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We have computed the cross sections of the mutual neutralization reaction between I+ and I−

for a collision energy varying from 0.001 eV to 50 eV. These cross sections were obtained using
the adiabatic potential energy curves of the I2 system computed with a direct relativistic Multi-
Reference Configuration Interaction method and a semi-classical approach (i.e. Landau Zener Sur-
face Hopping). We report the cross sections towards the following neutral sates : I(2P3/2)+I(2P3/2),

I(2P3/2) + I(2P1/2), I(2P1/2) + I(2P1/2) and I(5p46s) + I(2P3/2). We also discuss the cross sections

towards the two following excited ionic states : I−(1S0) + I+(3P0) and I−(1S0) + I+(3D2). The
results of these calculations are in accordance with recent experimental measurements conducted
in the double ion ring DESIREE in Stockholm. These results can be used to model iodine plasma
kinetics and thus to improve our understanding of the latter.

I. INTRODUCTION

The mutual neutralization (MN) of two oppositely
charged ions is a central reaction taking place in elec-
tronegative plasmas. The latter are found in e.g. the
lower ionosphere [1], flames [2], interstellar medium [3, 4]
and in excimer lasers [5]. As such MN reactions have
been investigated in various systems (see e.g. [6] and ref-
erences therein).
Iodine plasma is one example of an electronegative

plasma. Interest in iodine plasma has been renewed re-
cently since it is a promising candidate to be used in
electric propulsion systems, notably for satellites (see
e.g. [7, 8] and references therein).
Very recently, the MN reaction between I+ and I− ions

has been studied experimentally [9]: the branching ratios
for the different channels were measured at two collision
energies, 0.1 eV and 0.8 eV. This work showed that the
MN reaction forms iodine atoms either in their ground
state or with one atom in an electronically excited state.
These two classes of states were found to be populated
with nearly equal proportions with no dependence on the
collision energy. The total cross sections at these collision
energies were estimated, but with fairly large uncertain-
ties.
There is currently no accurate absolute cross sections

published for the MN reaction between I+ and I− ions,
which impedes the modelling of iodine plasma. Investi-
gating such collision system is a difficult task since iodine
has a strong spin-orbit coupling and, moreover, the po-
tential energy curves of I2 exhibit multiple and overlap-
ping avoided crossings, where the MN reaction can take
place. The aim of the present work is to provide esti-
mates of these cross sections in a broad range of collision
energies. For that, we have employed a combination of
ab initio relativistic electronic structure calculations and
the Laudau-Zener Surface Hopping (LZSH) method to
compute the relevant cross sections. Our calculations are

then compared to the recent experiments of Poline et al.

[9].
This paper is organized as follows. In the next section

we briefly outline the methods used in the present work.
Sec. III is devoted to the discussion of the theoretical
results of this work and their comparison with the exper-
imental results of Poline et al. [9]. The conclusions are
reported in Sec. IV. Atomic units are used throughout,
unless explicitly indicated otherwise.

II. METHODS

A. Potential energy curves

The potential energy curves used in this work, shown in
figure 1, have been obtained with the multi-reference con-
figuration interaction (MRCI) method, as implemented
in the KRCI module [10] of the DIRAC relativistic elec-
tronic structure package [11]. Such calculations have
been carried out with the DIRAC19 [12] release as well
as with development version identified by hash 1e798e5.
We employed triple-zeta quality basis sets [13] supple-
mented by three diffuse functions so that Rydberg and
ion-pair (IPr) states could be accurately represented.
The reference wavefunction consisted of the set of deter-
minants spanned by the p5 manifold of each of the iodine
atoms (thus representing 10 electrons in 12 spinors). For
further information, readers can consult the computa-
tional details section of Poline et al. [9].
It should be noted that we computed the potential en-

ergy curves for states with projection of total electronic
angular momentum Ω = 0, 1, 2 but not for states with
Ω > 2 since the I−(1S0)+I+(3P2) reactant state does not
correlate with such states. Indeed the I−(1S0) + I+(3P2)
state correlates with states having the following an-
gular momenta [14]: the double degenerate (Ω = 1)g,

(Ω = 1)u, (Ω = 2)g and (Ω = 2)u, and the singly degen-
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erate (Ω = 0)
+
g and (Ω = 0)

+
u .

