dataset of losses and
allocated loss adjustment expense.

KEYWORDS

Copula coefficients, data-driven, Legendre polynomials, nonparametric clustering,
smooth test.

1 INTRODUCTION AND MOTIVATIONS

The knowledge of the companies that dominate the capitalization of international
stock markets and their classification can allow portfolio managers a much more
active strategy and a better diversification of risks. In particular, the knowledge
of their dependence structure makes it possible to group together various portfolios
with similar risks.
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In this paper, we propose a data-driven strategy to regroup portfolios or risks
having the same dependence structure. Their similarities are measured through
their copulas and our procedure is based on simultaneous multiple comparisons. The
implementation of our clustering procedure therefore requires a multiple comparison
method that has been introduced in Ngounou-Bakam and Pommeret (2021). This
K-sample test is a data-driven procedure with a chi-square limit distribution making
the method very fast and very easy to implement. The algorithm is based on this
test procedure and is also data-driven, depending only on the asymptotic level of
the test. The basic idea of this algorithm is to use the test statistics to measure the
proximity between populations. If the statistics are close, it is proposed to form a
cluster with their associated populations and the test procedure accepts or rejects
the validity of the cluster.

Our method applies to K(≥ 2) iid sample observed on K populations, eventu-
ally paired. This is the case in the considered problem of portfolios. Our approach
differs from recent based copulas clustering algorithms as for instance: the cluster-
ing methods which rely on hierarchical Kendall copula with Archimedean clusters
(see Su et al. (2019), Joe and Sang (2016), among others); a clustering algorithm
based on the likelihood of the copula, called CoClust, which has been introduced
in Di Lascio and Giannerini (2012) and further developed and implemented in Di
Lascio and Giannerini (2017); Di Lascio (2018); Di Lascio and Giannerini (2019);
the clustering algorithms where an iid sample from a finite mixture model is usually
considered (see for instance Kosmidis and Karlis (2016); Zhang and Baek (2019) and
reference therein); the approach which relies on time-varying copula-based estima-
tors via minimization of the value-at-risk (see De Luca and Zuccolotto (2017)) and
the copula-based fuzzy clustering algorithm for spatial time series, called COFUST
(see Disegna et al. (2017)). All these previous works concern parametric copulas
and classify each individual and not populations.

A numerical study first shows the good behaviour of the proposed clustering
algorithm. We then apply the procedure on financial assets [ a detailler un peu le
ou les jeux de donnees ici].

The paper is organized as follows: in Section 2 we set up notation and we recall
the main result of the the test statistic presented in Ngounou-Bakam and Pommeret
(2022), making the paper self-contained. Section 3 presents the clustering algorithm.
Section 4 is devoted to the numerical study and Section 5 contains two real-life
illustrations.
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2 NOTATION AND TEST PROCEDURE

Let briefly recall here the test procedure proposed in Ngounou-Bakam and Pommeret
(2022). Let X = (X1, · · · , Xp) be a p-dimensional continuous random variable with
joint probability distribution function (pdf) FX that can be expressed in terms of
copula as

FX(x1, · · · , xp) = C(F1(x1), · · · , Fp(xp)), (1)

where Fj denotes the marginal pdf of Xj, and C denotes the copula associated to
X. Writing

Uj = Fj(Xj), for j = 1, · · · , p,

we have for all uj ∈ (0, 1)

C(u1, · · · , up) = FU(u1, · · · , up),

withU = (U1, · · · , Up), and deriving this expression p times with respect to u1, · · · , up,
we get an expression of the density copula

c(u1, · · · , up) = fU(u1, · · · , up), (2)

where fU denotes the joint density of the vector U. Write L = {Ln;n ∈ N} the
set of orthogonal Legendre polynomials (see Appendix ?? for more detail). Write
j = (j1, · · · , jp) ∈ Np and define

ρj1,··· ,jp = E(Lj1(U1) · · ·Ljp(Up)), (3)

the j-th copula coefficient associated to U. Note that ρ0 = 1 where 0 = (0, · · · , 0),
and ρj = 0 if only one element of j is non null.

