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Abstract
We present finite-element numerical algorithms for the identification of vortices in quantum fluids described by

a macroscopic complex wave function. Their implementation using the free software FreeFem++ is distributed with
this paper as a post-processing toolbox that can be used to analyse numerical or experimental data. Applications
for Bose-Einstein condensates (BEC) and superfluid helium flows are presented. Programs are tested and validated
using either numerical data obtained by solving the Gross-Pitaevskii equation or experimental images of rotating
BEC. Vortex positions are computed as topological defects (zeros) of the wave function when numerical data are
used. For experimental images, we compute vortex positions as local minima of the atomic density, extracted after
a simple image processing. Once vortex centers are identified, we use a fit with a Gaussian to precisely estimate
vortex radius. For vortex lattices, the lattice parameter (inter-vortex distance) is also computed. The post-processing
toolbox offers a complete description of vortex configurations in superfluids. Tests for two-dimensional (giant
vortex in rotating BEC, Abrikosov vortex lattice in experimental BEC) and three-dimensional (vortex rings, Kelvin
waves and quantum turbulence fields in superfluid helium) configurations show the robustness of the software. The
communication with programs providing the numerical or experimental wave function field is simple and intuitive.
The post-processing toolbox can be also applied for the identification of vortices in superconductors.
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Programm summary
Program Title: FFEM postproc data 2D, FFEM postproc data 3D and FFEM postproc image
Catalogue identifier:
Program summary URL:
Program obtainable from:
Licensing provisions:
No. of lines in distributed program, including test data, etc.: 81429
No. of bytes in distributed program, including test data, etc.: 8 768 685
Distribution format: .zip
Programming language: FreeFem++ (v 4.12) free software (www.freefem.org)
Computer: PC, Mac, Super-computer.
Operating system: Mac OS, Linux, Windows.
Nature of problem: The software is scoped to the identification of quantized vortices in 2D or 3D configurations described by
a complex wave function. Either simulation data obtained through numerical resolution of the Gross-Pitaevskii equation or 2D
experimental images of Bose-Einstein condensates (BEC) can be used as input data. Examples of vortex identification in rotating
BECs and superfluid helium are illustrated in the paper.
Solution method: We model the complex wave function using P1 (piece-wise linear) Galerkin triangular (in 2D) and tetrahedral
(in 3D) finite elements. For simulation data, the zeros of the wave function are directly computed and the circulation of the
velocity on triangles sides is assessed. Vortices are obtained when a zero is found in a triangle with non-zero circulation. In 3D,
the algorithm is applied on tetrahedron faces and the zero points are linked using mesh connectivity to form vortex lines. For
experimental images, vortices are identified as local minima of the atomic density and extracted using the image contrast.
Running time: From seconds to minutes depending on the mesh resolution of the simulation/experimental data.
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1 Introduction

The nucleation of quantized vortices, with fixed (quantized) circulation and fixed core diameter is a striking feature of the two
main known quantum fluids: superfluid helium and atomic Bose-Einstein condensate (BEC). Liquid helium below the critical
(lambda) temperature Tλ = 2.17K is also called He II and is generally described as a mixture of two fluids with independent
velocity fields: a normal viscous fluid and an inviscid superfluid. In the superfluid component, a large number of quantized
vortices of the atomic size are nucleated and their complex interactions lead to a Quantum Turbulence (QT) state. The vortex line
density plays an important role in the statistical description of QT and is usually measured in experiments using second sound
probes (Donnelly, 2009). Visualisations of vortices in superfluid helium are relatively recent and offer only a qualitative picture
of vortex reconnections (Bewley et al., 2006). Therefore, considerable theoretical and numerical efforts (see dedicated reviews
or volumes Skrbek and Sreenivasan (2012); Barenghi et al. (2014); Tsubota et al. (2017)) were devoted to unravel properties of
vortex interactions in He II. The Gross-Pitaevskii (GP) model has been extensively used to explore properties of QT in an ideal
setting containing only the superfluid (Nore et al., 1997; Abid et al., 2003; Kobayashi et al., 2021). Even though the GP equation
offers only a partial description of the complexity of superfluid helium, quantum vortex interactions are accurately described
without any additional phenomenological models.

