Antonios Achilleos

Léo Exibard

Adrian Francalanza

Karoliina Lehtinen

Jasmine Xuereb

A Synthesis Tool for Optimal Monitors in a Branching-Time Setting

Keywords: Runtime Verication, Monitor Synthesis, Branching-time specications

Monitorability is a characteristic that delineates between the properties that can be runtime veried by a monitor and those that cannot. Existing notions of monitorability for branching-time specications are quite restrictive, limiting the set of monitorable properties to a small logical fragment. A recent study has enlarged the set of monitorable branching-time properties by weakening the requirements expected of the monitors eecting the verication: it denes a novel notion of optimal monitor that carries out the maximum number of detections that can be eected for any property, thereby turning a branching-time property into a monitorable one. The study also outlines a method for obtaining a unique optimal monitor from any branching-time property but falls short of providing an automation for this procedure. In this paper, we present a prototype tool that generates monitorable properties for branchingtime properties expressed in a variant of the modal µ-calculus, based on this procedure. We also assess the performance of the prototype tool by evaluating its performance against several specications.

Introduction

Runtime Verication (RV) is a lightweight verication technique that checks whether a system satises some correctness property [START_REF] Bartocci | Introduction to Runtime Verication[END_REF]. This is achieved using monitors [?], which are computational entities that run alongside the system to incrementally observe its behaviour, agging acceptance or rejection verdicts whenever they detect property satisfactions or violations. When compared to other verication techniques, RV is constrained by the fact that monitors base their analysis on the current system execution being observed. This complicates the verication of correctness properties describing aspects such as innite executions or alternative execution paths, the evidence of which is hard to represent in a (nite) execution trace. These monitorability limits were extensively studied in [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF] for branchingtime properties expressed in recHML [START_REF]Reactive Systems : Modelling, Specication and Verication[END_REF], a variant of the modal µ-calculus. There, the authors describe what should be demanded of monitors to adequately runtime verify properties. The rst monitor requirement is soundness, meaning that whenever a monitor ags an acceptance or a rejection verdict, the system must respectively satisfy or violate the property. Since monitors that may ag both acceptance and rejection verdicts (called multi-verdict monitors) are generally inconsistent in the branching-time setting [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF], the second monitor requirement is a weaker form of the dual of soundness, termed partial completeness. This means that monitors must be able to either reach a verdict for all property satisfactions or all property violations.

In this study, we focus on monitors that can only ag rejections. The properties for which such monitors can reject all violations are called rejectionmonitorable (hereafter simply called monitorable), and they are precisely the known class of safety properties [5] as all of their violations can be detected within a nite sequence of events. This set of monitorable properties is characterised by a maximally expressive syntactic fragment of recHML, termed sHML [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF]. In other words, a formula is semantically equivalent to another one in this fragment if and only if it can be runtime veried.

Example 1. A system operating a coee machine produces three events; insert money (m), output coee (c), and grind more coee beans (g). Suppose that this system is expected to satisfy the following specication:

The coee machine cannot produce event g (grind) immediately after event c (coee).

(S 1)

Specication S 1 can only be violated if the system can exhibit event c followed by event g. Such a violation can always be witnessed by a nite execution, which, in turn, implies that S 1 is monitorable.

In all executions, the coee machine eventually produces event c, but not before m (money).

(S 2)

Consider specication S 2 above. It can be violated either (i) if the system never generates event c or (ii) it generates c before m. Suppose the monitor observes the sequence of events mgmgmg • • • . Although event c will never be generated, a monitor runtime verifying this property cannot ag a violation because despite not having observed c yet, it cannot tell whether it might observe it in the future. Put otherwise, observing a nite execution does not provide the monitor with enough information to detect the violation in (i). This implies that S 2 is not monitorable since no monitor can detect all violating systems.

As indicated by the limited syntax of sHML, restricting RV to monitorable properties severely limits its applicability. Indeed, many properties (such as S 2 above) still fall outside of this scope as some violations cannot be determined from nite system executions. Two possible approaches to extend these monitorability limits are weakening the correctness requirements expected of the monitors eecting the verication or increasing the monitors' observational power. We focus on the rst approach, which was studied in [START_REF] Aceto | The Best a Monitor Can Do[END_REF]. In that work, the authors dene a novel notion of optimal monitors, which ag all possible violations that can be determined with a nite sequence of events. More concretely, these monitors runtime verify the part of the property that is monitorable, termed the strongest monitorable consequence.

Example 2. Although specication S 2 from Example 1 is not monitorable, it turns out that some of its violations can be detected. In particular, a violation can be agged from a nite execution whenever a sequence of events with prex g • • • gc is observed since c occurs before m. Rather than ruling out S 2 as not monitorable and disregarding its runtime verication altogether, we extract its strongest monitorable consequence, informally described by specication S 3 .

In all executions, the coee machine never produces c before m.

(S 3)

Clearly, specication S 3 is weaker than S 2 , but it gives the best monitorable approximation of the original specication.

The work in [START_REF] Aceto | The Best a Monitor Can Do[END_REF] outlines a two-step procedure to eectively construct an optimal monitor for branching-time recHML properties, expressed in disjunctive form [START_REF] Walukiewicz | Completeness of Kozen's Axiomatisation of the Propositional mu-Calculus[END_REF]. This procedure rst extracts the strongest monitorable consequence, which is formulated in sHML, then synthesises a sound and complete monitor to eect the runtime verication. However, the work in [START_REF] Aceto | The Best a Monitor Can Do[END_REF] falls short of providing an automation for this procedure.