The sequence (ρj)j∈Np
∗ permits to summarize the copula and we propose a clus-

tering procedure based on the distances between these coefficients.
In this way assume that we observe K iid samples, possibly paired, with associ-

ated copulas denoted by C1, · · · , CK .
Our aim is to regroup populations having the same copula coefficients, that is,

satisfying the following equality

H0 : ρ
(i1)
j = · · · = ρ

(ik)
j , ∀j ∈ Np

∗, (4)

where i1, · · · , ik are the label of the tested populations and ρ(ik) stands for the copula
coefficients associated to Cik . Clearly if C1 = · · · = CK then H0 is immediately
satisfied. In order to implement our clustering algorithm we propose to use the
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statistic based on the estimation of these quantities proposed in Ngounou-Bakam
and Pommeret (2022).

We denote by

X(1) = (X
(1)
1 , · · · , X(1)

p ), · · · ,X(K) = (X
(K)
1 , · · · , X(K)

p ),

the K continuous random variables associated to the K populations, with joint
cumulative distribution function (cdf) F(1), · · · ,F(K), and with associated copulas
C1, · · · , CK , respectively. Assume that we observeK iid samples fromX(1), · · · ,X(K),
possibly paired, denoted by

(X
(1)
i,1 , · · · , X

(1)
i,p )i=1,··· ,n1 , · · · , (X

(K)
i,1 , · · · , X(K)

i,p )i=1,··· ,nK
.

We assume that

for all 1 ≤ k < ℓ ≤ K, nk/(nk + nℓ) → akℓ, with 0 < akℓ < ∞. (5)

We will denote by F
(k)
j the marginal cdf of the jth component of X(k) and we write

U
(k)
i,j = F

(k)
j (X

(k)
i,j ).

For testing (4) we first estimate the copula coefficients by

ρ̂
(k)
j1···jp =

1

nk

nk∑
i=1

Lj1(Û
(k)
i,1 ) · · ·Ljp(Û

(k)
i,p )), (6)

where

Û
(k)
i,j = F̂

(k)
j (X

(k)
i,j ),

and where F̂ denotes the empirical distribution functions associated to F .
Considering the null hypothesis H0 as expressed in (4), the test procedure is

based on the sequences of differences

r
(ℓ,m)
j := ρ̂

(ℓ)
j − ρ̂

(m)
j , for 1 ≤ ℓ ≤ m ≤ K, and j ∈ Np

∗,

with the convention that r
(ℓ,m)
j = 0 when only one element of j is different of zero.

In order to select automatically the number of copula coefficients, for any vector
j = (j1, · · · , jp) we denote by

∥j∥1 = |j1|+ · · ·+ |jp|,
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its L1 norm and for any integer d > 1 we write

S(d) = {j ∈ Np; ∥j∥1 = d and there exists k ̸= k′ such that jk > 0 and jk′ > 0}.

The set S(d) contains all non null positive integers j = (j1, · · · , jp) with norm d and
such that jk < d for all k = 1, · · · , p.

We also introduce the following set of indexes:

V(K) = {(ℓ,m) ∈ N2; 1 ≤ ℓ < m ≤ K}.

Clearly V(K) contains v(K) = K(K − 1)/2 elements which represent all the pairs
of populations that we want to compare.

We construct an embedded series of statistics as follows

V1 = V
(1,2)
D(n) , V2 = V

(1,2)
D(n) + V

(1,3)
D(n) , · · · , Vv(K) = V

(1,2)
D(n) + · · ·+ V

(K−1,K)
D(n) ,

or equivalently,

Vk =
∑

(ℓ,m)∈V(K);rankV (ℓ,m)≤k

V
(ℓ,m)
D(n) ,

where
V

(ℓ,m)
k = n

∑
j∈H(k)

(r
(ℓ,m)
j )2 (7)

where the set H(k) contains the k first integers of Np with respect to the order of
S(d) and where

D(n) := min
{
argmax
1≤k≤d(n)

(V
(1,2)
k − kqn)

}
, (8)

where qn and d(n) tend to +∞ as n → +∞, kqn being a penalty term which penalizes
the embedded statistics proportionally to the number of copula coefficients used.

Moreover, we have the following relation: for all k ≥ 1 and j = 1, · · · , c(k + 1)

V
(1,2)
c(1)+c(2)+···+c(k)+j = T

(1,2)
k+1,j,

were c(k) denotes the cardinal of S = (⌈) with the convention c(1) = 0.
We have V1 < · · · < Vv(K). The first statistic V1 compares the first two popula-

tions 1 and 2. The second statistic V2 compares the populations 1 and 2, and, in
addition, the populations 1 and 3. And so on. To choose automatically the appro-
priate number k we introduce the following penalization procedure, mimicking the
Schwarz criteria procedure Schwarz (1978):

s(n) = min
{
argmax
1≤k≤v(K)

(
Vk − kpn

)}
. (9)

We make the following assumption:
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(A) d(n)(p+4) = o(qn),

(A’) d(n)(p+4) = o(pn),

and we recall here main result of Ngounou-Bakam and Pommeret (2022).

