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Particular polynomials generating rational solutions to the KdV equation +

We construct here rational solutions to the KdV equation by means of particular polynomials. We get solutions in terms of determinants of order n for any positive integer n and we call these solutions, solutions of order n. So we obtain a very efficient method to get rational solutions to the KdV equation and we can construct very easily explicit solutions. In the following, we present some solutions until order 10.

Introduction

We consider the KdV equation in the following normalization

4u t = 6uu x + u xxx . (1) 
As usual, the subscripts x and t denote partial derivatives. This equation appears in a footnote on page 360 of Boussinesq's massive 680page memoir [START_REF] Boussinesq | Essai sur la thorie des eaux courantes[END_REF] written in 1872. Korteweg and de Vries [START_REF] Korteweg | On the change of form of long wawes adwancing in a rectangular canal, and on a new type of long stationary waves[END_REF] studied this equation (1) in a paper published in 1895 and from that moment this equation carried their names. This equation describes the propagation of waves with weak dispersion in various nonlinear media. Gardner et al. [START_REF] Gardner | Method for solving the Korteweg-de Vries equation[END_REF] proposed a method of resolution in 1967. Zakharov and Faddeev [START_REF] Zakharov | Korteweg-de Vries equation: A completely integrable Hamiltonian system[END_REF] in 1971 proved that this equation is a complete integrable system. Hirota [START_REF] Hirota | Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[END_REF] constructed in 1971 solutions by using the bilinear method. A lot of works have been realized in the following years. We can mention for example, Its and Matveev [START_REF] Its | Hill's operator with finitely many gaps[END_REF] in 1975, Lax [START_REF] Lax | Periodic solutions of the KdV equation[END_REF] in the same year, Airault et al. [START_REF] Airault | Rational and elliptic solutions of the KdV equation and a related many-body problem[END_REF] in 1977, Adler and Moser [START_REF] Adler | On a class of polynomials connected with the Kortewegde-Vries equation[END_REF] in 1978, Ablowitz and Cornille [START_REF] Ablowitz | On solutions of the KdV equation[END_REF] in 1979, Freeman and Nimmo [START_REF] Freeman | Nimmo Rational solutions of the KdV equation in wronskian form[END_REF] in 1984, Matveev [START_REF] Matveev | Generalized Wronskian Formula for solutions of the KdV equation[END_REF] in 1992, Ma [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF] in 2004, Kovalyov [START_REF] Kovalyov | On a class of solutions of KdV[END_REF] in 2005 and Ma [START_REF] Ma | Lump solutions to the KP equation[END_REF] in 2015.

In the following, we consider certain polynomials and we construct rational solutions using determinants of order n. The proof of the result is based on the verification of the corresponding Hirota bilinear expression for the KdV equation. So we get a very efficient method to construct rational solutions to the KdV 1 equation. We give explicit solutions in the simplest cases for orders n = 1 until 10.

Rational solutions to the KdV equation

We consider the polynomials p n defined by

                 p n (x, t) = n k=0 x k t   n -k 3   k! n -k 3 ! 1 - 1 2 (n -k + 1) -3 n -k 3 , k ≥ 0, p n (x, t) = 0, n < 0, (2) 
where [x] denotes the the largest integer less than or equal to x.

We denote A n (x, t) the following determinant

A n (x, t) = det(p n+1-2i+j (x, t)) {1≤i≤n, 1≤j≤n} (3) 
With these notations we have the following result Theorem 2.1 The function v n (x, t) defined by

v n (x, t) = 2∂ 2 x (ln(A n (x, t))) (4) 
is a rational solution to the (KdV) equation (1)

4u t = 6uu x + u xxx . (5) 
Remark 2.1 The presented rational solutions can be expressed as

v(x, t) = -2(ln W (f 1 , f 2 , ..., f k )) xx (x, t) = -2(ln W (f k , , ..., f 2 , f 1 )) xx (x, t) = 2((ln W (φ 0 , φ 1 , ..., φ k-1 )) xx (x, t)) t->-1/4t,x->x ,
where the φ i 's are specific polynomials determined in Theorem 2.1. This corresponds to the subsequent discussion made in [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF] by Ma and You. This is because f 1 , f 2 , ..., f k satisfy f j,xx = f j+1 andf j,t = f j,xxx .

A general solution to the KdV equation was analyzed and presented in [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF]. Therefore, all rational solutions in the manuscript will become special cases of the ones in [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF]. Actually, a combination of theorem 2.1 and theorem 3.1 in [START_REF] Ma | Solving the KdV equation by its bilinear form wronskian solutions[END_REF] presents a larger class of rational solutions to the KdV equation in wronskian form than the class given in the manuscript. I want to thank the referee for that comment.