The extraction of vortices from a GP numerical dataset providing values of the complex macroscopic wave function (order
parameter) ψ is thus an important tool to study properties of QT turbulence in superfluid helium. The main difficulty in this setting
is the existence of a very large number of vortices with tangled shapes resulting from multiple reconnections. The identification
of vortices is however simplified by the fact that vortices are evolving into a uniform background quantum flow of constant atomic
density n = |ψ|2 = n0. One the main applications of the algorithms and programs presented in this paper is the extraction of
multiple vortex lines from a given complex wave function field ψ, resulting from numerical simulations of QT based on the GP
model.

Quantized vortices have been extensively studied in BECs, since their existence provides an evidence of the superfluid nature
of these systems. Different vortex generation methods were used in experimental BEC setups: based on the drag on an object
moving through the condensates (Jackson et al., 1999), by rotating the trap confining the atoms (Madison et al., 2000; Haljan et al.,
2001), or by phase-engineering of topological defects (Leanhardt et al., 2002). Experimental observations were systematically
supplemented with numerical simulations based on the GP equation, which is in this case (dilute BEC at zero temperature) the
standard mathematical model. Different types of vortices have been observed in experiments or numerical simulations of BEC:
Abrikosov triangular vortex lattices (Engels et al., 2003), bent vortex lines of ”U” or ”S” shapes (Rosenbusch et al., 2002a;
Aftalion and Danaila, 2003), giant vortices (Bretin et al., 2004; Aftalion and Danaila, 2004; Danaila, 2005) or more exotic shapes
of vortices (double rings, hopfions, stars, etc.) (Bisset et al., 2015; Crasovan et al., 2004). Experimental images of quantized
vortices in BEC are typically obtained by switching-off the magnetic trap and imaging (after a time of flight) the absorption of
a resonant laser beam propagating along the z-axis. The obtained pictures, showing atomic density integrated along the z-axis,
are then used to extract the size and the average position of the condensate (Rosenbusch et al., 2002b). Note that vortex cores are
larger in BEC (5·10−7m) than in superfluid helium (10−10m) and thus more easily observable. Note also that recent experimental
and theoretical studies (Kwon et al., 2014; Navon et al., 2016) reported different possible routes to QT in BEC.

Another application of the algorithms and programs presented in this contribution is the possibility to accurately post-process
BEC experimental images, as well as wave function fields provided by GP numerical simulations of BEC. The difficulty in the
BEC case is that vortices are topological defects (zeros of the wave function) on the top of a non-constant atomic density that
also vanishes outside the condensate. This background density depends on the BEC setting (trapping potential, rotation) and is
taken into account in the algorithm extracting vortices. The post-processing thus separates the non-condensed cloud from the
condensate, extracts the background atomic density to isolate vortices and finally fits each individual vortex with an anisotropic
Gaussian to compute vortex radius.