Theorem 2.1. Assume that (A) and (A’) hold. Then under H0, s(n) converges
in probability towards 1 as n → +∞. Moreover, Vs(n)/σ̂

2(1, 2)) converges in law
towards a χ2

1 distribution, where σ̂2(1, 2) is given in Appendix.

It is important to note that if pn = o(n) then the test is consistent against
alternative where at least one copula coefficient differs between two copulas.

3 CLUSTERING PROCEDURE

3.1 Clustering principle

In the sequel we propose to adapt the previous test procedure to obtain a data-driven
method to cluster K populations into N subgroups characterized by a common de-
pendence structure. The number N of clusters is unknown and will be automatically
chosen by the previous procedure and validated by our testing method.

More precisely, assume that we observe K iid samples from K populations,
possibly paired. The clustering algorithm starts by choosing the two populations
that are the most similar in terms of dependence structure, through their copulas.
In this way, it chooses the smaller two-sample statistic. If the equality of both
associated copulas is accepted these two populations form the first cluster. Then the
algorithm proposes the closer population of this cluster, that is the smaller statistic
having a common population index. While the test accepts the simultaneous equality
of the copulas, the cluster growths. If the last test is rejected then the cluster is
closed and the last rejected population forms a new cluster. One can iterate this
several times until every sample is associated with a cluster.

3.2 Clustering algorithm

We can summarize the clustering algorithm as follows:
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Algorithm: K-sample copulas clustering

1 Initialization: c = 1. Set S = {C1, · · · , CK} and S0 = ∅ ;

2 Select {ℓ⋆,m⋆} = argmin{V (ℓ,m))
D(n) ; ℓ ̸= m ∈ S \

⋃c
k=1 Sk−1} ;

3 Test H̃0 between all ρ
(ℓ⋆)
j and ρ

(m⋆)
j ;

4 if H̃0 is not rejected then

5 S1 = {Cℓ⋆ , Cm⋆};
6 else
7 STOP. There is no cluster.
8 end
9 while S \

⋃c
k=1 Sk ̸= ∅ do

10 Select {j⋆} = argmin{T (i,j)
D(n); i ∈ Sc, j ∈ S \

⋃c
k=1 Sk};

11 Test H̃0 the simultaneous equality of all the ρ
(i)
j , i ∈ Sc and ρ

(j⋆)
j ;

12 if H̃0 not rejected then

13 Sc = Sc

⋃
{Cj⋆};

14 else
15 Sc+1 = {Cj⋆};
16 c = c+ 1 ;

17 end

18 end

This clustering procedure can solve several complex problems in a very short
time and is useful in practice, particularly in risk management and more generally
in the world of actuarial science and finance markets by making it possible to detect
mutualizable risks and not mutualizable; but also to build a well-diversified portfolio.

3.3 Tuning the algorithm

As evoked in Remark ?? we can choose the penalty qn = pn = α log(n). We fix
α = 1 in the proofs of this paper for simplicity. But in practice we can empirically
improve this tuning factor by using the following data-driven procedure:

• Assume we observe K populations.

• We merge all populations to get only one (larger) population.

• Split randomly this population into K ′ > 2 sub-populations.
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• Clearly these K ′ sub-populations have the same copula and then the null
hypothesis H̃0 is satisfied.

• We then approximate numerically the value of the factor α > 0 such that the
selection rule retains the first component, that is s(n) = 1. From Theorem ??
this is the asymptotic expected value under the null.

• We can repeat N times such a procedure to get N K ′-sample under the null.

Finally we fix

α̂ = min{α > 0; such that s(n) = 1 for the previous N selection rules}.

In our simulation we fixed arbitrarily K ′ = 3, which seems to give a very correct
empirical level. Note that this transformation only slightly modified the empirical
results.

Concerning the value of d(n), the condition (A) is an asymptotic condition and
from our experience choosing d(n) = 3 or 4 is enough to have a very fast procedure
which detects alternatives such that copulas differ by a coefficient with a norm less
or equal to d(n).