Furthermore, for implementation reasons the KRCI
module does not take into account the +/- symmetry
and thus is not able to differentiate directly the + and
the - states. In order to do that we also computed the
dipole transition moments between the (Ω = 0)g and the

(Ω = 0)u states. Knowing that the lowest (Ω = 0)g state

is of + symmetry and that the lowest (Ω = 0)u state is
of - symmetry [14], we were able to rebuild the poten-

tial energy curves of the (Ω = 0)
+
g and (Ω = 0)

+
u states

using the selection rule stating that the dipole transition
between a + and a - state is forbidden [15].

B. Landau Zener Surface Hopping

An accurate description of MN reactions at low colli-
sion energies requires, in principle, a fully quantum me-
chanical approach for the nuclear dynamics. However,
in the current system, the potential energy curves of I2
exhibit multiple and overlapping avoided crossings such
that such a sophisticated approach is out of reach from a
computational point of view. To overcome this difficulty,
in this work we employ the LZSH method [16] to obtain
the cross sections of the I++ I− mutual neutralization
reaction.
LZSH is a probabilistic, semi-classical method in which

the system is moving classically along the potential en-
ergy curves. The non-adiabatic interactions are consid-
ered only at the vicinity of avoided crossings [17, 18].
The list of the avoided crossings considered in this work
is given in appendix. Note that, as previously ex-
plained in Poline et al. [9], we use a semi-empirical model
[19] to estimate the electronic coupling at large-distance

(R > 7Å) crossings between the ion-pair states and the
I(5p46s) + I(2P1/2) states. These couplings have been
shown to be negligible.
The LZSH method can be described as follows: The

system starts at a distance R0 on the curve corresponding
to the reactants (i.e. the curves which correlate with
the I−(1S0) + I+(3P2) ion pair state), R0 being larger
than the internuclear distances of all avoided crossings (in
this work, R0 = 12 a.u.). The system then moves along
this curve while it has sufficient kinetic energy and until
it reaches an avoided crossing. At this point there is a
probability pLZ

α→β(given by the Landau-Zener formula[20,

21], equation 1) that the system hops from its starting
state (named α) to the other state involved in the avoided
crossing (named β), if its kinetic energy is sufficient. We
have :

pLZ
α→β = exp

(

− π

2v

√

∆V 3
αβ

d2

dR2 (∆Vαβ)

)

(1)

where v is the speed of the system at the crossing and
∆Vαβ is the energy difference between the two adiabatic

potential energy curves at the avoided crossing. v is sim-
ply obtained by energy conservation:

v =

√

2 (Em − Vα(R))

µ
(2)

with µ being the reduced mass of the system (for I2, µ
= 115666 a.u.). Vα(R) is the adiabatic potential energy
curve α at the internuclear distance R, and Em the me-
chanical energy of the system :

Em = Ecoll + Vasymp (3)

where Ecoll is the collision energy and Vasymp is the en-

ergy of the I−(1S0)+I+(3P2) reactant state at R → +∞.
When the kinetic energy of the system reaches 0, the

system turns back, and when it reaches R0 again, the
trajectory ends. By computing a sufficiently high number
of trajectories, we can compute a reaction probability Pf

towards each of the possible product states f .

Pf =
Nf

Ntot
(4)

where Nf is the number of trajectories which ended in
the product state f and Ntot is the total number of tra-
jectories. In this work we used Ntot = 400. We found
that using a higher value ofNtot has no significant impact
on the results.
The cross sections towards each product state are then

obtained by integrating the Pf over the angular momen-
tum l [22] :

σX
f (Ecoll) =

π

2µEcoll

l=+∞
∑

l=0

(2l + 1)Pf (Ecoll, l) (5)

where X denotes a given symmetry state of the I2 poten-
tial energy curves.
To compute Pf (Ecoll, l) with l 6= 0, we are using the

method described in the beginning of this paragraph but
replacing Vα(R) in the equation 2 by Vα,eff (R, l) to ac-
count for the rotational barrier :

Veff,α(l, R) = Vα(R) +
l(l + 1)

2µR2
(6)