Even though the present toolbox can be easily used with experimental images of quantum systems with vortices (superfluids,
superconductors), the main intended application is the link with numerical systems providing a 2D or 3D field of the complex
wave function ψ. Numerical results of vortices in superfluids are generally presented using contours of the atomic density in 2D
simulations or iso-surfaces of low atomic density in 3D simulations. Precise methods for the tracking of vortices in complex fields
were developed by Villois et al. (2016) using a Newton-Raphson method to determine the zeros of the wave function combined
with Fourier interpolation for the evaluation of the wave function outside grid points. Caliari and Zuccher (2017) suggested
another method adapted to spectral Fourier computations, based on non-equispaced Fast Fourier Transform to truncate Fourier
series at arbitrary points and finally identify vortex line positions during vortex reconnection. A fast real-time visualisation
technique of vortices in QT simulations of high resolution simulations was developed by Liu et al. (2020) using a graph-based
method.
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The advantage of using the present toolbox is to use generic unstructured grids with finite elements in 2D and 3D that can be
subsequently refined around vortices. Adapted mesh provides accurate identification of vortex centers, vortex lines description
and vortex radius computation. These quantities are important in assessing physical and mathematical theories on vortex dynamics
or QT in BEC or superfluid helium. A great number of software packages for solving different forms (stationary, time-dependent,
with non-local or high-order interactions) of the GP equation exist in the CPC Program Library. Spatial discretizations are
generally based on spectral (Dion and Cancès, 2007; Caliari and Rainer, 2013; Antoine and Duboscq, 2014, 2015), finite-elements
(Marojević et al., 2016; Vergez et al., 2016) or finite-difference (Muruganandam and Adhikari, 2009; Vudragović et al., 2012;
Caplan, 2013; Kong et al., 2014; Hohenester, 2014; Kishor Kumar et al., 2019) methods. Provided programs are written in Fortran
(Dion and Cancès, 2007; Muruganandam and Adhikari, 2009), C (Vudragović et al., 2012; Caplan, 2013), Matlab (Caliari and
Rainer, 2013; Caplan, 2013; Antoine and Duboscq, 2014; Hohenester, 2014; Antoine and Duboscq, 2015), FreeFem++ (Vergez
et al., 2016) or C and Fortran with OpenMP (Kishor Kumar et al., 2019). All these programs could benefit from the use of the
present post-processing toolbox that can be easily interfaced with any type of space discretization by writing the output complex
wave function fields in a standard finite-element format (examples of how to write data are provided in Sect. 7).

The organization of the paper is as follows. In Sect. 2 we introduce the GPE model and the characterisation of quantized vortices.
Sections 3 and 4 present the main algorithms used for the identification of vortices in GP simulations of BECs for 2D and 3D
configurations, respectively. Section 5 is dedicated to the identification of vortices in experimental images. Programs architecture
and main parameters of the toolbox are described in Sect. 7. We present various 2D (Abrikosov vortex lattice, giant vortex)
and 3D (bent vortex, vortex knot, Kelvin waves and vortices in QT) benchmarks used for the validation of our codes in Sect. 6.
Finally, the main features of the toolbox and its possible extensions are summarized in Sect. 8.

2 The Gross-Pitaevskii model and quantized vortices

2.1 The Gross-Pitaevskii equation

The Gross-Pitaevskii equation describes the time-space evolution of the macroscopic wave function of a dilute gaseous BEC in
the limit of zero temperature. For a BEC of N atoms confined in a trapping potential Vtrap(x) and rotating with angular velocity
Ω, the GP equation is:

i~∂ψ
∂t

= − ~2

2m
∇2ψ + Vtrapψ + g|ψ|2ψ −Ω ·L(ψ), (1)

where L is the angular momentum, ~ the reduced Planck constant and m the atomic mass. The constant in front of the non-linear
term depends on the scattering length as, as g = 4π~2as

m
. The atomic density n(x) = |ψ(x)|2 vanishes outside the condensate

and thus natural boundary conditions for (1) are homogeneous Dirichlet conditions (ψ(x)→ 0 as x→∞). When Eq. (1) is used
to describe superfluid helium, the trapping potential and the angular velocity are set to zero and periodic boundary conditions are
assumed. Considering rotations along the z-axis (i. e. Ω = Ωk) implies that only the z-component of the angular momentum
appears in Eq. (1) and the rotation term can be presented as (Danaila and Kazemi, 2010; Danaila and Hecht, 2010; Danaila and
Protas, 2017):

Ω ·L(ψ) = ΩLzψ = i~Ω

(
y
∂ψ

∂x
− x∂ψ

∂y

)
= i~ΩAt∇ψ, with At = (y,−x, 0). (2)

The following general quadratic ± quartic form of the trapping potential describes most of the existing theoretical and experi-
mental studies of rotating BECs (Vergez et al., 2016):

Vtrap(x, y, z) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2)+ U2

(
r

w2

)2

+ U4

(
r

w4

)4

, r2 = x2 + y2, (3)

where ωx, ωx, ωx are trapping frequencies of the classical harmonic (∼ r2) trapping potential and U2, U4, w2, w4 are characteris-
tics of the detuned laser beam adding the quartic part (∼ r4) of the potential and a supplementary (positive or negative) quadratic
term (Bretin et al., 2004). The conservation of the number of atoms N inside the condensate is expressed as:∫