4 NUMERICAL STUDY OF THE ALGORITHM

4.1 Simulation design

In order to evaluate the performance of the algorithm, we consider the following
classical copulas families: the Gaussian copulas, the Student copulas, the Gumbel
copulas, the Frank copulas, the Clayton copulas and the Joe copulas which we
denote for hereafter Gaus, Stud, Gumb, Fran, Clay and Joe respectively. For the
explicit functional forms and properties of these copulas we refer the reader to Nelsen
(2007) and ?. For each copula C, the sample is generated with a given kendall’s τ
parameter, and we denote this model briefly by C(τ). When τ is close to zero the
variables are close to the independence. Conversely, if τ is close to 1 the dependence
becomes linear.

4.2 Clustering simulation

We consider the following designs:

• A100: n = 100, p = 3, K = 6 populations with 3 groups C1 = Gumb(0.8)
and C2 = C3 = Gaus(0.2) and C4 = C5 = C6 = Clay(0.9)
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• A500 = A100 with n = 500

• B100: n = 100, p = 5, K = 4 different populations with 4 groups C1 =
Gumb(0.8), C2 = Gaus(0.2), C3 = Clay(0.9), C4 = Gumb(1)

• B500 = B100 with n = 500

• C100: n = 100, p = 4, K = 5 populations with one group C(1) = C(2) =
C(3) = C(4) = C(5) = Clay(0.9)

• C500 = C100 with n = 500

• D100: n = 100, p = 2, K = 10 populations with two unbalanced groups
C1 = C2 = · · · = C9 = Clay(0.9) and C10 = Gumb(0.9)

• D500 = D100 with n = 500

We applied the clustering algorithm described in Section 3. The results are summa-
rized below:

• Results for A100:

– In 82.5 % of cases the algorithm found 3 groups. In such cases, 74 % of
the time it was the 3 correct groups.

– In 11.4 % of cases the algorithm found 4 groups

– In 5 % of cases the algorithm found 2 groups

– In 0.1 % of cases the algorithm found 5 groups.

– Note that the first group (with the Gumbel copula) was well identified
99 % of the time.

• Results for A500: The three groups were well identified in 92 % of cases. In
other cases the algorithm essentially obtained 4 groups (merging populations
of the second and the third group).

• Results for B100: In 78 % of cases the null hypothesis was rejected and we
obtained 4 different groups. In other cases the algorithm merged two groups
(Clayton with Normal or Clayton with Gumbel) and then proposed 3 clusters.

• Results for C100: In 70 % of cases the algorithm found one group. In other
cases it gave two groups.

• Results for D100: More than 80% of cases the algorithm found the 2 correct
groups. In other cases the algorithm found 3 group obtained by a rejection of
one of the 9 similar populations.

9



1 2 3 4 5 6
1 100 0 0 0 0 0
2 100 100 0 0 0
3 100 0 0 0
4 100 100 100
5 100 100
6 100

1 2 3 4 5 6
1 100 0 0 0 0 0
2 100 73 29 30 29
3 100 22 25 21
4 100 78 82
5 100 79
6 100

Table 1: Population associations (in %) under model A100 (n=100). Left: theoret-
ical; Right: observed. The true associations are {1}; {2, 3}; {4, 5, 6}.

1 2 3 4 5 6
1 100 0 0 0 0 0
2 100 100 0 0 0
3 100 0 0 0
4 100 100 100
5 100 100
6 100

1 2 3 4 5 6
1 100 0 0 0 0 0
2 100 93 0 0 0
3 100 0 0 0
4 100 99 99
5 100 100
6 100

Table 2: Population associations (in %) under model A500 (n=500). Left: theoret-
ical; Right: observed. The true associations are {1}; {2, 3}; {4, 5, 6}.

1 2 3 4
1 100 0 0 0
2 100 0 0
3 100 0
4 100

1 2 3 4
1 100 0 0 0
2 100 12 11
3 100 10
4 100

Table 3: Population associations (in %) under modelB100. Left: theoretical; Right:
observed. The true associations are {1}; {2}; {3}; {4}.
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1 2 3 4 5
1 100 100 100 100 100
2 100 100 100 100
3 100 100 100
4 100 100
5 100

1 2 3 4 5
1 100 97.9 98.5 98.9 99.2
2 100 99.6 98.4 99.7
3 100 99.4 99.1
4 100 98.7
5 100

Table 4: Population associations (in %) under modelC100. Left: theoretical; Right:
observed. The true associations are {1, 2, 3, 4, 5}.