Practically, the sum in the equation 5 stops (at a value
l = lmax) when the rotational barrier becomes too impor-
tant for the system to reach the farthest avoided crossing
involving the reactant state. We have :

lmax = −1

2
+

√

1

4
− µR2

c

2
(4V (Rc)− Vasymp − Ecoll) (7)

where Rc and V (Rc) are the internuclear distance and
the adiabatic energy of the reactant state at this avoided
crossing.
This approach is used for each of the symmetries con-

sidered in this work (see section IIA), the reaction cross
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FIG. 1. Potential energy curves of 51 electronic states of I2 computed with relativistic MRCI (reconstructed from the data
from Poline et al. [9]). Only the states of the symmetries that correlate with the I−(1S0)+I+(3P2) reactants state are displayed
here.

sections towards each state are then obtained by averag-
ing over all symmetries, taking into account their multi-
plicity, hence:

σf (Ecoll) =

∑

X∈symmetries mXσX
f (Ecoll)

∑

X∈symmetries mX
(8)

with mX being the multiplicity of the symmetry X and
σX
α the reaction cross section towards the state α for the

symmetry X obtained with equation 5.

C. Empirical correction to the asymptotic energies

When comparing the asymptotic energies of the re-
actant I−(1S0) + I+(3P2) state and the asymptotic en-
ergies of the product I(2P3/2) +

2[2] state (the lowest

of the I(2P3/2) + I(5p46s) states, see [23]), both com-
puted by the MRCI method, we noticed an inversion
in the energetic order with respect to the experimen-
tal energy levels [24]. Thus, while the reaction path
I−(1S0)+I+(3P2) → I(2P3/2)+

2[2] should be open (even
with a collision energy of 0) according to experimental
data, from our calculations it is closed.
To correct for this qualitative and quantitative fail-

ure we decided to artificially add the kinetic energy ε to
the system at the beginning of the trajectories on the
I−(1S0) + I+

(

3P2

)

reactant states so that the following

equality is verified :

V∞exp
(

I(2P3/2) + I(2[2])
)

− V∞exp
(

I−(1S0) + I+(3P2)
)

= V∞MRCI

(

I(2P3/2) + I(2[2])
)

−
[

V∞MRCI

(

I−(1S0) + I+(3P2)
)

+ ε
]

(9)
where V∞MRCI(X) and V∞exp(X) denote respectively the
asymptotic MRCI and experimental energies of the X
state. The value of ǫ is 0.63 eV. This is the only departure
from the underlying ab initio energy curves in our work.

III. RESULTS AND DISCUSSION

Using the potential energy curves presented in section
IIA, we applied the LZSH method for each of the symme-
tries considered here (see section IIA). We thus obtained
the reaction cross sections towards the following neutral
product states : I(2P3/2) + I(2P3/2), I(

2P3/2) + I(2P1/2),

I(2P1/2) + I(2P1/2) and I(5p46s) + I(2P1/2).
Here, we did not try to differentiate the different sub-

states constituting the I(5p46s) configuration obtained
with the MRCI method, since the energy difference be-
tween some of these substates is below 0.2 eV [24]. We
lack extensive benchmark studies between MRCI and
other approaches such as those based on coupled clus-
ter wavefunctions for the iodine systems. However, from
recent examples in the literature [25–27] in which a com-
parison of methods has been made on an equal footing
(same basis set and Hamiltonian), we see that among
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FIG. 2. Cross sections for the reactions between I+ and I− for the 6 symmetries correlating with the I−(1S0)+I+(3P2) reactants
state.

different correlated approaches, the corresponding elec-
tronic state energies can differ by values which are sim-
ilar to, or higher than ,the differences among substates
seen here.
We also obtained the reaction cross sections towards

the two lowest energy excited ion-pair states I−(1S0) +
I+
(

3P1

)

and I−(1S0) + I+
(

1D2

)

. The evolution of these
reaction cross sections with respect to the collision energy
is shown in figure 2 and the total symmetrized reaction
cross sections, obtained with equation 8, are shown in
figure 3.
At collision energies lower than 0.1 eV the cross sec-

tions towards the neutral product states follow an asymp-
totic behavior proportional to the inverse of the collision
energy. At these energies, for all symmetries, the most
abundant product is the neutral I(5p46s)+I(2P1/2) prod-
uct, followed by the three lowest energy neutral products
I(2P3/2)+I(2P3/2), I(