In this study, we investigate whether the procedure in [START_REF] Aceto | The Best a Monitor Can Do[END_REF] is amenable to mechanisation. To date, there are several automated monitor synthesis procedures that generate sound and complete monitors: one such tool is detectEr [START_REF] Attard | Better Late Than Never or: Verifying Asynchronous Components at Runtime[END_REF]. However, like all known synthesis procedures [START_REF] Attard | Better Late Than Never or: Verifying Asynchronous Components at Runtime[END_REF][START_REF] Attard | A Monitoring Tool for a Branching-Time Logic[END_REF][START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF], this tool is only dened for sHML, and thus fails to generate monitors for properties that are either unmonitorable or not expressed in this fragment. To this end, our nal aim is to build a toolchain that takes an arbitrary recHML formula ϕ, generates its disjunctive form ϕ , and after extracting its strongest monitorable consequence ϕ , synthesises an optimal monitor m, as outlined in Figure 1. We leave the rst phase for future work and focus on the second one, represented by the component labelled SMC. The third phase will be handled by the detectEr tool. Our contributions are two-fold:

1. In Section 3, we present a prototype tool that generates the strongest monitorable consequence for arbitrary branching-time properties expressed in disjunctive recHML, based on the procedure proposed in [START_REF] Aceto | The Best a Monitor Can Do[END_REF]. 2. In Section 4, we assess the performance of the implemented prototype tool against several specications. We assume a nite set of actions a, b, . . . ∈ Act and processes p, q . . . ∈ Prc.

The triple Prc, Act, -→ forms a Labelled Transition System (LTS), where -→⊆ (Prc, Act, Prc) is a transition relation and (p, a, q) ∈-→ is denoted by the suggestive notation p a -→ q. Traces are nite or innite sequences of actions, t, u ∈ Act * ∪Act w , and we say that process p produces trace t if there exists a sequence of transitions p a

-→ q b - → • • • for t = ab • • • . Specications (or properties)
are dened as sets of processes, P, Q, R ∈ P(Prc), where P is a consequence of Q when Q ⊆ P .

The Specication Logic

In this RV set-up, we presuppose a specication logic to unambiguously describe the behaviour expected from the system under scrutiny, i.e., the properties of states in the respective LTS. Properties are formulated in recHML, allowing a good level of generality of the obtained results. This set of formulae assumes a countably innite supply of recursion variables X, Y, . . . ∈ LVar and is built using the actions in Act, as described in Figure 2. On the other hand, the semantics of recHML is given by the set of processes that satisfy each formula. We write ϕ, ρ to denote the set of processes that satisfy ϕ given an interpretation ρ of the free variables of the formula ϕ where ρ : LVar P(Prc). The notation ρ[X → P] represents an interpretation ρ such that ρ (X) = P and ρ (Y) = ρ(Y) for all Y = X. A process satises the universal modality [a]ϕ if all the states that it can reach after performing an a-labelled transition satisfy ϕ. Conversely, the existential modality a ϕ is satised by the processes that can perform at least one a-labelled transition and reach a state that satises ϕ. The xed point in min X.ϕ and max X.ϕ binds all the free occurrences of X in ϕ, and we assume that for each recursion variable, there is only one such formula binding it. We call the subformula ϕ the binding formula of X and denote it as ϕ X . Intuitively, these least and greatest xed points allow for recursion, whereby they can be respectively interpreted as reachability and invariance. Example 3. Specication S 2 from Example 1 for Act = {c, g, m} is formalised as formula ϕ 2 below.

ϕ 2 = min Y .[c] ∧ [g]Y ∧ [m]ϕ 1 where ϕ 1 = min X.([m]X ∧ [g]X) ∨ c tt
While the inner least xed point in ϕ 2 (i.e., formula ϕ 1) ensures that the system eventually produces a c event, the outermost least xed point prohibits it from happening before the rst occurrence of m.

Monitorability in recHML

A translation procedure known as monitor synthesis generates computational entities, termed monitors, from correctness specications. These monitors are recHML Syntax ϕ, ψ ∈ recHML ::= tt (truth)

| (falsehood) | ϕ ∨ ψ (disjunction) | ϕ ∧ ψ (conjunction) | a ϕ (existential modality) | [a]ϕ (universal modality) | min X.ϕ (least xed point) | max X.ϕ (greatest xed point) | X (recursion variable) Branching-Time Semantics tt, ρ def = Prc , ρ def = ∅ [a]ϕ, ρ def = p | ∀q • p a -→ q implies q ∈ ϕ, ρ ϕ ∨ ψ, ρ def = ϕ, ρ ∪ ψ, ρ a ϕ, ρ def = p | ∃q • p a -→ q and q ∈ ϕ, ρ ϕ ∧ ψ, ρ def = ϕ, ρ ∩ ψ, ρ min X.ϕ, ρ def = P | ϕ, ρ[X → P] ⊆ P X, ρ def = ρ(X) max X.ϕ, ρ def = P | P ⊆ ϕ, ρ[X → P]
Fig. 2: The syntax and semantics of recHML in the branching-time setting.