1 2 3 4 5 6 7 8 9 10
1 100 100 100 100 100 100 100 100 100 0
2 100 100 100 100 100 100 100 100 0
3 100 100 100 100 100 100 100 0
4 100 100 100 100 100 100 0
5 100 100 100 100 100 0
6 100 100 100 100 0
7 100 100 100 0
8 100 100 0
9 100 0
10 100

1 2 3 4 5 6 7 8 9 10
1 100 90.2 89.8 91 94.2 90.5 92 97.1 89 0
2 100 94.1 92 89.9 88.7 91.3 90.9 92 0
3 100 94.4 92.2 95.6 88 97.4 90 0
4 100 91 95.5 89.1 90 93.3 0
5 100 94 88.5 96 97 0
6 100 89.9 91.2 88.2 0
7 100 87 97.1 0
8 100 96 0
9 100 0
10 100

Table 5: Population associations (in %) under model D100. Up: theoretical; Down:
observed. The true associations are {1, 2, 3, 4, 5, 6, 7, 8, 9}; {10}.
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5 REAL DATASETS

5.1 Financial data

The knowledge of the companies that dominate the capitalization of international
stock markets and their classification can allow portfolio managers a much more
active strategy and a better diversification of risks. We build 33 portfolios.

From the 500 component stocks of the S&P500 stock market index, which are
issued by 500 large capitalization companies traded on American stock exchanges,
we choose in each sector following the Global Industry Classification (there exists
11 stock market sectors)

• the stocks index of the 3 most high weighted companies. We denote Sih, i =
1, · · · , 11 hereafter,

• the stocks index of the 3 companies with the middle weight. We denote
Sim, i = 1, · · · , 11 hereafter,

• the stocks index of the 3 companies with the lowest weight. We denote Siℓ, i =
1, · · · , 11 hereafter.

Table 6 presents the weight, symbol, company and sector of each selected stock
index.

The data employed are weekly closing adjusted prices from January, 26th, 2006 to
December, 30th, 2021 for a total of 825 observations. Data are available from Yahoo
Finance and we consider the rate returns series by using the standard continuously
compounded return formula. We note that each price of stock is expressed in the
reference country currency.

The application of non-parametric tests of randomness (Wang (2003); Cho and
White (2011); Gibbons and Chakraborti (2014)) to these weekly rates of return for
each of the 33 stocks in Table 6 reveals that there is no evidence that these series
are not iid.

We begin by considering the populations (denoted pop in Table 6) of each group
(high (h), middle (m) and lower (ℓ)).

Applying the clustering procedure with nominal level α = 5%, we obtain 6,4
and 8 clusters of group ℓ, group m and group h, respectively. The Figures 1, 2 and
3 displays the dendrogram of groups (Grp.) ℓ,m and h respectively. In the three
dendrogram we observe that the sector Material is isolated. Moreover at 1% level
(see Figures ?? ?? and ??), the number of clusters and the elements of each cluster
remain unchanged. But it is clear that moving this level is an interesting way to
reduce or increase the number of clusters.

12



By looking at the three groups, we now ask whether if there are populations
in different groups of similar dependence structure. To this end, we apply the
clustering algorithm to all 33 populations with 5% nominal level. We get 12 clusters
of populations and the associated dendrogram is presented in Figure 4. We observe
that clusters C4,C5 and C9 contain only the populations of group ℓ and clusters
C8, C11 and C12 only the populations of group h.

We thus obtain a way to group stocks with the same dependence structure into
homogeneous portfolios, while forcing these portfolios not to have the same behavior.
This allows for risk diversification, for example.
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Grp. l

C1

S7

S9

S4

C2 S10

C3

S5

S8

S1

S3

C4 S6

C5 S2

C6 S11

Figure 1: Clustering of group ℓ at 5% level. c1, · · · , c6 denote the clusters and
s1, · · · , s11 are defined in Table 6.
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Grp. m

C1

S4

S11

S9

C2

S7

S1

S2

S5

C3

S8

S6

S3

C4 S10

Figure 2: Clustering of group m at 5% level. c1 · · · c4 denote the cluster and s1 · · · s11
are defined in Table 6.
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Grp. h

C1

S4

S7

C2

S9

S8

C3 S6

C4 S11

C5

S5

S1

C6 S2

C7 S10

C8 S3

Figure 3: Clustering of group h at 5% level. c1 · · · c8 denote the cluster and s1 · · · s11
are defined in Table 6
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S&P500