2P3/2)+I(2P1/2), I(
2P1/2)+I(2P1/2)

in this order.
At collision energies higher than 0.3 eV the cross sec-

tions towards the I(2P3/2) + I(2P3/2) state increase up
to the collision energy of 10 eV while the cross sections
towards the I(2P1/2) + I(2P3/2) and I(5p46s) + I(2P1/2)
states decrease at a slower rate than for the collision en-
ergies below 0.1 eV. At collision energies higher than 0.1
eV the cross sections towards the I(2P1/2)+I(2P1/2) state
continue to decrease as the inverse of the collision energy
so it becomes negligible compared to the other cross sec-
tions.
The reaction cross sections towards the I−(1S0) +

I+
(

3P1

)

and I−(1S0) + I+
(

1D2

)

ion pair states have
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FIG. 3. Total (symmetry averaged) cross sections for the
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(
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+ I− reactions.

energy thresholds of, respectively, 0.26 eV and 1.1 eV.
The values of these cross sections after their threshold
are of the same order of magnitude as the one of the
I(2P1/2) + I(2P3/2) state.
The total neutralization cross sections (sum of the

cross sections toward all neutral states) is shown in fig-
ure 4. It decreases as the inverse of the collision energy
up to 0.1 eV and then decreases at a slower rate. The
two discontinuities at 0.26 eV and 1.1 eV correspond to
the energy thresholds of the reactions producing the two
excited ion pairs.
In 2021, Poline et al.[9] conducted an experiment at

the double ion storage ring DESIREE (Double Electro-
Static Ion Ring ExpEriment) in Stockholm. They were
able to measure the branching ratios towards each of the
neutral product states, more specifically, they obtained
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LZSH method and measured by Poline et al. [9]

the ratio (denoted by Rσ) between the I(5p46s)+I(2P1/2)

states and the I(2P3/2)+I(2P3/2), I(
2P3/2)+I(2P1/2) and

I(2P1/2) + I(2P1/2) states, for collision energy of 0.1 and
0.8 eV. We therefore have Rσ as :

Rσ =

σ
(

I
(

2P3/2

)

+ I
(

2P3/2

))

+ σ
(

I
(

2P3/2

)

+ I
(

2P1/2

))

+σ
(

I
(

2P1/2

)

+ I
(

2P1/2

))

σ
(

I
(

5p46s
)

+ I
(

2P1/2

))

+ σ
(

I
(

2P3/2

)

+ I
(

2P3/2

))

+σ
(

I
(

2P3/2

)

+ I
(

2P1/2

))

+ σ
(

I
(

2P1/2

)

+ I
(

2P1/2

))

(10)

We can directly obtain this ratio from our calculations.
The comparison between the theoretical ratio and the
measurements is shown in figure 5. Our results show
that this branching ratio does not vary significantly with
respect to the collision energy, with values between 22%
and 27%. The measured and computed ratio are of the
same order of magnitude. However, the LZSH-based
model underestimates this ratio by a factor 1.5.
Moreover, our model gives a semi-quantitative agree-

ment for the prediction of the ratios between the cross
sections of the I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2)

and I(2P1/2) + I(2P1/2) states. These ratios, in compari-
son with those obtained by Poline et al. [9], are displayed
in table I.
Poline et al. [9] were also able to estimate the absolute

neutralization cross section, at a collision energy of 0.1
eV, to be in the range of 103±1 Å2. Our results displayed
in figure 4 (165 Å2 at 0.1 eV) agrees with this estimation.

0.1 eV 0.8 eV

Product channel LZSH exp. LZSH exp.

I(2P3/2) + I(2P3/2) 5% 31% 12% 28%

I(2P3/2) + I(2P1/2) 76% 57% 76% 51%

I(2P1/2) + I(2P1/2) 19% 11% 13% 21%

TABLE I. Ratios of the cross sections between the three low-
est neutral product states, obtained with the LZSH method
and experimentally by Poline et al. [9] at collision energy of
0.1 and 0.8 eV.