3 Explicit rational solutions to the KdV equation for the first orders

In this section, we use the previous method to construct explicitly rational solutions to the KdV equation.

In the following, we will call

v k (x, t) = 2∂ 2 x (ln(A k (x, t)))
a rational solution to the KdV equation of order k.

We present some examples of these solutions for the first simplest orders.

3.1

Rational solutions of order 1 to the KdV equation

Example 3.1 The function v k (x, t) defined by v k (x, t) = - 2 x 2 (6) 
is a rational solution to the KdV equation.

3.2

Rational solutions of order 2 to the KdV equation

Example 3.2 The function v k (x, t) defined by v k (x, t) = -6 x 3 + 6 t x (-x 3 + 3 t) 2 (7) 
is a rational solution to the KdV equation.

3.3

Rational solutions of order 3 to the KdV equation

Example 3.3 The function v k (x, t) defined by v k (x, t) = 6 -2 x 9 -675 t 2 x 3 + 1350 t 3 x (-x 6 + 15 tx 3 + 45 t 2 ) 2 (8) 
is a rational solution to the KdV equation.

3.4

Rational solutions of order 4 to the KdV equation

Example 3.4 The function v k (x, t) defined by v k (x, t) = -20 x 18 + 720 tx 15 -28350 t 2 x 12 -661500 t 3 x 9 + 11907000 t 4 x 6 -44651250 t 6 (-x 9 + 45 tx 6 + 4725 t 3 ) 2 x 2 (9) 
is a rational solution to the KdV equation.

Rational solutions of order 5 to the KdV equation

Example 3.5 The function v k (x, t) defined by is a rational solution to the KdV equation.

v k (x, t) = n(x, t) d(x, t) (10 
3.9 Rational solutions of order 9 to the KdV equation Example 3.9 The function v k (x, t) defined by is a rational solution to the KdV equation.

v k (x, t) = n(x, t) d(x, t) (14) 
We could go on and present more explicit rational solutions, but they become very complicated. For example, in the case of order 10 the numerator is a polynomial of degree 108 in x, 36 in t containing 36terms; the denominator is a polynomial of degree 110 in x, 36 in t containing 36terms.

In the case of order 20 the numerator is a polynomial of degree 418 in x, 139 in t containing 140terms; the denominator is a polynomial of degree 420 in x, 140 in t containing 141terms.

It will be interesting to study in detail the structure of these solutions.

Conclusion

Solutions to the KdV equation as the second derivative with respect to x of a logarithm of a determinant involving particular polynomials have been given. We get rational solutions as the quotient of two polynomials in x and t; the numerator is a polynomial of degree n(n + 1) -2 in x and the denominator is a polynomial of degree n(n + 1) in x. The structure in t is more complex and should be studied in more details. This representation gives a very efficient method to construct rational solutions to the KdV equation. Some explicit expressions are given for some orders. More recent work can be cited as [START_REF] Ma | Linear superposition of Wronskian rational solutions to the KdV equation[END_REF], [START_REF] Osman | An efficient algorithm to construct multisoliton rational solutions of the (2 + 1)-dimensional KdV equation with variable coefficients[END_REF] or [START_REF] Liu | Exact solution of rational expansion method to the variable coefficient combined KdV equation with forced term[END_REF].

It can be noted that the solutions presented in this paper are different from these presented in a previous work of the author [START_REF] Gaillard | Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case[END_REF].

It will be relevant to study in detail the structure of polynomial entering in these last solutions.

