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Revisiting and improving upper bounds for identifying codes∗

Florent Foucaud†‡ Tuomo Lehtilä§¶

November 11, 2022

Abstract

An identifying code C of a graph G is a dominating set of G such that any two distinct vertices
of G have distinct closed neighbourhoods within C. These codes have been widely studied for over
two decades. We give an improvement over all the best known upper bounds, some of which have
stood for over 20 years, for identifying codes in trees, proving the upper bound of (n+ ℓ)/2, where n
is the order and ℓ is the number of leaves (pendant vertices) of the graph. In addition to being an
improvement in size, the new upper bound is also an improvement in generality, as it actually holds
for bipartite graphs having no twins (pairs of vertices with the same closed or open neighbourhood)
of degree 2 or greater. We also show that the bound is tight for an infinite class of graphs and that
there are several structurally different families of trees attaining the bound. We then use our bound
to derive a tight upper bound of 2n/3 for twin-free bipartite graphs of order n, and characterize
the extremal examples, as 2-corona graphs of bipartite graphs. This is best possible, as there exist
twin-free graphs, and trees with twins, that need n− 1 vertices in any of their identifying codes. We
also generalize the existing upper bound of 5n/7 for graphs of order n and girth at least 5 when there
are no leaves, to the upper bound 5n+2ℓ

7
when leaves are allowed. This is tight for the 7-cycle C7 and

for all stars.

Keywords: Identifying codes; trees; bipartite graphs; upper bound

1 Introduction

An identifying code of a graph is a subset of its vertices that allows to distinguish all pairs of vertices
by means of their neighbourhoods within the identifying code. This concept is related to other similar
notions that deal with domination-based identification of the vertices/edges of a graph or hypergraph,
such as locating-dominating sets [27], separating systems [6, 7], or test covers [24], to name a few. These
types of problems have natural applications in fault-detection in networks [22, 28], biological diagnosis [24]
or machine learning [8].

A lot of the research in the area has been dedicated to understanding the behaviour of these types
of problems for graphs of specific graph classes, by proving lower and upper bounds on the smallest
cardinality of a solution. One of the simplest classes of graphs to consider is the one of trees, and indeed
a large number of papers in the area consider identifying codes of trees, see for example [1, 4, 5, 11, 17,
19, 21, 25, 26, 27]. We improve and generalize some of these results. As some of the best known bounds
(see Theorem 1), which are tight for some trees, have been around for more than twenty years, it is quite
surprising that we manage to improve the upper bound for the smallest size of identifying codes of trees
by a notable amount, with a quite simple proof. Moreover, our bounds do not only hold for trees, but
also for larger classes of graphs, in particular, bipartite graphs without twins of degree at least 2. We
also apply the new bound to get a new tight bound for graphs of girth at least 5.

∗A shorter version of the article has been presented at the 11th International Colloquium on Graph Theory and combi-
natorics, Montpellier, 2022.
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Notations and definitions. We consider connected finite undirected graphs on at least three vertices.
Let us first define some basic notations. A vertex u ∈ V (G) is said to be a leaf, that is, a pendant vertex,
if it has degree 1. A vertex v ∈ V (G) is said to be a support vertex if it is adjacent to a leaf. We denote
by L(G) the set of leaves and by S(G) the set of support vertices in graph G. Moreover, we denote the
number of leaves and support vertices by ℓ(G) = |L(G)| and s(G) = |S(G)|, respectively. A graph is
bipartite if it does not contain any odd cycles and it has girth g if the length of its smallest cycle is g. The
2-corona H◦2 of a graph H (defined in [20, Section 1.3]) is the graph of order 3|V (H)| obtained from H
by adding a vertex-disjoint copy of a path P2 for each vertex v of H and adding an edge joining v to one
end of the added path. We define the k-corona H◦k of H in an analogous way with Pk, for any k ≥ 1.

We denote by N(v) ⊆ V (G) the open neighbourhood of vertex v and by N [v] = N(v)∪ {v}, its closed
neighbourhood. If C is a set of vertices, or a code, and v, a vertex, we denote the intersection between
N [v] and code C by the I-set of v, I(C; v) = N [v] ∩ C. When code C is clear from the context, we use
I(v). Identifying codes were defined over twenty years ago in [22] by Karpovsky et al. and since then
they have been studied in a large number of articles, see [23] for an online bibliography. A set C ⊆ V (G)
is called an identifying code of G if for each pair of distinct vertices u, v ∈ V (G), we have that (i) they
are covered/dominated, that is, I(u) ̸= ∅ and I(v) ̸= ∅ and (ii) they are distinguished/separated, that is,
their I-sets are distinct, that is,

I(u) ̸= I(v).

The vertices of the code are called codewords. Two distinct vertices are open twins if their open neigh-
bourhoods are the same, and closed twins if their closed neighbourhoods are the same. A graph admits
an identifying code if and only if it has no pair of closed twins [22]; in that case we say the graph is
identifiable. Note that any connected bipartite (in fact, triangle-free) graph is identifiable, with the ex-
ception of the complete graph of order 2. We say that a graph is twin-free if it contains neither open nor
closed twins. Twins are important for identifying codes, indeed closed twins cannot be identified, and for
any set of mutually open twins, at most one can be absent from the identifying code. For an identifiable
graph G, we denote by γID(G) the smallest size of an identifying code of G.

Identifying codes and related concepts have been extensively studied for trees; in particular, lower and
upper bounds involving the number of leaves and support vertices have been proposed. Among these,
the following two (due to Gimbel et al. and Rahbani et al.) are the currently best known upper bounds.

Theorem 1 ([17, Theorem 15]). Let T be a tree on n ≥ 3 vertices. Then γID(T ) ≤ n+2ℓ(T )−2
2 .

Theorem 2 ([26, Theorem 11]). Let T be a tree on n ≥ 3 vertices. Then γID(T ) ≤ 3n+2ℓ(T )−1
5 . Equality

holds if and only if T = P4.

The bound in Theorem 1 is better when the tree has few leaves, while the bound in Theorem 2 is better
when there are many leaves. Both bounds are tight for the 4-vertex path P4, for which γID(P4) = 3.
Moreover, Theorem 1 is tight for any path on at least four vertices since γID(Pn) =

⌈
n+1
2

⌉
as proved

in [3, 17]. However, we will see that tightness only holds for this case and on some trees of odd order
with three leaves.

The following bound for graphs of girth at least 5 with no leaves was also proved by Balbuena et al.

Theorem 3 ([2, Theorem 13]). Let G be a graph of order n and girth at least 5 with minimum degree
δ(G) ≥ 2. Then γID(G) ≤ 5n/7.