The disagreement between the experiments at DE-
SIREE and our results may be attributed to the semi-
classical approach employed in this work. However, given
the complexity of the studied collisional system and the
lack of data on the considered MN reaction such semi-
quantitative estimates represent a significant step toward
a better modelling, and thus understanding, of iodine
plasma.
In order to gain more insights into the dynamics of the

MN reaction, we investigate which avoided crossings are
the ones which contribute the most to the reactivity. We
computed statistically the population on each state as a
function of time (nα (t)) :

nα (t) =
Nα (t)

Ntraj
(11)

where Nα (t) is the number of trajectories being on the
state α at the time t. Since the time does not appear
explicitly in the method described in section II B, we
computed it a posteriori, by integrating Newton’s law
of motion (see equation 12,with ri, rj being two adja-
cent points of the potential energy surface and v being
the speed of the system). The time is set arbitrarily at 0
when a trajectory starts at R0. Ntraj is the total number
of computed trajectories.

∆tji =
√

2µ
B

(

√

Em − V (rj) −
√

Em − V (ri)
)

if R decreases

∆tij =
√

2µ
B

(

√

Em − V (ri) −
√

Em − V (rj)
)

if R increases

(12)

with ∆tlk = t (rl)−t (rk) and B = (V (rj)−V (ri))/(rj−
ri).
For each of the symmetries considered in this work

we computed Ntraj = 10000 trajectories, for a collision
energy of 0.9 eV and 3 different values of the angular mo-
mentum l (l = 0, l = 350 and l = 700). The populations
obtained with these trajectories are then computed using
equation 11 for each of the electronic states considered
in this work. The population on each of the 8 first elec-
tronic states of the the (Ω = 2)g symmetry are displayed
in figure 6. For clarity we choose to represent separately
the population n←α (R) coming from the part of the tra-
jectories with decreasing values of R (before reaching the
closest approach distance), and the population n→α (R)
coming from the part of the trajectories with increasing
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FIG. 6. Effective potential energy curves of the 8 first states of the (Ω = 2)g symmetry for 3 different values of angular

momentum. The population n←α (R) (n→α (R)) is displayed with a colorscheme in the left (right) panel. At t = 0, the population
is 1 in the lowest ion-pair state (the third state in energy order) and 0 in all the other states

values of R (after reaching the closest approach distance),
which are given by

n←α (R) =
N←α (R)

Ntot
and n→α (R) =

N→α (R)

Ntot
(13)

N←α (R) (N→α (R)) being the number of trajectories cross-
ing the internuclear distance R before (after) reaching the
closest approach distance. In figure 6, n←α (R) ( n→α (R))
is shown in the left (right) panel of the figure using a color
scheme traced on the effective potential energy curves
(see equation 6) of the (Ω = 2)g symmetry.

At the first avoided crossing reached by the system (at

2.8Å), it mainly has a diabatic behavior with approxi-
mately 90% of the population transferred to the higher
energy state. This behavior is observed for the majority
of the avoided crossings of the system with the impor-
tant exception of the crossing between the fourth and
fifth states (in increasing energy order) at 2.7 Å (marked
with a star in figure 6). For this crossing we mainly ob-
serve an adiabatic behavior but still with an important
percentage of the population (about 30%) transferred to
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the higher energy state. This intermediate behavior is di-
rectly responsible of the reactivity towards the I∗ states,
and indirectly to the reactivity towards the lowest en-
ergy states through the avoided crossings between the
third and fourth states at 2.5 Å and between the second
and third states at 2.3 Å. The path towards the lowest
energy states is the first to be screened by the rotational
barrier. A chemical reaction towards those states is thus
only possible for collisions with a low impact parameter
(the link between the impact parameter b and the angular
momentum l is given by : l =

√
2µEcoll ∗ b [22]).

The reactions towards the I(5p46s) + I(2P3/2) states
are still possible at higher values of l, which explains the
higher reactivity towards those states (see figure 5). The
populations were also computed for the other symme-
tries. We did not find any major difference in the behav-
ior of the populations between the (Ω = 2)g symmetry
and the other symmetries.