  ) with n(x, t) = -30 (x27 -126 tx 24 + 7560 t 2 x 21 + 5655825 t 4 x 15 -500094000 t 5 x 12 + 4313310750 t 6 x 9 -11252115000 t 7 x 6 + 295368018750 t 8 x 3 + 590736037500 t 9 )x and d(x, t) = (x15 -105 tx 12 + 1575 t 2 x 9 -33075 t 3 x 6 -992250 t 4 x 3 + 1488375 t 5 ) 2 is a rational solution to the KdV equation. 3.6 Rational solutions of order 6 to the KdV equation = 42 (-x 39 + 300 tx 36 -37800 t 2 x 33 + 1890000 t 3 x 30 -90932625 t 4 x 27 + 2062887750 t 5 x 24 +389269597500 t 6 x 21 -17947123425000 t 7 x 18 +263869129321875 t 8 x 15 -2859162421500000 t 9 x 12 -63795061529718750 t 10 x 54 +33264 tx 51 -8334900 t 2 x 48 +1073217600 t 3 x 45 -88841699100 t 4 x 42 + 4208291010000 t 5 x 39 -20822788948500 t 6 x 36 +16700107780125000 t 7 x 33 -2828512200341520000 t 8 x 30 + 146885752493414550000 t 9 x 27 -3822896546264326781250 t 10 x 24 +10605936484617098625000 t 11 x 21 -1400650109245812737812500 t 12 x 18 + 17562387611658575936250000 t 13 x 15 -803657230405119631947656250 t 14 x 12 -4797023778387148190695312500 t 15 x 9 + 86346428010968667432515625000 t 16 x 6 -107933035013710834290644531250 t 18 and d(x, t) = (x 27 -378 tx 24 +42525 t 2 x 21 -2182950 t 3 x 18 +19646550 t 4 x 15 -3094331625 t 5 x 12 -147496474125 t 6 x 9 + 6637341335625 t 7 x 6 + 232306946746875 t 9 ) 2 x 2 is a rational solution to the KdV equation. 3.8 Rational solutions of order 8 to the KdV equation Example 3.8 The function v k (x, t) defined by = -18 (4 x 69 -4200 tx 66 +1905750 t 2 x 63 -483159600 t 3 x 60 +78138695250 t 4 x 57 -8340851118600 t 5 x 54 + 595545378986250 t 6 x 51 -39921395686672500 t 7 x 48 +1536199377447735000 t 8 x 45 +368199076771500975000 t 9 x 42 -65873050788783963099375 t 10 x 39 +4801800716006149418062500 t 11 x 36 -168255232705748229729187500 t 12 x 33 + 4958157366226547182074375000 t 13 x 30 -51649152550511657393517890625 t 14 x 27 -1919124744346010431730656406250 t 15 x 24 + 269892618860418044895397743750000 t 16 x 21 -691462195511837088799585125000000 t 17 x 18 -12773529308160633363628050210937500 t 18 x 15 -3145288661834468957677112837343750000 t 19 x 12 + 19883967800655314009338194685957031250 t 20 x 9 -33371694210890037498189977095312500000 t 21 x 6 + 547504358147414677704679311719970703125 t 22 x 3 +657005229776897613245615174063964843750 t 23 )x and d(x, t) = (-x 36 + 630 tx 33 -135135 t 2 x 30 + 13825350 t 3 x 27 -638512875 t 4 x 24 + 29499294825 t 5 x 21 + 1179971793000 t 6 x 18 +54426198952125 t 7 x 15 -12683959292379375 t 8 x 12 +132879573539212500 t 9 x 9 -2092853283242596875 t 10 x 6 -31392799248638953125 t 11 x 3 + 31392799248638953125 t 12 ) 2

	Example 3.6 The function v k (x, t) defined by v k (x, t) = n(x, t) d(x, t) with n(x, t) d(x, t) with n(x, t) v k (x, t) = n(x, t)	(11) (13)

9 

-96496731725625000 t 11 x 6 -4221732012996093750 t 12 x 3 + 5066078415595312500 t 13 )x and d(x, t) = (x 21 -210 tx 18 +10395 t 2 x 15 -264600 t 3 x 12 -5457375 t 4 x 9 -343814625 t 5 x 6 + 3438146250 t 6 x 3 + 5157219375 t 7 ) 2 is a rational solution to the KdV equation.

3.7 Rational solutions of order 7 to the KdV equation

Example 3.7 The function v k (x, t) defined by

v

k (x, t) = n(x, t) d(x, t)

(12)

with n(x, t) = -56 x

  .10 Rational solutions of order 10 to the KdV equation Example 3.10 The function v k (x, t) defined by