Our results. Inspired by the aforementioned results from the literature, we present improved (and
tight) upper bounds. Our bounds not only improve on the known results for trees, but also hold for a
larger class of graphs: bipartite graphs which do not have any twins of degree 2 or greater. Observe that
this class of graphs contains, for example, the class of C4-free bipartite graphs.

In particular, we show in Theorem 6 that the bound γID(G) ≤ n+ℓ(G)
2 holds for every bipartite graph

G of order n which does not have any twins of degree 2 or greater. This bound is never larger than either
of the bounds of Theorems 1 or 2. In fact, Theorem 1 is only tight when ℓ(T ) ≤ 3. (Otherwise, one
can check that our bound is smaller, indeed then we have ⌊(n + ℓ(T ))/2⌋ < ⌊(n + 2ℓ(T ) − 2)/2⌋.) The
bound of Theorem 2 can be modified into the equivalent form γID(T ) ≤ (3n− 3ℓ(T )− 1)/5 + ℓ(T ). If we
similarly modify the bound of Theorem 6 to γID(T ) ≤ (n − ℓ(T ))/2 + ℓ(T ), then we can clearly observe
the improvement provided by our bound. Moreover, as opposed to the existing bounds, our bound is
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tight for a very rich class of graphs, in particular, for many trees: paths, stars, and more complicated
examples that will be described in Section 2.3. Our proof is also rather simple.

We also extend the bound γID(G) ≤ n − s(G) (even holding for identifying codes that are also total
dominating sets), which was known to hold for trees [19], to a class that includes all triangle-free graphs.
We also show that the slightly larger bound γID(G) ≤ n− s(G)+ 1 holds for all identifiable graphs. Both
bounds are tight.

We then apply two of the above upper bounds to twin-free bipartite graphs, showing that for such a
graph G of order n, we always have γID(G) ≤ 2n/3 (unless G is the path P4). Moreover, we characterize
those graphs reaching this bound, as the 2-coronas of bipartite graphs.

Finally, we extend the bound of Theorem 3 to all graphs of girth at least 5, showing that for such a

graph G of order n, we have γID(G) ≤ 5n+2ℓ(G)
7 . This bound is tight for all stars and for the cycle C7.

We also present a new infinite family of graphs of girth at least 5 which has largest known ratio γID(G)/n
for graphs with δ(G) ≥ 2.

We present our upper bounds for identifying codes in bipartite graphs in Section 2. The application to
twin-free graphs is presented in Section 3. The bound for graphs of girth at least 5 is proved in Section 4.
We conclude in Section 5.

Further related work. For a tree T of order n ≥ 4, the lower bounds γID(T ) ≥ 3(n−1)
7 [4, 17],

γID(T ) ≥ 2n−s(T )+3
4 [26] and γID(T ) ≥ 3n+ℓ(T )−s(T )+1

7 [5] have been proved.
We note that a polynomial-time algorithm to compute γID(T ) for a tree T has been provided in [1],

however the problem is hard to approximate within any sub-logarithmic factor even for bipartite graphs
with no 4-cycles [10] (bipartite graphs wihout 4-cycles do not have any twins of degree 2 or greater).
Identifying codes in graphs of girth at least 5 were also considered in [2, 15].

Many upper bounds for trees similar to those of Theorems 1 and 2 have been obtained for related
graph parameters. In particular, tight upper bounds on trees for identifying codes that are also total
dominating sets have been considered in [21, 25]. Similar results have also have been proved for the
related locating-dominating sets (where one only needs to distinguish pairs of vertices that are not part
of the solution set) [5, 9, 21] and their total dominating variant locating-total dominating sets [11].

Bounds for twin-free graphs have been studied for locating-dominating sets. It was proved in [16] that
every twin-free bipartite graph and every twin-free graph with no 4-cycles has a locating-dominating set
of size at most n/2; the bound is tight for infinitely many trees, which are characterized in [14]. It is
conjectured that this bound holds for all twin-free graphs [16].

2 Two upper bounds

In this section, we present our main result in Theorem 6. However, first we give some upper bounds
which are useful when the number of support vertices in G is large.

2.1 A first pair of upper bounds using the number of support vertices

Our first lemma holds for identifying codes that are also total dominating sets, that is, every vertex of the
graph has a neighbour in the dominating set [20]. A graph admits no total dominating set only if it has
isolated vertices. For an identifiable graph G with no isolated vertices, we denote by γID

t (G) the smallest
size of a total dominating identifying code of G. Total dominating identifying codes have usually been
called differentiating-total dominating sets in the literature, see for example [17, 19, 21, 25].

The following lemma has previously been proven for trees in [19]. We extend it to a larger class which
contains, for example, all triangle-free graphs (note that for every triangle-free graph G, G − L(G) is
identifiable, unless G− L(G) contains a component isomorphic to P2).

Lemma 4. Let G be a connected graph on n ≥ 4 vertices that is not the path P4, such that G− L(G) is
identifiable or G is triangle-free. Then

γID

t (G) ≤ n− s(G).

Proof. Let us choose for each support vertex u ∈ S(G) exactly one adjacent leaf v ∈ L(G) and say that
these vertices form the set C ′. Hence, |C ′| = s(G). Next, we form the code C = V (G) \ C ′. We show
that C is a total dominating identifying code in G. We have |C| = n− s(G).
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Observe that each non-codeword v is a leaf. Moreover, if u, v ∈ C ′ and I(C; v) = I(C;u) = {w}, then
w ∈ S(G) but we have chosen two vertices adjacent to w into C ′, a contradiction. Since C ′ ⊆ L(G),
G[C] is a connected induced subgraph of G. Moreover, as n ≥ 4, we have |I(C; c)| ≥ 2 for each codeword
c ∈ C. Thus, codewords and non-codewords have different I-sets. Furthermore, we have I(c) ̸= I(c′) for
two codewords c ̸= c′ since |V (G[C])| ≥ 3 (as G is not P4) and there are no triangles in G[C] or G[C] is
identifiable and hence, each closed neighbourhood is unique in G[C]. Finally, C is total dominating since
G[C] is connected.

Lemma 4 is tight for example for 3-coronas of graphs (but for these graphs the regular identifying
code number is smaller). It is also tight for both identifying codes and total dominating identifying codes,
by considering for example the 1-corona of any triangle-free graph of order at least 3, or any star of order
at least 4.