then instrumented to run alongside the system and ag a verdict once they have observed sucient runtime behaviour: an acceptance if the system satises the specication and a rejection if it violates it. These monitoring outcomes are assumed to be denite and irrevocable. In the branching-time setting, multiverdict monitors (i.e., monitors that may output both acceptance and rejection verdicts) are inconsistent [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF]Theorem 2]. Therefore, we restrict our study to single-verdict monitors. To simplify the exposition, we focus on rejection monitors, i.e., monitors that can only ag rejections. Monitors m, n ∈ Mon can be described as sux-closed sets of traces m, n ⊆ Act * that witness property violations [START_REF] Aceto | An Operational Guide to Monitorability[END_REF][START_REF] Amorim | Ecient Monitoring of omega-Languages[END_REF], where Mon is the set of all possible monitors. More concretely, monitor m rejects process p, denoted as rej(m, p), if p produces a trace in m. Denition 1 (Monitorability [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF]). A specication P is monitorable if there exists some m ∈ Mon that is:

1. sound for specication P, i.e., for all p ∈ Prc, rej(m, p) implies p / ∈ P ; 2. complete for specication P, i.e., for all p ∈ Prc, p / ∈ P implies rej(m, p).

Since monitors can only observe nite prexes of a trace, several logical formulae from Figure 2, such as property ϕ 2 in Example 3, are not monitorable. Indeed, the work in [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF] shows that the subset of formulae in recHML that is monitorable is characterised by the syntactic fragment sHML.

Theorem 1 (Safety Fragment [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF]). Formula ϕ ∈ recHML is monitorable i it is equivalent to a formula in the syntactic fragment sHML dened as below:

ϕ, ψ ∈ sHML ::= tt | | [a]ϕ | ϕ ∧ ψ | max X.ϕ | X

Extending the Limits of Monitorability

The syntax of sHML is restricted and, indeed, many recHML formulae are not monitorable [START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF]. However, this should not deter our eorts, since, in general, a part of those properties could be amenable to monitoring. For instance, although specication S 2 from Example 2 is not monitorable, specication S 3 (which is its consequence) is monitorable. Following a best-eort strategy, the work in [START_REF] Aceto | The Best a Monitor Can Do[END_REF] denes the notion of an optimal monitor that aims at capturing the best monitor among all possible sound monitors for a given property. There, the authors also show that such a monitor actually runtime veries the strongest monitorable consequence of that property. In the rest of this section, we give an overview of those results as they form the theoretical foundation of our prototype tool.

Denition 2 (Optimal Monitor [START_REF] Aceto | The Best a Monitor Can Do[END_REF]). Monitor m is optimal for property P whenever:

1. it is sound for P;

2. for all n ∈ Mon, if n is sound for P then n ⊆ m.

Optimal monitors can be characterised in terms of the strongest monitorable consequence of the specication for which they are monitoring. In turn, this allows us to establish a correspondence between the two. Denition 3 (Strongest Monitorable Consequence [START_REF] Aceto | The Best a Monitor Can Do[END_REF]). The strongest monitorable consequence of specication P is a property Q that is monitorable such that:

1. it is a consequence of P, i.e., P ⊆ Q; 2. for any R that is monitorable, if P ⊆ R then Q ⊆ R.

Example 4. Properties ϕ 1 and ϕ 2 from Example 3 are not monitorable, and thus cannot be expressed in sHML. However, their strongest monitorable consequences can be respectively formalised as ϕ 3 = tt and

ϕ 4 = max Y .[c] ∧ [g]Y .
In such cases where the strongest monitorable consequence of a property is tt, then it is impossible to detect any violations from a nite prex.

Theorem 2 ([4]

). A monitor m ∈ M that is sound for P is optimal for P i it is sound and complete for the strongest monitorable consequence of P .

From Theorem 2, we elaborate a two-step procedure to construct the optimal monitor for a property that rst extracts its strongest monitorable consequence and then synthesises a sound and complete monitor for it. In this study, we focus on the former as the latter will be handled by the detectEr tool.

Design and Implementation

In this section, we give a detailed overview of the algorithm that constructs the strongest monitorable consequence of arbitrary recHML formulae, following closely the procedure laid out in [START_REF] Aceto | The Best a Monitor Can Do[END_REF]. This construction consists of three steps: eliminating existential modalities, eliminating least xed points, and eliminating disjunctions. Since these constructs are sources of non-monitorability, removing them from a recHML formula yields a formula which can be shown to be the strongest monitorable consequence. This procedure relies on two crucial assumptions, namely that formulae are in disjunctive form and all subformulae are satisable, with the exception of . We thus proceed to give all the necessary technical developments before delving into the implementation details.

Disjunctive Form

For a nite set of formulae Γ , we use the standard notation Γ to denote the conjunction of all the formulae in Γ . Similarly, Γ denotes the disjunction of all the formulae in Γ . As usual, ∅ denotes tt and ∅ denotes . Denition 4 (Disjunctive Form [START_REF] Walukiewicz | Completeness of Kozen's Axiomatisation of the Propositional mu-Calculus[END_REF]). The set of recHML formulae in disjunctive form is given by the following grammar:

ϕ, ψ ∈ disHML ::= tt | | ϕ ∨ ψ | a∈A   (ϕ∈Ba a ϕ) ∧ [a] ϕ∈Ba ϕ   | min X.ϕ | max X.ϕ | X
where A ⊆ Act and B a ⊆ disHML is a nite set of formulae, where a ∈ A.