R3

|ψ(x)|2 dx = N. (4)
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2.2 The Thomas-Fermi approximation

The Thomas-Fermi regime is characterized by strong interactions (the kinetic energy is negligible compared to the interaction
energy). In absence of rotation, the Thomas-Fermi density is classically (Pitaevskii and Stringari, 2003) obtained from Eq. (1)
by considering stationary solutions ψ(x, t) = φ(x) exp(−iµt/~) and neglecting the Laplacian term (corresponding to kinetic
energy):

Vtrap(x) + g|φ|2 = µ. (5)

The corresponding Thomas-Fermi atomic density then takes a simple form:

nTF(x) = |φTF|2 =
µ− Vtrap(x)

g
. (6)

The constant µ is the chemical potential and its value can be calculated by combining Eqs. (6) and (4). If Ω 6= 0, an equivalent
Thomas-Fermi approximation can be used to approximate the density of the rotating condensate by considering (6), but with an
effective trapping potential:

V eff
trap = Vtrap −

1

2
mΩ2r2, r2 = x2 + y2. (7)

The effective potential is the original potential diminished by the centrifugal term (Stringari, 1999; Vergez et al., 2016). In the
case of superfluid helium (Vtrap = Ω = 0) the Thomas-Fermi density is constant nTF = n0.

2.3 Quantized vortices

Using the Madelung transformation, the wave function can be also presented as:

ψ(x, t) =
√
n(x, t)eiS(x,t), (8)

with n the atomic density and S the phase. The mass density ρ and the velocity v of the superfluid are defined as:

ρ(x, t) = mn(x, t) = m |ψ(x, t)|2, (9)

v(x, t) =
~
m
∇S(x, t) =

~
ρ

ψ∗∇ψ − ψ∇ψ∗

2i
. (10)

For a flow of non-vanishing density (ρ 6= 0), we infer from (10) that the superfluid is irrotational:

∇× v =
~
m
∇×∇S = 0. (11)

The lines along which ρ = 0 define topological defects, known as quantized vortices. It results from (10) that the velocity is
singular at the vortex center. The Madelung transformation becomes singular when vortices are present in the flow. For a review
of mathematical problems related to the Madelung transformation in presence of quantum vortices, see Carles et al. (2012).

The circulation Γ along a closed regular path C surrounding a simply connected domain S is:

Γ =

∮
C

v · dl =
~
m

∮
C

∇S · dl. (12)

If S is a simply connected domain without vortices, using property (11) and Stokes’ theorem results in Γ = 0. If a vortex is
present in the domain S, the curl of the velocity expressed by Eq. (11) becomes a Dirac function and a phase-defect line starting
from the vortex center exists. Since ψ must be a single-valued function, the integrated change in the phase must be a multiple of
2π, which implies that:

Γ =
~
m

2πκ =
h

m
κ, (13)

where κ is an integer representing the winding number of the vortex. It is important to note that vortex solutions are not singular
solutions to the GP equation (1). Indeed, a straight-line vortex solution Ψv can be obtained (Pitaevskii and Stringari, 2003) using
cylindrical coordinates (z, r, ϕ) as:

Ψv =
√
n0 f(r) eiκϕ. (14)

The asymptotic behaviour of this solution near the origin (r = 0) is known (Neu, 1990):

f(r) ∼ r|κ| +O(r|κ|+2), r → 0. (15)
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The region near the vortex center where the density is varying in a significant way defines the vortex core. The radius of the vortex
is of the order of the healing length ξ (Pitaevskii and Stringari, 2003):

ξ =
~√

2mg|ψ|2
=

1√
8πas|ψ|2

. (16)

This description of quantized vortices offers a very simple practical way to extract vortices from a GP wave function field. Vortices
are thus identified in the present post-processing as points in 2D or lines in 3D characterized by the following two properties:

• The density at the vortex center is 0.

• The circulation of the velocity on a closed path around the center is non zero.