Moreover, we require the stated restrictions in the claim. For example, for the 1-corona Km◦1 of a
complete graph of orderm ≥ 3 (for whichKm◦1−L(Km◦1) is far from identifiable), we have γID

t (Km◦1) =
2m− 1 and not 2m− s(Km◦1) = m. Indeed, all vertices of the m-clique need to be in the code to totally
dominate the leaves. Moreover, for any two vertices of the clique, one of their two leaf neighbours needs
to be in the code to identify them, and hence γID

t (Km◦1) ≥ 2m− 1. Moreover, γID
t (Km◦1) ≤ 2m− 1 by

considering the whole vertex set except one leaf as a code.
The same example shows that the statement of Lemma 4 is also not true for identifying codes on

general graphs, as γID(Km◦1) = m + 1 and not 2m − s(Km◦1) = m. Indeed, as above, we need at
least m − 1 leaf codewords, to distinguish the vertices of the m-clique. Moreover, to distinguish leaves
from their neighbour support vertex, we need at least two codewords inside the m-clique. This implies
γID(Km◦1) ≥ m + 1. Conversely, consider L(G) together with any two vertices in the m-clique, and
remove a leaf neighbour of one of the clique code vertices: this set forms an identifying code of size m+1.

In the following theorem, we show that the previous construction is actually the worst case for iden-
tifying codes: in this case, a very similar upper bound as the one of Lemma 4 is true.

Theorem 5. Let G be a connected identifiable graph on n ≥ 3 vertices. Then

γID(G) ≤ n− s(G) + 1.

Proof. When s(G) ≤ 2, the claim is clear since γID(G) ≤ n− 1 for any connected identifiable graph on at
least three vertices [18]. Hence, we may assume that s(G) ≥ 3 which implies n ≥ 2s(G) ≥ 6, and so the
claim is true when n ≤ 5. Let us then prove the claim by induction on n. We thus assume that for any
graph G′ of order n′ ≤ n− 1, we have γID(G′) ≤ n′ − s(G′) + 1 and wish to prove it for graphs of order
n. We know that the claim is true for s(G) ≤ 2, thus we assume also that s(G) ≥ 3. If G′ = G−L(G) is
identifiable, then γID(G) ≤ n− s(G) by Lemma 4. Thus, we may assume that NG′ [u] = NG′ [v] for some
distinct vertices u, v in V (G′). Since G is identifiable, we have u or v ∈ S(G). Assume that u ∈ S(G)
and let Lu = N(u) ∩ L(G). Let us form graph Gu = G− u− Lu.

Observe that Gu is connected since NG′ [v] = NG′ [u]. Moreover, since s(G) ≥ 3 and G is identifiable,
also Gu is identifiable. Indeed, if NGu

[x] = NGu
[y] for some vertices y and x, then u separates them in

G, let us say, u ∈ NG[x] \ NG[y]. However, we have NG′ [u] = NG′ [v]. Hence, v ∈ NGu
[x] \ NGu

[y], a
contradiction, or v = x and y is a leaf in G which is adjacent to v but now NGu

[v] = NGu
[y] and Gu is a

path on two vertices which is impossible since then s(G) = 2. Notice that we have s(Gu) ≥ s(G)− 1 ≥ 2,
since we removed at most one support vertex. Since s(Gu) ≥ 2, Gu has order at least 4.

By the induction hypothesis, Gu has an identifying code of cardinality at most (n−1−|Lu|)−s(Gu)+
1 ≤ n − |Lu| − s(G) + 1. Let Cu be an identifying code with such cardinality. Let us first consider the
case with |Lu| ≥ 2. Now, we may take C = Cu ∪ Lu and it is an identifying code of G with at most
n− s(G) + 1 vertices, and we are done. However, if |Lu| = 1 and let us say that u′ is the leaf in Lu, then
just by adding u′ to Cu, we might have I(C;u) = I(C;u′). Let us divide this into two cases. First assume
that, I(Cu; v) ̸⊆ L(G), now I(v) ∩ N(u) ̸= ∅ and Cu ∪ {u′} is an identifying code in G of cardinality
at most n − s(G) + 1, as required. Hence, we may assume that I(Cu; v) ⊆ L(G). In this case we have
|I(Cu; v)| = |N(v)∩L(G)| ≥ 2. Now, to form code C, we may shift one codeword from N(v)∩L(G) to v
and add u to the code. The resulting code is identifying in G and has cardinality at most n−s(G)+1.
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2.2 A second upper bound using the number of leaves

Now, we prove an upper bound for identifying codes in some bipartite graphs based on the number of
leaves. In particular, this bound is an improvement for trees. Notice that the graphs in the following
theorem contain C4-free bipartite graphs.

Theorem 6. Let G be a connected bipartite graph on n ≥ 3 vertices which does not have any twins of
degree 2 or greater. We have

γID(G) ≤ n+ ℓ(G)

2
.

Proof. Let G be a connected bipartite graph on n ≥ 3 vertices which does not have any twins of degree 2
or greater. Let us fix a non-leaf vertex x ∈ V (G)\L(G) as the root of the graph. We present the bipartite
graph as a layered graph, so that vertex u is in layer i if d(x, u) = i. Observe that adjacent vertices have
different distances to the root x since G is bipartite. Our goal is to construct two identifying codes, and
to show that at least one of them has the claimed cardinality.

Let us first construct code C ′
e by choosing u ∈ C ′

e if d(x, u) is even, or if u ∈ L(G). Next we will shift
some codewords to construct an identifying code Ce. Observe that if u ∈ L(G) has an odd distance to
root x, then there is an adjacent support vertex v ∈ S(G) ∩ I(C ′

e;u). Let us first have Ce = C ′
e. We

modify code Ce by shifting some codewords in leaves according to following rule. If N(v) ∩ L(G) = {u}
and d(x, u) is odd, then we remove u from Ce and we add some vertex v′ ∈ N(v) with d(v′, x) = d(v, x)−1
to Ce (if v = x, we instead add some non-leaf vertex adjacent to x to Ce). We illustrate codes C ′

e and Ce

together with the shift in the left graph of Figure 1. We next prove that Ce is an identifying code in G.
If w ̸∈ L(G) is in layer i where i is odd, then w has at least two adjacent codewords and N(w) ⊆

I(Ce;w). Thus, w has a unique I-set since if I(w′) = I(w) for some vertex w′ ̸= w, then w′ is a non-leaf
in an odd layer and N(w′) ⊆ I(w). Thus, w and w′ are twins of degree at least 2, a contradiction.
Let us then consider the case where w ∈ L(G) and d(w, x) is odd; assume u ∈ S(G) is the adjacent
support vertex. Now, if |N(u) ∩ L(G)| ≥ 2, then I(w) = {w, u} and |I(u)| ≥ 3. Thus, I(w) is unique.
If |N(u) ∩ L(G)| = 1, then w ̸∈ Ce due to shifting and I(w) = {u}. However, |I(u)| ≥ 2 and hence,
I(w) is again unique. Let us then consider the case where d(w, x) is even. Now, w ∈ Ce and hence, if
I(w) = I(w′), then w′ ∈ N(w). But then d(w′, x) is odd and thus, I(w′) is also unique by our earlier
arguments. Thus, Ce is an identifying code in G.