The conjunctions in disjunctive form denote that for each action a ∈ A, all formulae in B a are satised by some a-successor, and all a-successors satisfy a formula in B a . The intuition behind this representation is to push conjunctions as far as possible towards the modalities to explicitly describe the interaction between conjuncts. As will be demonstrated in Section 3.2, this is crucial for constructing the strongest monitorable consequence.

Example 5. Consider formula

ϕ 5 = [c][g] ∧ [c](g tt ∨ [c]), whereby the subfor- mula g tt ∨ [c] represents the implication [g] =⇒ [c].
The conjuncts in ϕ 5 respectively describe the specications g cannot occur immediately after c and if after c, g cannot occur, then c cannot occur either. This property is not in disjunctive form, but it is equivalent to the the disjunctive formula ϕ 6 below, which describes the local behaviour after c, neither c nor g can occur.

ϕ 6 = [c] ∨ c ([g] ∧ [c]) ∧ [c]([g] ∧ [c])
Walukiewicz [START_REF] Walukiewicz | Completeness of Kozen's Axiomatisation of the Propositional mu-Calculus[END_REF] presents a procedure for constructing an equivalent disHML formula from any recHML one. However, in this paper, we focus on the computation of the strongest monitorable consequence and leave the conversion to disjunctive form for future work. The work in [START_REF] Walukiewicz | Completeness of Kozen's Axiomatisation of the Propositional mu-Calculus[END_REF] also shows that satisability checking is linear; in our tool, all unsatisable subformulae are reduced to in a single pass. Example 6. For the rest of this section, we use the following running example. Assume that Act = {c, m} and consider ϕ

7 = (max X.[c]X ∧[m])∧(c tt∨[m]).
This formula describes the property m never occurs, and if c cannot occur, then m cannot occur either. Its equivalent disjunctive form is given by ϕ 8 below.

ϕ 8 = ([c] ∧ [m]) ∨ ([m] ∧ c ϕ 8 ∧ [c]ϕ 8)
where

ϕ 8 = max X.([c] ∧ [m]) ∨ (c X ∧ [c]X ∧ [m])

Step 1: Eliminating Existential Modalities

In the rst step, all occurrences of the existential modalities in the disjunctive formula are eliminated by replacing them with tt. Intuitively, this step is necessary since the non-existence of an a-successor, which would violate formulae of the form a ϕ, cannot be identied by observing a single execution.

Remark 1. Disjunctive form is crucial for this step. Applying this transformation to ϕ 5 from Example 5 yields

[c] [g] ∧ (tt ∨ [c]) , which can be simplied to [c][g].
However, this is not the best approximation as the strongest monitorable consequence obtained from its disjunctive form,

ϕ 6 , is [c][c] ∧ [c][g].
Example 7. Given formula ϕ 8 from Example 6, the algorithm automating this step returns the formula ϕ 9 below.

ϕ 9 = [c] ∧ [m] ∨ [m] ∧ tt ∧ [c]max X.([c] ∧ [m]) ∨ (tt ∧ [c]X ∧ [m])
It is not hard to see that this induces several redundant terms. However, we ignore them for now as they will be handled in the ensuing step.

Step 2: Eliminating Least Fixed Points

The second step consists of transforming all least xed points into greatest xed points. Indeed, the only way to detect a violation of a least xed point at runtime is to nd a violation with a nite sequence of events, which is equivalent to detecting a violation of a greatest xed point. We directly automate this by replacing all subformulae of the form min X.ϕ with max X.ϕ.

This step, together with the previous one, induces several redundant subformulae, which, in turn, introduce a signicant amount of unnecessary computation in the ensuing step. To this end, our algorithm recursively simplies the resulting formula based on the axioms below, where A ⊆ Act, in the following order of precedence: (A1), (A2), . . ., (A6).

(A1) ϕ ∨ tt tt (A2) ϕ ∧ tt ϕ (A3) [a]tt tt (A4) max X.tt tt (A5) max X.X tt (A6) max X. a∈A [a]X tt Γ ∪ {} Γ (ff) Γ ∪ {tt} {tt} (tt) Γ ∪ {[a]ψ, [b]ϕ}, a = b {tt} ([a, b])
Fig. 3: Tableau rules where Γ is a formula set.

Example 8. Formula ϕ 9 from Example 7 does not have any least xed points. Therefore, during the rst pass, the algorithm automating this transformation leaves the formula unchanged. The second pass then returns the simplied formula with respect to the axioms (A1) to (A6), resulting in ϕ 10 below.

ϕ 10 = [c] ∧ [m] ∨ [m] ∧ [c]max X.([c] ∧ [m]) ∨ ([c]X ∧ [m])

Step 3: Eliminating Disjunctions

The nal and most challenging step is to obtain a disjunction-free formula. This can be decomposed into two parts: apply the tableau rules in Figure 3 to obtain a tree with back edges (i.e., edges from leaves to inner nodes), and relabel the nodes of the tree. These are respectively automated by Algorithms 1 and 2.

Denition 5 (Tableau for Disjunction Elimination [START_REF] Aceto | The Best a Monitor Can Do[END_REF]). Given a formula ϕ, its tableau is a pair T, L , where T is a tree with back edges and L is a labelling function such that:

1. the root of T is labelled as {ϕ}, and 2. each internal node and its children are labelled according to a rule in Figure 3.