2.4 Scaling

Numerical simulations are usually based on the non-dimensional form of the GP equation (1). By setting

x→ x

aho
, u =

ψ
√
N a

−d/2
ho

, (17)

where d = 2 or 3 is the dimension of the space and aho =
√

~
mω⊥

the harmonic oscillator length defined with respect to a

reference trapping frequency ω⊥ = min(ωx, ωy), the dimensionless form of the GP equation becomes:

i
∂u

∂t
= −1

2
∇2u+ Ctrapu+ Cg|u|2u− iCΩA

t∇u. (18)

Coefficients in (18) are defined as:

CΩ =

(
Ω

ω⊥

)
, Cg =

4πNas
aho

(in 3D), Cg = β (given in 2D). (19)

The dimensionless effective potential corresponding to (7) and (3) is :

V eff
trap =

1

2

(
axx

2 + ayy
2 + azz

2 + a4(x2 + y2)2) , (20)

with dimensionless coefficients (Vergez et al., 2016):

ax =

(
ωx
ω⊥

)2

−
(

Ω

ω⊥

)2

+ 2

(
U2

mω2
⊥w

2
2

)
,

ay =

(
ωy
ω⊥

)2

−
(

Ω

ω⊥

)2

+ 2

(
U2

mω2
⊥w

2
2

)
,

az =

(
ωz
ω⊥

)2

, a4 = 2

(
U4 a

2
ho

mω2
⊥w

4
4

)
.

(21)

Non-dimensional forms (20) and (21) are used to obtain analytical forms for the Thomas-Fermi approximation (6):

ρTF = mod u2 =

(
ρ0 − 2V eff

trap

2Cg

)
+

. (22)

Analytical expressions for ρ0 are presented in detail by Vergez et al. (2016) for trapping potentials of the form quartic ±
quadratic. Note that the non-dimensional healing length (16) becomes in the Thomas-Fermi approximation:

ξ

aho
=

1√
2Cg|u|2

=⇒ ξmin

aho
=

1
√
ρ0
. (23)
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3 Vortex identification in 2D BECs

The vortex identification process in 2D is decomposed into two parts: the localization of the vortex center and the computation
of vortex characteristics. For the latter step, the vortex core radius (obtained through a fitting procedure) and the parameter of
the Abrikosov vortex lattice (when identified) are computed. The initial data is the complex wave function u obtained from nu-
merical simulations and represented as a P1 (piece-wise linear) finite-element function on a triangular mesh Th. We illustrate the
algorithms using numerical data reported by Vergez et al. (2016) for a fast rotating BEC with a quartic-minus-quadratic trapping
potential. The initial data is shown in Fig. 1(a). A giant vortex is formed in the middle of the condensate, surrounded by a lattice
of individual vortices. The purpose of the post-processing is to identify individual vortices and compute their characteristics.

3.1 Vortex localization

The main difficulty introduced by this case is that the wave function is vanishing inside the giant vortex and also outside the
condensate. These zones have to be removed before searching the zeros of the wave function corresponding to vortices. There
are two possibilities depending on the availability of numerical parameters used in simulations.

• If parameters (21) of the trapping potential are known, we use formulae presented by Vergez et al. (2016) to compute ρ0

necessary to estimate the background density following the Thomas-Fermi approximation (22). For the case presented in
this section the trapping potential (20) is of the form V eff

trap = 1
2

(
a2r

2 + a4r
4
)

and we use the following algorithm:

−− > compute ρ0

Compute CS = 2Cg,

• if a2 < 0 and a4 <

√
πa3

2

6CS

ρ0 =
1

4a4

[(
6a2

4

π
CS

)2/3

− a2
2

]
• else

calculate the root η > 0 of:

f(η) = 4a4η
3 + 3a2η

2 − 6

π
(CS) = 0,

and then calculate

ρ0 = a2R
2 + a4R

4

−− > compute the maximum radius of the condensate

R+ =

(
−a2 +

√
a2

2 + 4ρ0a4

2a4

)1/2

.

(24)

At the end of this step, mesh triangles where ρTF < 0 are removed.
• If the analytical expression of the Thomas-Fermi approximation is not known, we use to identify the border of the con-

densate an iso-value line of very low density ρmin. A typical value is ρmin = 5 · 10−5, but this threshold can be adjusted
depending on the type of the scaling used in the numerical simulation. Triangles where ρ < ρmin are removed at the end
of this step.