As the second code, we construct C ′
o similarly as we constructed C ′

e, except that we choose vertices
in odd layers, that is, we have u ∈ C ′

o if d(x, u) is odd, or if u ∈ L(G). Then, we again use the shifting
to obtain the code Co. This time, we shift some codewords away from some leaves in even layers. Let
u ∈ L(G) be a leaf with d(u, x) even and v ∈ S(G) ∩N(u). Thus, the distance between vertices v and x
is odd and v ∈ C ′

o. Moreover, let, again, v′ ∈ N(v) be the vertex adjacent to v with d(v′, x) = d(v, x)−1.
Now, if N(v)∩L(G) = {u}, then we remove u from Co and add v′ to Co. Codes C

′
o and Co are illustrated

in the right graph of Figure 1 and they can be compared with the codes C ′
e and Ce. The proof that the

code Co is identifying is similar to the proof for Ce.
Thus, we have γID(G) ≤ min{|Ce|, |Co|} ≤ min{|C ′

e|, |C ′
o|}. Moreover, C ′

e and C ′
o both contain

every leaf and at least one of them contains at most half of the non-leaf vertices. Thus, γID(G) ≤
min{|C ′

e|, |C ′
o|} ≤ ℓ(G) + (n− ℓ(G))/2 = (n+ ℓ(G))/2.

x0

1

2

3

x

Figure 1: Gray circle and white square vertices form the codes C ′
e (left) and C ′

o (right). Arrows and
squared vertices depict the shifts in the forming of identifying codes Ce and Co which contain gray circled
and squared vertices.
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2.3 Remarks and consequences

Observe that the conditions (being bipartite and not having twins of degree 2 or greater) in the statement
of Theorem 6 are necessary. For example, we have γID(C4) = γID(C5) = 3, and when n ≥ 7 is odd, we
have γID(Cn) = ⌈n

2 ⌉+1 [17]; for a complete bipartite graph Kk1,k2
of order n, with k1 > k2 ≥ 2, we have

γID(Kk1,k2
) = n− 2.

The upper bound given by Theorem 6 is tight for quite a rich class of graphs that includes many
structurally different graphs. Those graphs include, for example, any path or even-length cycle with at
least six vertices [3], or any star on at least three vertices (for a star Sn of order n, we have γID(Sn) = n−1).
The bound is also tight for any spider graph where the length of each leg is odd (that is, a star whose
edges are subdivided an even number of times) and 2-coronas of bipartite graphs discussed in Theorem
10, as well as some other trees like the ones presented in Figure 2. It seems difficult to obtain a full
characterization of this family (even for trees), given the diversity of these examples.

Note that the same bound as the one in Theorem 6 has been proved for trees, in [11], for locating-total
dominating sets, and the trees reaching the bound are characterized therein. (A locating-total dominating
set is a set D of vertices such that each vertex of G has a neighbour in D, and any two vertices not in D
are separated by D. In other words, it is a locating-dominating set and total dominating set.) However,
the extremal families are not the same: for example, the trees of Figure 2 have locating-total dominating
sets smaller than the bound (examples of such sets are formed by the square vertices). Moreover, the
upper bound for locating-total dominating sets cannot be generalized in the same way to bipartite graphs
since the cycle C6 requires at least four codewords in the case of locating-total domination.

x0

1

2

3

x

Figure 2: The gray vertices form optimal identifying codes in these two trees, whose sizes are equal to
the bound presented in Theorem 6. The squared vertices form optimal locating-total dominating sets.

We get the following corollary of Lemma 4 and Theorem 6.

Corollary 7. Let G be a connected bipartite graph on n ≥ 5 vertices which does not have any twins of
degree 2 or greater. We have

γID(G) ≤ min

{
n+ ℓ(G)

2
, n− s(G)

}
.

3 An application to twin-free bipartite graphs

We next apply our bounds to obtain upper bounds for twin-free graphs. Similar upper bounds have been
studied in the context of location-domination, see [13, 14, 16].

Corollary 8. Let G be a twin-free bipartite graph on n ≥ 3 vertices that is not P4. Then

γID(G) ≤ 2n

3
.

Proof. SinceG is twin-free, we have s(G) = ℓ(G). Hence, Corollary 7 gives γID(G) ≤ min{(n+ℓ(G))/2, n−
ℓ(G)}. We first assume that ℓ(G) ≤ n/3. Then, (n+ ℓ(G))/2 ≤ 2n/3. Now, assume that ℓ(G) ≥ n/3. In
that case, n− ℓ(G) ≤ 2n/3. Thus, the claim follows.

Note that the conditions in the statement of Corollary 8 are best possible, in the sense that there
exist twin-free non-bipartite graphs that need n − 1 vertices in any of their identifying codes, such as
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the complements of half-graphs, see [12]. Those graphs have very large cliques, but there are twin-free
graphs with small clique number that also have large identifying codes: for any ∆ ≥ 3, arbitrarily large

twin-free graphs of order n, maximum degree ∆ and optimal identifying codes of size (∆−1)n
∆ have been

presented in [15]. The condition on twin-freeness cannot be relaxed either, as stars of order n also have
no identifying code smaller than n − 1, and all other complete bipartite graphs (except C4) need n − 2
vertices in their identifying codes. Moreover, this bound does not hold for non-bipartite graphs of girth
at least 5, since γID(C7) = 5.

We next show that the bound of Corollary 8 is tight.

Proposition 9. Let H be any connected graph of order at least 2. Then, the 2-corona H◦2 is twin-free
and γID(H◦2) = 2n/3, where n is the order of H◦2.

Proof. For any vertex v of H, let v1 be the vertex adjacent to v that was not in H, and let v2 be the leaf
adjacent to v1. To separate v1 from v2, v needs to belong to any identifying code of H◦2. Moreover, to
dominate v2, one of v1, v2 needs to belong to any identifying code. This shows that γID(H◦2) ≥ 2n/3.

For the upper bound, one can consider the set containing v and v2 for each vertex v of H: this is an
identifying code of H◦2. If H has at least three vertices, the set containing v and v1 for each vertex v of
H also works.

In the following theorem, we characterize all the twin-free bipartite graphs achieving the upper bound
of 2n/3 of Corollary 8 by showing that they are exactly the 2-coronas of bipartite graphs.