Internal nodes are labelled with the premise, while their children are labelled with the conclusion. Additionally, rule [a] is applied only when L(n) matches the premise of no other rule and it contains at least one [a]ϕ for some ϕ .

The interpretation of the tableau in Denition 5 is that the formulae in Γ are disjuncted, whereas the branches are conjuncted. The rules are read top-down to form a tree, with the topmost premise being the root and the conclusions being the branches. Since formulae might not have unique tableaux, rule ([a]) must be left for last to synchronises the dierent tableaux of the same formula. This means that irrespective of the order of rule application, all children derived using rule ([a]) are identical. Additionally, although all the rules except for regenerations, i.e., rule (X), reduce the formula size, the order of application directly inuences the size of the tableau, which, in turn, aects the tool's performance.

Example 9. Consider the set of formulae {[a]ϕ 1 ∧ [a]ϕ 2 , tt} for some ϕ 1 , ϕ 2 . This set pattern matches with the premise of two rules, namely (tt) and (∧). Applying the former, the formula set is immediately reduced to {tt}. However, if the latter rule is applied, the tree branches into {[a]ϕ 1 , tt} and {[a]ϕ 2 , tt}, both of which induce further proof obligations. Alg. 1: Pseudocode for Building the Tableau Our implementation circumvents the unnecessary computation steps induced by the application order of the rules by assuming the following order of priorities: (tt), ([a, b]), (), (max), (∨), (∧), (X), ([a]). We chose this ordering based on the fact that the rst two rules simplify the formula set, rule (∨) increases the size of the formula set and thus the chance of applying (tt) or ([a, b]), whereas rules (∧) and (X) respectively increase the width and depth of the tree.

We implement the tableau in Denition 5 as a polymorphic tree: this allows us to use the same tree structure albeit with dierent implementations. Nodes are composed of (i) a node_id, (ii) a node_label, (iii) a list of children, where each child is a tree, (iv) a rule of type string, and (v) a boolean value, backedge, indicating whether that node is the target of some back edge. Leaves have two elements: (i) a leaf_label, and (ii) an integer value, backedge_target, to store the node_id of the back edge target; when there is no back edge, this is set to -1. For convenience, we use the suggestive dot notation (.) to access specic elements. E.g., the rule applied at node n is accessed via the eld n.rule.

The algorithm automating the tableau construction is described in Algorithm 1. The procedure starts from the root of the tableau, which is the singleton element {ϕ}, applies the rule with a matching premise, and then repeats this procedure for each resulting child. Since each node is a set of formulae, our algorithm implements the tableau as a tree of formula sets. The algorithm uses a set F and a list V. The former is initialised to {ϕ} and stores the formula set waiting to be analysed. The latter, initialised to empty, stores pairs S, x , where S is a formula set that has been already generated and x is its identier. When each set S in S, x ∈ V can reach some other set S in S , x ∈ V via some rule, the algorithm terminates as no new leaves or nodes can be created. Function CreateTableau() is the main function. If F is the singleton element {tt} or {}, a leaf with no back edges is created on lines 3 and 5. Otherwise, the algorithm checks whether it needs to create a new node or add a back edge to some previous node in the tree by calling ApplyRule() on line 7. This function returns a pair containing a list of formula sets, which represent the current node's children, and the rule applied to derive them. If there is only one child c and c, x is in V, then some node n with label c has already been generated. Thus, a leaf with a back edge to n is created on line 9 by setting backedge_target to x. Otherwise, the tree for each resulting child is constructed on line 12. Once the entire tree is constructed, SetBackedgeTargets() on line 14 performs two passes: it rst retrieves the list of identiers of the back edge targets from the leaves (lines [START_REF] Drusinsky | The temporal rover and the atg rover[END_REF][START_REF] Francalanza | Monitorability for the Hennessy-Milner logic with recursion[END_REF], then traverses the tree again to update n.backedge to true for all nodes n that are target of some back edges (lines 18,19).

Example 10. Recall property ϕ 10 in ??. Since tableaux tend to grow relatively in size, we focus on subformula

ϕ 11 = max X.([c] ∧ [m]) ∨ ([c]X ∧ [m]
), whose tableau is depicted by the left tree in Figure 4 and forms a subgraph of the tableau for ϕ 10 . We omit the outer curly brackets denoting that the formulae form a set and only include specic elements for better readability.

Starting with the initial formula, Algorithm 1 creates a node with identier 0 and a child with label

{([c] ∧ [m]) ∨ ([c]X ∧ [m]
)}, obtained via rule max. Since the latter formula set has not been generated yet, its tree is created via a recursive call to CreateTableau() on line 12. This tree generation continues until the fth recursive call, where a node with label {, X} and identier 5 is created, whose child is the tree for formula set {X}. The latter has not been generated yet, but its child, obtained via rule X, has label {ϕ X } where ϕ X is given by

([c] ∧ [m]) ∨ ([c]X ∧ [m]):
this is precisely the same as that of the node with identier 1. Therefore, a leaf with backedge_target 1 is created (line 9). Once the entire tree is generated, SetBackedgeTargets() then updates the eld backedge of the node with identier 1 to true.