IV. CONCLUSION

As a first step towards the generation of accurate mod-
els for the reactivity in iodine plasmas, in this work we
have investigated a computational protocol, combining
four-component multireference CI calculations for the I2
system to obtain potential energy curves and the semi-
classical Landau Zener surface hopping method to treat
nuclear dynamics, to obtain theoretical cross sections of
the mutual neutralization reaction between I+ and I− for
collision energies varying from 0.001 eV to 50 eV.
Our results agree with the recent experimental mea-

surements performed at the double ion ring DESIREE
facility in the overlapping collision energy range. Fur-
thermore, our work provides absolute cross sections over
a broad range of collision energy. Our results show that
the total cross section decrease from 1000Å2 at 0.001 eV
collision energy to about 10 Å2 at 10 eV impact energy.
Moreover, the branching ratios towards the different final
states do not vary significantly with respect to the colli-
sion energy. We also studied the dynamics of this mutual
neutralization reaction.
The data and insights provided in this work will allow

to model, beyond the current state of the art, the chem-
istry taking place in iodine plasma, which is particularly
relevant for electric space propulsion.
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C. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K.
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VI. APPENDIX
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Symmetry Lower state Higher state R(u.a.)

(Ω = 0)+
g

3 4 4.35

2 3 4.46

5 6 4.46

4 5 4.51

1 2 4.57

3 4 4.57

2 3 4.65

5 6 4.69

4 5 4.74

3 4 4.80

2 3 5.02

5 6 5.18

6 7 5.25

4 5 5.32

5 6 5.41

7 8 5.59

7 8 5.96

6 7 6.01

7 8 6.20

(Ω = 0)+
u

4 5 4.57

3 4 4.69

1 2 4.68

2 3 4.80

1 2 4.88

4 5 4.96

3 4 4.99

2 3 5.06

4 5 5.22

3 4 5.40

4 5 5.48

3 4 5.52

(Ω = 1)g

5 6 4.23

4 5 4.27

6 7 4.32

3 4 4.37

2 3 4.40

5 6 4.42

1 2 4.45

4 5 4.47

3 4 4.50

0 1 4.57

6 7 4.57

5 6 4.61

2 3 4.61

4 5 4.65

1 2 4.69

3 4 4.69

2 3 4.78

7 8 5.04

6 7 5.10

5 6 5.12

4 5 5.22

8 9 5.23

7 8 5.26

6 7 5.29

3 4 5.37

8 9 5.38

5 6 5.40

7 8 5.43

4 5 5.55

6 7 5.60

8 9 5.65

5 6 5.78

7 8 6.15

Symmetry Lower state Higher state R(u.a.)

(Ω = 1)u

6 7 4.42

5 6 4.46

3 5 4.57

2 3 4.65

6 8 4.64

6 7 4.72

5 6 4.76

4 5 4.80

7 9 4.80

6 7 4.84

3 4 4.84

5 6 4.87

4 5 4.91

9 10 4.99

7 8 4.99

6 7 5.10

8 9 5.10

7 8 5.40

8 9 5.48

6 8 5.51

9 10 5.78

8 9 5.86

7 8 5.93

(Ω = 2)g

2 6 4.23

3 4 4.23

1 2 4.35

6 7 4.58

0 1 4.58

4 6 4.61

3 4 4.65

1 2 4.80

6 7 4.93

2 3 4.70

5 6 4.96

4 5 4.99

3 4 5.06

2 3 5.32

6 7 5.40

5 6 5.44

4 5 5.56

6 7 5.56

5 6 5.74

3 4 5.93

6 7 5.97

(Ω = 2)u

3 4 4.68

6 7 4.72

5 6 4.73

4 5 4.74

3 4 4.77

2 3 4.81

1 2 4.83

4 5 4.98

6 7 5.10

5 7 5.18

4 5 5.25

3 4 5.33

2 3 5.37

6 7 5.40

4 5 5.48

5 6 5.51

4 5 5.56

3 4 5.63

6 7 5.96

TABLE II. List of the avoided crossings considered in this work. For each avoided crossing we give its internuclear distance
and the index of the 2 electronic states concerned by this crossing. The electronic states indexes are given by their energetic
order (starting from zero for the lowest energy state of each symmetry)