Theorem 10. Let G be a connected twin-free bipartite graph on n vertices with γID(G) = 2n/3. Then G
is the 2-corona H◦2 of some bipartite graph H.

Proof. Since G is twin-free, we have s(G) = ℓ(G). Together with Corollary 7 and the fact that γID(G) =
2n/3, this means that V (G) can be partitioned into three equal-sized parts:

s(G) = ℓ(G) = |V (G) \ (L(G) ∪ S(G))| = n/3.

We will call the vertices in V (G) \ (L(G) ∪ S(G)) central vertices.
Let us first assume that v is a central vertex without an adjacent support vertex. Notice that v has

at least two adjacent central vertices. Let us now construct code C ′ = V (G) \ (L(G) ∪ {v}). Clearly, v
and each leaf are distinguished. Moreover, since G is bipartite, all the codewords are distinguished (in
other words, G−{v}−L(G) is identifiable), unless there exists at least one 2-vertex component w,w′ in
G − {v} − L(G). One of w,w′ must be a central vertex adjacent to v, and the other, a support vertex.
Assume that w ∈ N(v) and let w′ be the support vertex in G. Now, we may just shift the codeword from
w′ to the leaf adjacent to w′ in G. Moreover, we repeat this shifting for every 2-vertex component of
G−{v}−L(G). Since v has at least two code neighbours, the code C we get in this way is identifying in
G and |C| = 2n/3− 1, a contradiction. Hence, we may next assume that each central vertex is adjacent
to a support vertex.

Let us now assume, that there exists a support vertex u such that it has at least two adjacent central
vertices u1 and u2. Then, we have n/3 central vertices but at most n/3− 1 support vertices with exactly
one adjacent central vertex. Hence, there exists a central vertex v such that each support vertex adjacent
to v has also another adjacent central vertex as a neighbour. Let us again choose C ′ = V (G)\(L(G)∪{v}).
Notice that |I(v)| ≥ 2, thus v and each leaf are distinguished. Moreover, we may apply the same argument
on G − {v} − L(G) as above and we may form C in the same way. Again, C is identifying in G and it
has cardinality 2n/3− 1, a contradiction.

Therefore, each support vertex is adjacent to exactly one central vertex and each central vertex is
adjacent to exactly one support vertex. Finally we only need to show that no two support vertices
are adjacent. If u,w ∈ S(G), d(u,w) = 1 and the central vertex adjacent to u is v, then the code
G− {v} −L(G) is again identifying in G, unless there exists a component of size two in G− {v} −L(G)
but in that case we can apply the earlier argument of shifting a codeword from a support vertex to a leaf
to get an identifying code. This means that (G− L(G)− S(G))◦2 = G and the claim follows.

4 Graphs of girth at least 5

In this section we prove our upper bound for graphs of girth at least 5, which generalizes Theorem 3. It
is natural to study these graphs here since bipartite graphs of girth at least 5 are contained in Theorem 6

7



and trees can be considered as graphs with unbounded girth. Notice that the new upper bound is tight
for C7 and stars. Moreover, it is the best possible bound, using only the order of graph n and the number
of leaves ℓ(G), in the sense that every non-leaf vertex has to increase the upper bound by 5/7 as witnessed
by the graph C7 and each leaf has to increase the upper bound by 1 as we have seen in the case of star
graphs. Besides a new upper bound, we also present a new infinite family of graphs of girth at least 5
which has large identifying codes.

Theorem 11. Let G be an identifiable graph of order n with girth at least 5 without isolated vertices.

Then γID(G) ≤ 5n+2ℓ(G)
7 .

Proof. It is sufficent to prove the claim for connected graphs as each connected component can be con-
sidered independently. Note that a graph of girth at least 5 is identifiable if and only if no connected
component is a P2. Thus, let G be a connected identifiable graph on n vertices of girth at least 5 without
isolated vertices.

We prove the claim by induction. Note that the upper bound can be written as (n− ℓ(G))5/7+ ℓ(G),
which will be used in this way in the proof. Assume first that n = 3 (n ≥ 3 since G is identifiable and
is not an isolated vertex). In this case, G is P3 and we have γID(G) = 2. Let us then assume that the
claim holds for all n with n ≤ k and let us consider n = k + 1. Observe that if G has minimum degree
at least 2 or if G is bipartite, then we are done by Theorems 3 and 6. Hence, we may assume that there
exists a vertex v ∈ V (G) such that v belongs to a cycle or there are two disjoint paths from v to two
cycles, and there is a cut-edge vu such that G− vu is disconnected and one of the components is a tree
Tu on nu ≥ 1 vertices which contains vertex u. We will perform a case analysis based on the structure of
this tree and the surroundings of v. The basic idea is to apply Theorem 6 on Tu and use the induction
hypothesis on Gu = G− Tu. Let us denote by Tv the tree G[V (Tu) ∪ {v}], Gv = G− Tv and let Cu and
Cv be an optimal identifying code in Gu and Gv, respectively.

We will use the following observations throughout this proof. (i) If a non-codeword is dominated by
two codewords, then it has a unique I-set, since G has girth at least 5. Indeed, if any other vertex has
those two codewords in its neighbourhood, then we have a 4-cycle. (ii) Similarly, we notice that if a
codeword has three or more vertices in its I-set, then this I-set is unique.

We will next consider five cases.

Case 1. Let us assume that Tu = K1, that is, it is a single leaf-vertex u attached to v. Moreover, let
us assume that v ̸∈ Cu. We have one vertex less and one leaf less, thus, by the induction hypothesis,
|Cu| ≤ (n − 1 − (ℓ(G) − 1))5/7 + ℓ(G) − 1 = (n − ℓ(G))5/7 + ℓ(G) − 1 and hence, C = Cu ∪ {u} has
cardinality at most (n − ℓ(G))5/7 + ℓ(G). Moreover, C is an identifying code of G since I(C;u) = {u}
and if I(x) = {u}, then x is not dominated by Cu, a contradiction. If v ∈ Cu and I(Cu; v) ̸= {v}, then
we may again consider code C = Cu ∪ {u}. If I(Cu; v) = {v}, then v has a non-codeword neighbour v′

in Gu. Now, instead of u, we add v′ to code Cu, that is, C = Cu ∪ {v′}. Observe that since Cu is an
identifying code in Gu, we have |I(C; v′)| ≥ 3 in G and thus, u is the only vertex with I(u) = {v} and
thus, it is separated from all other vertices. All other vertex pairs are separated by the vertices of Cu.