The algorithm implementing the tableau relabelling is described in Algorithm 2. Given a tree of formula sets, RelabelTableau() recursively constructs a new tree of the same shape, whose root label is the strongest monitorable consequence. Each leaf of the inputted tree is relabelled to either X m (where m is the identier of the back edge target), tt or (lines 4,5,6). Each node is relabelled in two steps: the algorithm rst relabels its children via a recursive call to RelabelTableau() on line 8, then it relabels the node according to which rule was applied to derive its children. For rule (∧), the new label is the conjunction of its two children c 1 and c 2 , whereas for rule ([a]), it is that of its child prexed by [a] (lines [START_REF] Bartocci | Introduction to Runtime Verication[END_REF][START_REF] Colombo | Elarva: A monitoring tool for erlang[END_REF]. Otherwise, the label is identical to that of its child (line 17). Before creating a node with these values, line 18 checks whether it is the target of a back edge: if it is, the label is turned into a greatest xed point by prexing it with max X m where m is the node's identier. The function Label() retrieves the value of node_label or leaf_label, depending on the node type.

Remark 2. Implementing line 11 naively results in formulae with several redundant terms, where one of the conjuncts (or both) is tt. Our implementation sidesteps this by conjuncting c 1 and c 2 only if both are dierent from tt, and sets the label to c 1 when c 2 is equivalent to tt and vice versa. Also, all labels in the relabelled tableau consist a single formula. Arguably, such a tableau still can be implemented as a tree of formula sets, but it would impinge on the tool's performance as the algorithm would repeatedly have to retrieve the formula from the set. To this end, we implement the relabelled tableau as a tree of formulae, justifying why we opted to dene the tree structure as a polymorphic type. 4. Since its internal structure is analogous to that of the left tree, we omit the node identiers and rules used to derive the children.

max X.([c] ∧ [m]) ∨ ([c]X ∧ [m]) 0 max ([c] ∧ [m]) ∨ ([c]X ∧ [m]) 1 ∨ [c] ∧ [m], [c]X ∧ [m] 2 ∧ [c], [c]X ∧ [m] 3 ∧ [c], [c]X 4 [c] , X 5 ff X 1 [c], [m] 6 [c,m] tt -1 [m], [c]X ∧ [m] 7 ∧ [m], [c]X 8 [m,c] tt -1 [m] 9 [m] -1 max X1.[c]X1 ∧ [m] max X1.[c]X1 ∧ [m] [c]X1 ∧ [m] [c]X1 [c]X1 X1 X1 tt tt [m] tt tt [m]
Starting from the root of the left tree, Algorithm 2 creates a new node with label max X 1 .[c]X 1 ∧ [m] on line 17. This is obtained by inheriting the label of its child, generated via a recursive call to RelabelTableau() on line 8. Since the node with identier 1 is the target of a back edge, a new node is created on line 18 where its label is obtained in two steps. First, it retrieves the label of its child on line 17, and then transforms it into a greatest xed point label by prexing it with max X 1 . This tree generation continues until the leaves of the tree are reached: for the leaf with label {X} and a back edge to node 1, a new leaf with label X 1 is created, whereas all the other leaves are left untouched.

Once Algorithm 2 returns the relabelled tableau, our prototype tool outputs its root label, which describes the strongest monitorable consequence of the initial formula.

The Tool

The previous section presented a thorough overview of the algorithms for constructing the strongest monitorable consequence. In this section, we give more details on the tool's internal architecture and how it can be used in practice.

Internal Architecture

The algorithms in Section 3 are implemented in OCaml (version 4.08.0) in a straightforward fashion, resulting in a prototype tool that takes as input a formula and outputs its strongest monitorable consequence. This is achieved by rst building a parse tree for the inputted formula, using the Menhir parser generator, and then successively calling the functions automating the three steps in Section 3. The OCaml code is organised into several modules in the src/ directory, which can be further decomposed into three folders; denitions, parsing and utils. The rst directory stores two modules, strongestMonCons.ml and SMCTableauRules.ml. The former implements the rst two steps in Sections 3.2 and 3.3, while the latter implements Algorithms 1 and 2 and the tableau rules as the functions create_tableau(), relabel_tableau(), and apply_rules() respectively, preserving the naming conventions from Section 3.4. The second directory then contains the modules that handle the parsing, whereas the last stores all modules containing user-dened types and helper functions.

Usage

The tool can be invoked from the terminal, where the formula is inputted either by passing it as a command line argument or by providing the path of the le containing the formula when prompted. For instance, in the rst approach, the strongest monitorable consequence of ϕ 8 from Example 6 is generated by executing the command below, where the logical or's and and's are respectively substituted by the | and & operators. Conversely, the second approach involves omitting the formula altogether: this is especially appealing when formulae are more complex, while facilitating integration with the rst component in the toolchain of Figure 1 once it is realized. The output returned by both methods can be decomposed into four parts; (i) the parse tree of the inputted formula, (ii) elimination of existential modalities, (iii) elimination of least xed points, and (iv) elimination of disjunctions. Inputting formula ϕ 8 from Example 6, our tool returns the following, where the formulae outputted in (ii) and (iii) respectively correspond to ϕ 9 and ϕ 10 from Example 7 and ??.