C1

S8h

S4m

S11m

S10l

C2

S10m

C3

S6h

S7m

C4

S4l

S7l

S9l

C5

S2l

C6

S1h

S1m

S2h

S2m

S5h

S5m

S5l

S8l

C7

S3m

S6m

S8m

S3l

S6l

C8

S10h

C9

S1l

C10

S4h

S7h

S9h

S9m

S11l

C11

S11h

C12

S3h

Figure 4: Clustering of S&P 500 at 5% level. c1 · · · c12 denote the cluster and the
populations are defined in Table 6.
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Sectors Pop Symbols Companies Weights Sectors Pop Symbols Companies Weights

In
fo
rm

a
ti
o
n
T
e
ch
n
o
lo
g
y

S
1
h

AAPL Apple Inc. 659.67

C
o
n
su
m
e
r
D
is
c
re
ti
o
n
a
ry

S
2
h

AMZN Amazon.com Inc. 286.65
MSFT Microsoft Corporation 582.47 HD Home Depot Inc. 91.66
NVDA NVIDIA Corporation 133.75 MCD McDonald’s Corporation 53.55

S
1
m

PAYX Paychex Inc. 11.26

S
2
m

GPC Genuine Parts Company 5.65
CDNS Cadence Design Systems Inc. 12.26 BBY Best Buy Co. Inc. 5.17
MCHP Microchip Technology Incorporated 11.47 POOL Pool Corporation 4.62

S
1
l FFIV F5 Inc. 2.85

S
2
l PENN Penn National Gaming Inc. 1.52

JNPR Juniper Networks Inc. 2.88 RL Ralph Lauren Corporation Class A 1.36
DXC DXC Technology Co. 2.50 PVH PVH Corp. 1.44

C
o
m
m
u
n
ic
a
ti
o
n
S
e
rv
ic
e
s

S
3
h

GOOGL Alphabet Inc. Class A 192.14

F
in
a
n
c
ia
ls

S
4
h

JPM JPMorgan Chase & Co. 110.32
GOOG Alphabet Inc. Class C 178.22 BAC Bank of America Corp 74.88
VZ Verizon Communications Inc. 61.40 WFC Wells Fargo & Company 50.74

S
3
m

WBD Warner Bros. Discovery Inc. Series A 11.78

S
4
m

MTB M&T Bank Corporation 9.19
EA Electronic Arts Inc. 11.14 AMP Ameriprise Financial Inc. 8.82

MTCH Match Group Inc. 6.42 TROW T. Rowe Price Group 8.47

S
3
l DISH DISH Network Corp. Class A 1.57

S
4
l ZION Zions Bancorporation N.A. 2.46

LUMN Lumen Technologies Inc. 3.27 BEN Franklin Resources Inc. 2.15
IPG Interpublic Group of Companies Inc. 3.60 IVZ Invesco Ltd. 1.89

H
e
a
lt
h
C
a
re

S
5
h

UNH UnitedHealth Group Incorporated 135.88

C
o
n
su
m
e
r
S
ta
p
le
s

S
6
h

PG Procter & Gamble Company 101.38
JNJ Johnson & Johnson 135.63 KO Coca-Cola Company 71.55
PFE Pfizer Inc. 86.10 PEP PepsiCo Inc. 67.62

S
5
m

BAX Baxter International Inc. 10.79
S
6
m

SYY Sysco Corporation 12.25
A Agilent Technologies Inc. 11.20 STZ Constellation Brands Inc. Class A 11.49

IDXX IDEXX Laboratories Inc. 9.61 KR Kroger Co. 10.08

S
5
l UHS Universal Health Services Inc. Class B 2.59

S
6
l HRL Hormel Foods Corporation 3.90

XRAY DENTSPLY SIRONA Inc. 2.46 TAP Molson Coors Beverage Company Class B 2.96
DVA DaVita Inc. 1.71 CPB Campbell Soup Company 2.79

E
n
e
rg
y

S
7
h

XOM Exxon Mobil Corporation 117.49

In
d
u
st
ri
a
ls

S
8
h

UNP Union Pacific Corporation 40.32
CVX Chevron Corporation 97.79 RTX Raytheon Technologies Corporation 41.10
COP ConocoPhillips 42.47 HON Honeywell International Inc. 38.30