					v k (x, t) =	n(x, t) d(x, t)	(15)
	with			
	n(x, t) = -110 x 108 +291060 tx 105	-347490000 t 2 x 102 +248154192000 t 3 x 99	-119078820110250 t 4 x 96 +40841520834114000 t 5 x 93	-
	10403875101641521500 t 6 x 90 +2022895713150642330000 t 7 x 87	-304310886232135639106250 t 8 x 84 +35771706849366129904762500 t 9 x 81	-
	3519939926423867815118250000 t 10 x 78 +296754986088067433541615000000 t 11 x 75 +4582775043052251449589779343750 t 12 x 72	-
	11407514722448205667096537621875000 t 13 x 69 + 2793940550549247930228715261632187500 t 14 x 66
	-389645507719688878112158874570400000000 t 15 x 63 + 35750508746600149120830492075248360156250 t 16 x 60
	-2267111177718461993872185235868925998437500 t 17 x 57 +105602095963586360431772913336582758203125000 t 18 x 54	-
	4746298210770147629947127050066564488468750000 t 19 x 51 +17914009152786314817603679852500052180664062500 t 20 x 48 +
	21517822607755427423214335600663223777394687500000 t 21 x 45	-1866304090193719979598090753176960710397522343750000 t 22 x 42 +
	124826969096794011744700655966112731665388906250000000 t 23 x 39	-1077606584700530778623127008158745262625547976269531250 t 24 x 36	-
	57629984931404039334696126368371105570079198658398437500 t 25 x 33
	-8955758855718045099509061569538284662355447568285937500000 t 26 x 30
	+ 535955408879595853282117469855285428376104165104867187500000 t 27 x 27
	-13703065967666242029463436434276849693966219703293088378906250 t 28 x 24
	+ 19427222931444129856882917267638979035967641555006220703125000 t 29 x 21
	-2081507844816089416510573395441463169975510274693804902343750000 t 30 x 18
	+ 13247544443667951100242271719618269946158265169097291718750000000 t 31 x 15
	357318888294083367780587267263211428546875000 t 22 x 21	-23068386039288974574146266938440837242968750000 t 23 x 18 +
	269958765098763940588462542502482645328945312500 t 24 x 15	-2537131474727900949349747901076993099485156250000 t 25 x 12	-
	29060008323400399465974418313549345719588476562500 t 26 x 9	-35224252513212605413302325228544661478289062500000 t 27 x 6	-
	809057049912852030586787782593135193329451904296875 t 28 x 3 +693477471353873169074389527936973022853815917968750 t 29 )x
	and			
	d(x, t) = (-x 45 +990 tx 42	-363825 t 2 x 39 +67567500 t 3 x 36	-6810804000 t 4 x 33 +445298879025 t 5 x 30	-8210637059625 t 6 x 27 +
	1121710685720625 t 7 x 24	-48406130360713125 t 8 x 21	-23885103343673446875 t 9 x 18 +1037875841064050113125 t 10 x 15	-
	23588549355427309378125 t 11 x 12	-305263579893765180187500 t 12 x 9	-9615802766653603175906250 t 13 x 6 +72118520749902023819296875 t 14 x 3 +
	72118520749902023819296875 t 15 ) 2
	is a rational solution to the KdV equation.

with n(x, t) = 90 (-x 87 + 1716 tx 84 -1302840 t 2 x 81 + 576298800 t 3 x 78 -167162670675 t 4 x 75 + 33671337950250 t 5 x 72 -4883313265330500 t 6 x 69 +532930720393071000 t 7 x 66 -41982352119903195000 t 8 x 63 +1899274320510672105000 t 9 x 60 -207739128318600056928750 t 10 x 57 +77654423659228702621335000 t 11 x 54 -14074843198552667114468259375 t 12 x 51 + 1353653968207045875528376968750 t 13 x 48 -83687105267491295623979425500000 t 14 x 45 +3232758461572985661403193106000000 t 15 x 42 -71106128573876049954454195744828125 t 16 x 39 + 1019021984277855554839081692265312500 t 17 x 36 -336338305543556803028411633143849218750 t 18 x 33 + 14179187914284365065814278734770343750000 t 19 x 30 -323539217779692473178173668096113772265625 t 20 x 27 +21325344406922787500973056498178776711718750 t 21 x 24 + 3-624573785325233253763889340202068598695109656368707018286132812500 t 32 x 12 -1761618368866042510616098139031475534781078517963019795166015625000 t 33 x 9 + 31709130639588765191089766502566559626059413323334356312988281250000 t 34 x 6 -19818206649742978244431104064104099766287133327083972695617675781250 t 36 and d(x, t) = (-x 54 + 1485 tx 51 -868725 t 2 x 48 + 269594325 t 3 x 45 -49165491375 t 4 x 42 + 5714434826100 t 5 x 39 -396365167823625 t 6 x 36 + 24418778773764375 t 7 x 33 -435655173246418125 t 8 x 30 -194269936514328675000 t 9 x 27 -40358223939201682263750 t 10 x 24 + 5744505548909944754437500 t 11 x 21 -290076716794050362473171875 t 12 x 18 + 1331101840126763068207593750 t 13 x 15 -209648539819965183242696015625 t 14 x 12 -3997298825900669493827404031250 t 15 x 9 + 179878447165530127222233181406250 t 16 x 6 + 3147872825396777226389080674609375 t 18 ) 2 x 2