================================ STEP 1 ================================

The formula after eliminating existential modalities is:

[c]ff & [m]ff | [m]ff & tt & [c](max X.[c]ff & [m]ff | tt & [c]X & [m]ff) ================================ STEP 2 ================================
The formula after eliminating minimal fixed points is:

[c]ff & [m]ff | [m]ff & tt & [c](max X.[c]ff & [m]ff | tt & [c]X & [m]ff)
The simplified formula is:

[c]ff & [m]ff | [m]ff & [c](max X.[c]ff & [m]ff | [c]X & [m]ff)
The fourth part of the output consists of two trees, representing the tableau of the formula returned in (iii) before and after relabelling. In our example, the output below shows a subtree of the tableau for ϕ 10 before the relabelling, which corresponds to the tableau for ϕ 11 from Example 10, depicted in Figure 4. We omit the output after the relabelling as it possesses a similar format. Our tool can also export the computed strongest monitorable consequence to the format expected by detectEr tool and write it to le. This functionality can be triggered using the keyword save, as shown below. In turn, this allow us to input the le to detectEr, which will then synthesise the optimal monitor. ./main.native " ([c]

ff & [m]ff) | ([m]ff & <c>(max X.([c]ff & [m]ff) | (<c>X & [c]X & [m]ff)) & [c](max X.([c]ff & [m]ff) | (<c>X & [c]X & [m]ff)))" save

Evaluation

Section 3 and ?? demonstrate that the procedure in [START_REF] Aceto | The Best a Monitor Can Do[END_REF] for computing the strongest monitorable consequence of recHML formulae can be automated, albeit with an exponential worst-case complexity upper bound. However, it remains unclear whether this is fully-representative of the implemented prototype.

In this section, we evaluate the scalability our tool; in the absence of standard benchmarks, we devise two strategies for our empirical evaluation. All experiments were carried out on a Quad-Core Intel Core i5 64-bit machine with 16

GB memory, running OCaml version 4.08.0 on OSX Catalina. They can be reproduced using the sources provided at https://github.com/jasmine97xuereb/ optimal-monitor.

Parametrisable Formulae. Since eliminating the existential modalities and least xed points is linear, the disjunction elimination step is responsible for the overall complexity of the algorithm. We thus construct a family of disHML formulae aimed at maximizing the width and depth of the tableau that is constructed in Algorithm 1. More concretely, P 1 (k) below denes a family of formulae with a high branching-factor, resulting in a high level of branching in the tableau. The formulae generated by the skeleton P 2 (k) consist of several disjunctions and modalities over the same action, which blow-up the size of the formula sets. Additionally, several of these sets are composed of recursion variables X 1 , . . . , X n , inducing further iterations in Algorithms 1 and 2. We contend that these skeletons adequately stress test our tool since the tableau construction of the generated formulae heavily relies on the application of rules (∧), (∨), and (X), which induce the highest increase in tableaux size and complexity.

P 1 (k) = max X. i∈k ϕ∈Ba i a ϕ ∧ [a] ϕ∈Ba i ϕ where B a = {[a], X} P 2 (k) = i∈k max X i . j∈k a j X i ∧ [a j]X i ∧ [b i]
We evaluate the mean running time (over 5 repeated runs) for these property instances over an increasing parameter k. The results, reported in the left graph of Figure 5, show that for this set of properties, our implementation runs in quadratic time. We remark that, at this point, it is open to investigation whether the exponential worst-case complexity can be reached. Random Formulae. Since the parametrised instances only target specic features of the algorithm, we also evaluate it against formulae that are randomly generated following a uniform distribution on the grammar of disHML for better coverage. The plotted results in the right graph of Figure 5, which show the mean running time (over 500 repeated runs) of random formulae with increasing size, indicate that the average running time remains considerably lower than that for the family of formulae generated by the parameterised instances. Indeed, formulae are drastically simplied before reaching the third step, and modalities rarely interact in a way that make the tableau grow. We note that it is not clear how close the distribution adopted here is to the one obtained from uniformly chosen recHML formulae that are then converted to disjunctive form.

Although there is no guarantee that the results obtained in this section carry over to the toolchain in Figure 1, they give preliminary evidence that our prototype tool scales well in the general case. This paper investigates the implementability aspects of the procedure outlined in [START_REF] Aceto | The Best a Monitor Can Do[END_REF]. In particular, our prototype tool takes arbitrary branching-time properties expressed in disjunctive recHML and constructs their best monitorable approximation according to [?,19]. This enables us to extend the known synthesis tools to generate optimal monitors for arbitrary branching-time properties. The tool and the accompanying demo video can be found at https://github. com/jasmine97xuereb/optimal-monitor and https://youtu.be/XI6GoG4MaNk.

Future Work

We plan to automate the translation from recHML formulae to their equivalent disjunctive form as presented in [START_REF] Walukiewicz | Completeness of Kozen's Axiomatisation of the Propositional mu-Calculus[END_REF] to complete the toolchain of Figure 1. In turn, this will allow us to investigate possible optimisations based on a more precise evaluation of our tool. Finally, we note that the detectEr tool can handle actions that carry data from an innite domain. We plan to investigate to what extent the techniques in [START_REF] Aceto | The Best a Monitor Can Do[END_REF] generalise to this setting. This is a challenging endeavour as the automata-logic correspondence they rely on is far more complex in the presence of data [?,?].