S
7
m

OXY Occidental Petroleum Corporation 17.82

S
8
m

RSG Republic Services Inc. 8.15
VLO Valero Energy Corporation 15.28 ODFL Old Dominion Freight Line Inc. 7.02
WMB Williams Companies Inc. 12.90 LUV Southwest Airlines Co. 7.68

S
7
l CTRA Coterra Energy Inc. 8.18

S
8
l AOS A. O. Smith Corporation 2.31

MRO Marathon Oil Corporation 6.94 ROL Rollins Inc. 2.31
APA APA Corp. 4.91 ALK Alaska Air Group Inc. 1.71

U
ti
li
ti
e
s

S
9
h

NEE NextEra Energy Inc. 43.23

M
a
te
ri
a
ls

S
1
0
h LIN Linde plc 48.08

DUK Duke Energy Corporation 24.95 SHW Sherwin-Williams Company 18.91
SO Southern Company 22.94 NEM Newmont Corporation 15.57

S
9
m

ES Eversource Energy 9.09

S
1
0
m

PPG PPG Industries Inc. 8.75
DTE DTE Energy Company 7.38 ALB Albemarle Corporation 8.98
EIX Edison International 7.54 BALL Ball Corporation 6.83

S
9
l AES AES Corporation 4.24

S
1
0
l AVY Avery Dennison Corporation 4.08

NI NiSource Inc 3.51 EMN Eastman Chemical Company 4.02
PNW Pinnacle West Capital Corporation 2.53 SEE Sealed Air Corporation 2.71

R
e
a
l
E
st
a
te

S
1
1
h AMT American Tower Corporation 33.82

PLD Prologis Inc. 26.80
CCI Crown Castle International Corp 23.70

S
1
1
m

EQR Equity Residential 7.55
ARE Alexandria Real Estate Equities Inc. 6.98
VTR Ventas Inc. 6.51

S
1
1
l REG Regency Centers Corporation 2.99

FRT Federal Realty Investment Trust 2.30
VNO Vornado Realty Trust 1.59

Table 6: 33 components of S&P500
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5.2 Insurance data

Insurance is an area in which the knowledge of the dependence structure between
several portfolios can be useful in pricing particularly for risk pooling or price seg-
mentation. As an illustration purposes, we consider the well-known example of
pricing insurance contracts involving pairs of dependent variables which consist to
compute the premium of a reinsurance treaty on a policy with unlimited liability,
some retention level of the losses and a prorata sharing of ALAEs. ALAEs in this
context are types of insurance company expenses that are specifically attributable
to the settlement of individual claims such as lawyers’ fees and claims investigation
expenses. The database at issue is the SOA Group Medical Insurance Large Claims
Database over the period 1991–92 and is available online at the web page of Society
of Actuaries. The database includes more than 171,000 claims of 25, 000 or more,
representing over $10 billion in total charges with information collected from 26 in-
surers. Each row of the database presents a summary of claims for an individual
claimant in fields. Fields include diagnosis, type of coverage (HMO, PPO, Indem-
nity, etc.), claimant status (E-employee or D-dependent), claimant gender (M-male
or F-Female) claimant age and charges split into hospital and non-hospital. We refer
to Grazier and G’Sell (1997) for a detailed and thorough description of the data.
Here, we deal with the 1991 data of females, insured by a Preferred Provider Or-
ganization (PPO) plan. We split the variables losses (hospital charges) and ALAEs
(other charges) by ten-year age groups shown in Table 7.

age groups Claimant status sizes (n)

[20, 30[
D 426
E 568

[30, 40[
D 967
E 1116

[40, 50[
D 1079
E 1177

[50, 60[
D 1039
E 1136

[60, 70[
D 595
E 786

[70, 80[
D 102
E 175

Table 7: Age groups of females in SOA91

Applying our algorithm procedure at 5% level, we obtained four clusters and the
dendogram is presented in Figure 5. It appears that the dependence structure of
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claim charges change over age where it shows that the status of the policy holder
is irrelevant and that premiums charged to both types of individuals should be the
same if the size of the observations are substantially identical.

SOA91− F

C1

E[50, 60[

E[60, 70[

D[60, 70[

C2

E[30, 40[

D[30, 40[

E[40, 50[

D[40, 50[

E[70, 80[

D[70, 80[

C3

E[20, 30[

D[20, 30[

C4

D[50, 60[

Figure 5: Dendogram of SOA91-Female at 5% level. C1 · · ·C4 denote the cluster.
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6 CONCLUSION
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