Case 2. Let us now assume that Tu is a star K1,nu−1 where nu ≥ 3. Let us assume first that u is the
central vertex of the star. In this case, ℓ(G) = ℓ(Gu) + nu − 1. Thus, we may just add all the nu − 1
leaves of Tu to Cu and the resulting code is an identifying code of the claimed cardinality. If u is one of
the leaves and u′ is the central vertex, then ℓ(G) = ℓ(Gu)+nu−2. However, we also increase the number
of non-leaf vertices by 2 when we transform Gu into G and hence, we may add ⌊nu − 2 + 10/7⌋, that is
nu − 1 = ℓ(Tu), codewords to Cu. If nu ≥ 4 (Tu is not a path), then we may add to Cu each vertex in
V (Tu) except u to form an identifying code. If nu = 3, then Tu is the path P3. If v ∈ Cu, then we add
vertices u and u′ to Cu and if v ̸∈ Cu, then we add the two leaves of Tu to Cu. In both cases we obtain
an identifying code of the claimed size.

Case 3. Let us now assume that nu − ℓ(Tu) ≥ 2 and γID(Tu) ≤ ⌊nu−ℓ(Tu)
2 ⌋ + ℓ(Tu) − 1. Let us denote

by C ′
u the optimal identifying code in Tu. If u ̸∈ C ′

u or v ̸∈ Cu, then we may just consider C = Cu ∪ C ′
u

as the identifying code and we are done. If v ∈ Cu and u ∈ C ′
u, then we may be required to do some

modifications to the code as we may have I(v) = I(u). Since we have ℓ(G) ≥ ℓ(Gu)+ℓ(Tu)−1 depending
on whether u ∈ L(Tu), we may just add some codeword u′ adjacent to u and we get an identifying code
Cu ∪ C ′

u ∪ {u′} of claimed cardinality. Indeed, we have
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5
n− ℓ(G)

7
+ ℓ(G)

≥5
(n− nu)− ℓ(Gu) + nu + 1− ℓ(Tu)

7
+ ℓ(Gu) + ℓ(Tu)− 1

≥|Cu|+
nu − ℓ(Tu)

2
+ ℓ(Tu)− 1 +

3(nu − ℓ(Tu)) + 10

14
>|Cu|+ |C ′

u|+ 1.

In the first inequality we use ℓ(G) ≥ ℓ(Gu)+ℓ(Tu)−1. We can do this since 5n−ℓ(G)
7 +ℓ(G) = 5n+2ℓ(G)

7 .

In the second inequality, we use the induction hypothesis with |Cu| ≤ 5n−nu−ℓ(Gu)
7 + ℓ(Gu). In the

third inequality, we use our assumption |C ′
u| ≤ γID(Tu) ≤ ⌊nu−ℓ(Tu)

2 ⌋ + ℓ(Tu) − 1 and the assumption

nu− ℓ(Tu) ≥ 2 to show that 3(nu−ℓ(Tu))+10
14 > 1. Hence, we may add the new codeword adjacent to u and

we are done.

Case 4. Let us now assume that nu−ℓ(Tu) ≥ 2 and γID(Tu) = ⌊nu−ℓ(Tu)
2 ⌋+ℓ(Tu). Notice that in this case

Theorem 6 provides a tight bound and we may assume that identifying code C ′
u of Tu has the structure

provided by the proof. In particular, we may assume that for any non-codeword w ∈ V (Tu) \ L(Tu),
we have |I(w)| ≥ 2. Moreover, we notice that Theorem 6 actually offers two identifying codes with

cardinalities ⌊nu−ℓ(Tu)
2 ⌋+ ℓ(Tu) and ⌈nu−ℓ(Tu)

2 ⌉+ ℓ(Tu). Moreover, if a vertex w is a non-codeword vertex
in one these codes, then it is a codeword in the other one, and if w is a codeword in both of them, then
it has an adjacent codeword in at least one of these codes.

Let us assume first that v ̸∈ Cu or u ̸∈ C ′
u. Then we may consider the identifying code C = Cu ∪C ′

u.
Since nu − ℓ(Tu) ≥ 2, this code has the desired cardinality. Thus, we may assume from now on that
u ∈ C ′

u and v ∈ Cu. We further split this case based on whether u ∈ L(Tu) (and the parity of nu−ℓ(Tu)).

Subcase 4.1: u ̸∈ L(Tu). In this case, if nu − ℓ(Tu) is even, Theorem 6 offers two identifying codes
with equal cardinalities and we may choose the code in which u is either a non-codeword or has adjacent
codeword(s) and we are done.

When nu − ℓ(Tu) is odd, we have to do some calculations since the two codes have cardinalities
nu−1−ℓ(Tu)

2 + ℓ(Tu) and
nu+1−ℓ(Tu)

2 + ℓ(Tu), respectively. However, even the larger of these two codes is

small enough. Indeed, nu+1−ℓ(Tu)
2 + ℓ(Tu)+5n−nu−ℓ(Gu)

7 + ℓ(Gu) = 5n−ℓ(G)
7 + ℓ(G)+ 3(ℓ(Tu)−nu)+7

14 . Since
nu − ℓ(Tu) is odd and at least 3, the last sum term is negative and hence, we may use either of the two
codes also in this case. Notice that since u ̸∈ L(Tu), we used ℓ(G) = ℓ(Gu) + ℓ(Tu).

Subcase 4.2: u ∈ L(Tu). In this case, we have ℓ(G) = ℓ(Gu) + ℓ(Tu) − 1. Moreover, we have

⌊nu−ℓ(Tu)
2 ⌋+ℓ(Tu) ≤ ⌊5nu+1−ℓ(Tu)

7 ⌋+ℓ(Tu)−1 when nu−ℓ(Tu) ≥ 2. Thus, code Cu∪C ′
u has the claimed

cardinality. Let u′ be the support vertex adjacent to u in Tu. If u′ ∈ C ′
u, then we may use Cu ∪ C ′

u as
our identifying code. Hence, let us assume that u′ ̸∈ C ′

u. Notice that if u′ has an adjacent leaf other than
u, then by the construction of C ′

u, |I(u′)| ≥ 3 and we can shift the codeword in u to u′. In fact, each
neighbour of u′ is a codeword in C ′

u since the structure of C ′
u is as in the proof of Theorem 6 and hence,

we may assume from now on that deg(u′) = 2.
If nu − ℓ(Tu) is even, then there is also another identifying code of the same cardinality as C ′

u in Tu

by the proof of Theorem 6. Moreover, this other code will have u′ as a codeword.
If nu − ℓ(Tu) is odd, consider the tree T ′ = Tu − u. We have ℓ(Tu) = ℓ(T ′), since deg(u′) = 2,

and hence, T ′ has an even number of non-leaves. If the optimal identifying code in T ′ has cardinality
nu−1−ℓ(Tu)

2 + ℓ(Tu), then there exist two codes of this size and in one of the codes, let us say in CT ′ , u′ is
a codeword. Now Cu∪CT ′ is an identifying code of G. On the other hand, if T ′ has a smaller identifying
code C ′

T ′ , then Cu ∪ C ′
T ′ ∪ {u′} is an identifying code of G of the correct size.