Related Work

Linear-vs branching-time. In linear-time monitoring, we are interested in a property of the current execution, rather than the system as a whole. This is particularly useful for checking in deployed systems whether the output of a third-party component is safe to use in a critical component, for example. Then, whether the non-trusted component can also produce unsafe executions is largely irrelevant. Finding optimal monitors corresponds to computing the good and bad prexes of a linear-time property, that is, the prexes of which either all or no continuation satises the property, as done by Kupferman and Vardi [23] or by Havelund and Peled [START_REF] Havelund | Runtime verication: From propositional to rst-order temporal logic[END_REF]. In contrast, when RV is used as a best-eort alternative to model-checking, we are trying to work out whether the system, rather than the current execution, is correct. Since monitors still only observe one execution, the proportion of monitorable properties is, unavoidably, smaller [START_REF] Aceto | Adventures in Monitorability: From Branching to Linear Time and Back Again[END_REF]. As a result, the benet of using optimal monitors is even greater, as it expands the realm of properties that monitors can be used for. Note that the complexity of nding optimal monitors is double-exponential already in the linear-time setting [START_REF] Kupferman | Model checking of safety properties[END_REF], so the diculty added by the branching-time setting is mostly conceptual.

Monitoring with prior knowledge. One of the use-cases for optimal monitors is the incorporation of prior knowledge (assumptions) into the monitor, which allows more violations to be identied. As argued in [START_REF] Aceto | The Best a Monitor Can Do[END_REF], computing the optimal monitor is also an optimal way to incorporate prior knowledge into the monitor. This problem has been studied in the linear-time setting (with lineartime assumptions) by Henzinger and Saraç [START_REF] Henzinger | Monitorability under assumptions[END_REF], by Cimatti et al. [START_REF] Cimatti | Assumption-based runtime verication with partial observability and resets[END_REF], and by Leucker [START_REF] Leucker | Sliding between model checking and runtime verication[END_REF], and for hyperproperties by Stucki et al. [START_REF] Stucki | Gray-box monitoring of hyperproperties with an application to privacy[END_REF].

Monitoring tools. Among many RV tools, let us mention MaC [START_REF] Kim | Formally specied monitoring of temporal properties[END_REF], PathExplorer [START_REF] Havelund | Monitoring java programs with java pathexplorer[END_REF], Eagle [START_REF] Barringer | Rule-based runtime verication[END_REF], and RuleR [START_REF] Barringer | Rule systems for run-time monitoring: from eagle to ruler[END_REF], Temporal Rover [START_REF] Drusinsky | The temporal rover and the atg rover[END_REF], and JavaMOP [START_REF] Meredith | An overview of the mop runtime verication framework[END_REF], all runtime verication tools based on various specication languages. Blech et al. [START_REF] Blech | Towards Certied Runtime Verication[END_REF], Schneider et al. [START_REF] Schneider | A formally veried monitor for metric rst-order temporal logic[END_REF] and Basin et al. [START_REF] Basin | A formally veried, optimized monitor for metric rst-order dynamic logic[END_REF] aim to generate veried monitors from specications. The former uses proof assistant Coq and targets regular properties, while the latter two use Isabelle/HOL and target metric rst order temporal logics; both produce executable monitors in OCaml. Typically, these tools focus on linear-time specications, which makes them harder to adapt to properties generated primarily for model-checking rather than RV, and does not lend them to incorporating prior knowledge of the system, expressed as branching time properties, into the monitoring set-up.

 Fig. 1: Toolchain

11 V

 11 ← ApplyRule(F) 8 if children = [c] and ∃ c, x ∈ V for some x then 9 return Leaf(F, x) 10 else ← V ++ [F, count] 12 c_trees ← CreateTableau(c, V, count+1) for each c in children 13 return Node(count, F, c_trees, rule, false) 14 def SetBackedgeTargets(t) 15 targets ← [] 16 for each Leaf l in t where l.backedge_target = -1 do 17 targets ← targets ++ [l.backedge_target] 18 for each Node n in t where n.node_id ∈ targets do 19 n.backedge ← true 20 return t

Fig. 4 : 2 if t = Leaf l then 3 m 7 else t = Node n 8 children 13 [17 f

 423781317 Fig. 4: The tableau for formula ϕ 11 before and after relabelling.

.

 /main.native "([c]ff & [m]ff) | ([m]ff & <c>(max X.([c]ff & [m]ff) | (<c>X & [c]X & [m]ff)) & [c](max X.([c]ff & [m]ff) | (<c>X & [c]X & [m]ff)))"

(max) 6

 6 max X.[c]ff & [m]ff | [c]X & [m]ff; (or)7 [c]ff & [m]ff | [c]X & [m]ff; back edge target (and)8 [c]ff & [m]ff; [c]X & [m]ff; (and)9 [c]X & [m]ff; [c]ff; ([c])10 [c]ff; [c]X; (ff)11 ff; X; (X)12 X; [c]ff & [m]ff | [c]X & [m]ff; back edge to 7 ([a,b])13 [c]ff; [m]ff; tt; (and)14 [c]X & [m]ff; [m]ff; ([a,b])15 [c]X; [m]ff;

Fig. 5 :

 5 Fig. 5: Performance of the tool against dierent formulae

Γ ∪{ψ ∨ ϕ} Γ ∪ {ψ, ϕ} (∨) Γ ∪ {ψ ∧ ϕ} Γ ∪ {ψ} Γ ∪ {ϕ} (∧) Γ ∪ {max X.ϕ} Γ ∪ {ϕ} (max) Γ ∪ {X} Γ ∪ {ϕX } (X) Γ {ψ | [a]ψ ∈ Γ } ([a])

This research was supported by the project `Mode(l)s of Verication and Monitorability (MoVeMnt)' (no. 217987-051) of the Icelandic Research Fund.