Case 5. We are left with the case where Tu is a path on two vertices. By applying the previous cases if
possible, we may assume that each leaf of G is part of a P2 which is joined with a single edge to some
vertex similar to v, belonging to a cycle or connected to at least two cycles. In particular, every support
vertex has degree 2. Since P2 is not identifiable, C ′

u does not exist. Let u′ be the leaf neighbour of u
in Tu. Observe that if v ∈ Cu, then we can consider the code Cu ∪ {u′}, which is identifying and of
the correct size. Thus, we assume that v ̸∈ Cu. In particular, if multiple P2’s are connected to v, v is
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forced to be a codeword in Cu to separate a leaf and its support vertex, and we are done. Hence, we may
assume that there is at most one support vertex adjacent to v in G. This implies that Gv is identifiable.
We further split this case based on the number of leaves in Gv.

If we have ℓ(Gv) < ℓ(G), that is, ℓ(Gv) = ℓ(G)−1, then we may consider the graphs Gv and the path
on three vertices formed by v, u and u′. If Cv ∩N(v) = ∅, then we may consider code C = Cv ∪ {v, u′}
and if Cv ∩N(v) ̸= ∅, then we may consider code C = Cv ∪ {v, u}. Both of these codes have the claimed
cardinality and they are identifying codes.

For the rest of the proof we may assume that ℓ(Gv) = ℓ(G). In other words, exactly one vertex
in NG(v) is a leaf in Gv, that is, it has degree 2 in G. Let us denote this vertex by v1 and by v′1
the second neighbour of v1. If deg(v′1) ≥ 3, then ℓ(Gv − v1) = ℓ(Gv) − 1 = ℓ(G) − 1. Let Cv1 be
an optimal identifying code in Gv − v1 (note that this graph is identifiable). By induction we have
|Cv1 | ≤ 5(n−4− ℓ(Gv)+1)/7+ ℓ(Gv)−1 = 5(n−3− ℓ(G))/7+ ℓ(G)−1. We may now consider the code
C = Cv1∪{v, u, u′}. This code has cardinality at most 5(n−3−ℓ(G))/7+ℓ(G)−1+3 < 5(n−ℓ(G))/7+ℓ(G)
and is an identifying code. Thus, we may assume that deg(v′1) = 2. Moreover, let us denote by Cv′

1
the

optimal identifying code in Gv′
1
= Gv − v1 − v′1 (note that this graph is also identifiable). Observe that

ℓ(Gv′
1
) ≤ ℓ(Gv). We now consider the code C = Cv′

1
∪ {u, v, v1}, which is identifying. It has cardinality

|C| ≤ 5(n− 5− ℓ(Gv′
1
))/7 + ℓ(Gv′

1
) + 3 ≤ 5(n− ℓ(Gv))/7 + ℓ(Gv) = 5(n− ℓ(G))/7 + ℓ(G).

For the rest of the proof we may assume that in Gv we have leaves v1 and v2 which are of degree 2
and adjacent to v in G. We know that deg(v) ≥ 3 in G. Let us construct tree T ∗

v by starting from Tv

and adding to Tv vertex v1, and iteratively, any vertex of degree 2 adjacent to the previous vertex. We
do this until we reach a vertex (denoted by w) that does not have degree 2. Let us denote by xt the last
vertex we add to T ∗

v in this way. It is possible that w = v, if we have a suitable cycle in G. In that case,
if t > 1, we do not include the final edge between v and xt. We denote by Pt the path from v1 to the
leaf xt in T ∗

v that is adjacent to w in G. Let Pt be the path on vertices x1, x2, . . . , xt where consecutive
vertices are adjacent and x1 = v1, and let us denote graph GP = G−Pt with an optimal identifying code
CP (note that this graph is identifiable). Notice that |V (GP )| ≥ 3 since it at least contains vertices v, u
and u′. Moreover, if |V (GP )| = 3, then G consists of a cycle, leaf and a support vertex. Now we may
choose some optimal identifying code for the cycle so that v is a codeword which gives us a case which
we have already considered. Hence, |V (GP )| > 3 and ℓ(GP ) = ℓ(G).

Let us further split this case into five subcases, based on the value of t.

Subcase 5.1: t ≥ 5. Recall that γID(Pt) = ⌈(t + 1)/2⌉ since t ≥ 5, [3]. Notice that v ∈ CP as
it is the only vertex which can separate u and u′. Assume first that t is even. In that case |CP | +
γID(Pt) ≤ 5(n − t − ℓ(GP ))/7 + ℓ(GP ) + t/2 + 1 = 5(n − ℓ(G))/7 + ℓ(G) + (14 − 3t)/14. We will use
code {x2, x4, . . . , xt−2, xt−1, xt} for the path. Together with CP it has the claimed cardinality and is
identifying in G (notice that I(x1) = {v, x2}).

Let us then consider the case where t ≥ 5 is odd. As above, we get that |CP | + γID(Pt) ≤
5(n − t − ℓ(GP ))/7 + ℓ(GP ) + (t + 1)/2 = 5(n − ℓ(G))/7 + ℓ(G) + (7 − 3t)/14. We may use set
{x2, x4, . . . , xt−3, xt−2, xt−1} together with CP . Therefore, we may now assume that t ≤ 4.

Subcase 5.2: t = 4. When t = 4, we can add two codewords to CP to form a code in G since 4 ·5/7 ≥ 2
and ℓ(G) = ℓ(GP ). Recall that v ∈ CP and that x1 = v1. If w ̸∈ CP , we add x2, x4 on Pt to CP . If
w ∈ CP , then, if u

′ ∈ CP , we shift it to u and after that add codewords x1, x3. Notice that to dominate
u′ at least one of u and u′ is a codeword of CP .

Subcase 5.3: t = 3. When t = 3, we can again add two codewords since 3 · 5/7 ≥ 2. The codewords
we add are x1 and x2.

Subcase 5.4: t = 2. When t = 2, we can add at most one codeword. Again we shift the codeword
possibly in u′ to u and after that add vertex x1 as a codeword.

Subcase 5.5: t = 1. Consider the graph G∗ = G−v1−u′ (which is identifiable) with optimal identifying
code C∗. We have ℓ(G) = ℓ(G∗) since v1 has degree 2 and has no adjacent vertices of degree 2. Hence,
if we can construct an identifying code C for graph G by adding at most one codeword to C∗, then C
has the claimed cardinality. Observe that at least one of u and v belongs to code C∗ to dominate u.
Moreover, we have |I(v)| ≥ 2 as one vertex is needed to separate u, v.

Let us assume first that v ̸∈ C∗ and u ∈ C∗. In that case, we can consider code C∗ ∪ {v} for G. Now
I(u′) = {u} and if I(v1) = I(z), then v ∈ I(z) and hence, |I(z)| ≥ 2 since z was dominated by C∗. Since
z is 2-dominated, v1 and z are separated. Thus, C is an identifying code.
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Consider then the case with v, u ∈ C∗. In this case, we consider code C = C∗ ∪ {v1}. Clearly I(u′)
is unique and v1 and v are the only vertices with v1 and v in their I-sets. Since u ∈ I(v), also I(v1) is
unique. Hence, C is an identifying code.

Finally, we are left with the case v ∈ C∗ and u ̸∈ C∗. We consider the code C = C∗ ∪ {u}. Again
I(u′) is unique. Moreover, in G∗ vertex u is the only vertex whose I-set is {v}. Thus, if I(v1) = {v},
then v1 is separated from every other vertex and if |I(v1)| ≥ 2, then I(v1) is clearly unique. Thus, C is
an identifying code of claimed cardinality in G. As this was final case, we have now proven the claim.

In [2], the authors have constructed an infinite family of connected graphs without leaves which have
girth at least 5 and γID(G) = 3(n − 1)/5, where n is the order. To date, this infinite family of graphs
features the largest known ratio between γID(G) and the number of vertices, among graphs without leaves
and with girth at least 5 (apart from some small examples such as the 7-cycle). The interest to these kinds
of constructions is due to the fact that Theorem 3 is tight only for the 7-cycle and so, perhaps there exists
a way to improve the bound for connected graphs by excluding the 7-cycle as a single exception. New
constructions which increase the ratio γID(G)/n give new limits to how much the bound of Theorem 3
could possibly be improved. In the following proposition, we give a new infinite family of such graphs
which offers the largest known ratio for γID(G)/n for graphs of girth at least 5 with no leaves.

x1 x2 xk

v1 v2 vk

Figure 3: Graph G of girth 7 with no leaves, on 8k+ 1 vertices with γID(G) = 5k. Gray vertices form an
optimal identifying code.

Proposition 12. For each integer k ≥ 1, there exists a connected graph G on n = 8k + 1 vertices with

γID(G) = 5k = 5(n−1)
8 .

Proof. Let k ≥ 1 be an integer and let us construct graph G by taking a star K1,k and by attaching a
unique 7-cycle to each leaf of the star with a single edge. The resulting graph has k + 1 + 7k = 8k + 1
vertices. Let us denote the leaves of K1,k by x1, . . . , xk and vertices in the 7-cycles adjacent to them by
v1, . . . , vk. Graph G is illustrated in Figure 3.

Let us now consider the identifying code number of G. Let C be an optimal identifying code. We
claim that there are at least five code vertices among the eight vertices in xi and the 7-cycle attached
to it. Recall that we have γID(C7) = 5. Thus, if xi ̸∈ C, then we have at least five code vertices in the
7-cycle. Assume then that xi ∈ C and that there exists a set C ′ of three vertices in the 7-cycle such
that C ′ ∪{xi} dominates and distinguishes all of these vertices. If I(vi) = {xi}, then C ′ is an identifying
code for C7 − vi. However, C7 − vi is a 6-path P6 and we have γID(P6) = 4, a contradiction. Hence, C ′

is a dominating set of C7. Since C ′ ∪ {xi} distinguishes every vertex in C7 and γID(C7) = 5, we have
N [vi] ∩ C ′ = N [w] ∩ C ′ for some w ∈ V (C7) and there are no other vertices with the same I-sets. Let u
be a vertex in N [w] \N [vi]. Now C ′ ∪ {u} is an identifying code of size 4 in C7, a contradiction. Thus,
γID(G) ≥ 5k.

Finally, we show that γID(G) ≤ 5k. To construct an identifying code C, we choose vertices xi and vi
for each i, and for each vertex vi we choose one adjacent vertex wi in the cycle and then we choose two
additional code vertices u1 and u2 in each cycle so that I(ui) = {ui}. This code is depicted with gray
vertices in Figure 3. One can easily check that the code is indeed identifying.
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5 Concluding remarks

We have improved several bounds from the literature, both in terms of the values of the bounds, and/or
in terms of the generality of the considered graph classes. Our bounds confirm the known facts that
certain structural graph features such as leaves, twins or short cycles are crucial for a graph to have a
large identifying code. By considering the number of leaves on graphs other than trees, our bounds enable
us to quantify the effect of these structures on the identifying code number.

In Section 2, we have given a new tight upper bound γID(G) ≤ (n + ℓ(G))/2 for bipartite graphs
without twins of degree two or greater. We have characterized all twin-free graphs attaining this bound.
However, it would be interesting to see a characterization for all graphs attaining the bound.

Our bound γID(G) ≤ 5n+2ℓ(G)
7 from Theorem 11 for graphs of girth at least 5 is tight for stars, the

path P4 and the 7-cycle. However, we do not know of any other tight examples. Perhaps this bound can
be extended by considering other structural properties of the graph, to give a bound that is tight for a
more diverse class of graphs. Perhaps it can also be improved by excluding the 7-cycle as an exception?
We have shown in Proposition 12 that there are arbitrarily large connected twin-free graphs of girth 7
without leaves with γID(G) = 5(n− 1)/8, hence such an improved bound could not be less than that.

More generally, it would be interesting to see whether other bounds can be proved for graphs of

larger girth. For example, perhaps a stronger version of the bound γID(G) ≤ 5n+2ℓ(G)
7 (for graphs of

girth at least 5) of Theorem 11 can be proved for graphs of girth at least g with g ≥ 9. As we have
γID(Cg) = (g + 1)/2 + 1 for odd g, such an upper bound cannot be less than that.
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[9] N. Bousquet, Q. Deschamps, T. Lehtilä and A. Parreau. Locating-dominating sets: from graphs to
oriented graphs. To appear in Discrete Mathematics, 2022. https://doi.org/10.1016/j.disc.
2022.113124

[10] N. Bousquet, A. Lagoutte, Z. Li, A. Parreau and S. Thomassé. Identifying codes in hereditary
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