We can proceed now with vortex center localisation. The location of vortices can be obtained through a direct application of their
defining properties mentioned at the end of Sect. 2.3. For each triangle T of the mesh, we search whether it contains a zero of the
wave function or not. We denote by ur = <(u) and ui = =(u) the real and imaginary part of the wave function, respectively.
Let P0, P1, P2 be the vertices of the triangle. A necessary condition for the presence of a zero of a P1 complex function inside a
triangle is that both real and imaginary part must change sign inside the triangle:

min(ur(P0), ur(P1), ur(P2)) < 0, (25)

min(ui(P0), ui(P1), ui(P2)) < 0, (26)

max(ur(P0), ur(P1), ur(P2)) > 0, (27)

max(ui(P0), ui(P1), ui(P2)) > 0. (28)
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Figure 1: Illustration of vortex identification steps in 2D. Data from numerical simulation of a fast rotating BEC with
a quartic-minus-quadratic trapping potential (Vergez et al., 2016). a) Initial density ρ, b) Thomas-Fermi density ρTF,
c) identified vortex zones used to localize vortex centers and for the fitting with a Gaussian, d) mesh of the identified
vortex lattice (blue points) on top of the initial data.
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The coordinates of the zero in barycentric coordinates are then computed as:

xv =
det(u(P0), 0, u(P2))

det(u(P0), u(P1), u(P2))
, (29)

yv =
det(u(P0), u(P1), 0)

det(u(P0), u(P1), u(P2))
. (30)

If a zero is found inside the triangle, we compute the circulation of the velocity on triangle sides to assess whether a vortex is
present. After discretizing Eq. (12), we use the following formula to compute circulation and corresponding winding number:

κ =
1

2π
=
(

log

(
u(P1)

u(P0)

)
+ log

(
u(P2)

u(P1)

)
+ log

(
u(P0)

u(P2)

))
, (31)

where = denotes the imaginary part. A winding number κ = ±1 indicates the presence of a vortex inside the triangle at position
(xv, yv). Divisions by zero in Eq. (31) are avoided in programs by first checking the value of the wave function on the vertices
of the triangle. This enables the algorithm to also capture vortices passing exactly through a vertex of the mesh.

3.2 Vortex radius estimation

The difficulty of this step is the separation of the vortex density from the background (Thomas-Fermi) density. We use the
decomposition:

ρ = ρvρb (32)
with ρb is the background density corresponding to the shape of the condensate and ρv the vortex density varying between 0 and
1. The computation of ρb is done using two methods.

• If the parameters defining the trapping potential are known, we use again the Thomas-Fermi approximation, as in Sect.
3.1. For this case (quadratic-minus-quartic potential) we approximate ρb = ρTF using (24).

• If the Thomas-Fermi expression cannot be reconstructed analytically, we assume the general formula:

ρb = ρfit
0 −

1

2

(
afit
x x

2 + afit
y y

2 + afit
4 (x2 + y2)2

)
, (33)

and use a least-square procedure to find coefficients C =
{
ρfit

0 , a
fit
x , a

fit
y , a

fit
4

}
minimizing the functional

J(C) =
1

2
||ρ(x, y)− ρb(C, x, y)||2Thtrunc

. (34)

Note that the minimization is performed on the domain Thtrunc representing the condensate after removing the regions corre-
sponding to vortex domains (where the density has a sharp decrease to zero). A minimization on the entire domain Th resulted
in a poor approximation of the Thomas-Fermi density, when tested against analytical forms. Several algorithms defining Thtrunc

were tested and finally the most reliable and fast algorithm is based on removing individual vortex domains which are disks of
radius 0.1dmin, where dmin is the minimum distance between vortex centers. The minimization of the functional (34) is easily
computed using the interface of FreeFem++ with the Ipopt library based on the interior point minimisation method (Wächter
and Biegler, 2006).

The obtained background density ρb is plotted in Fig. 1(b). It is now possible to isolate vortex density and fit it with a Gaussian,
following

ρb − ρ = ρb(1− ρv) = A exp

[
−1

2

(x− x0)2

rx2
− 1

2

(y − y0)2

ry2

]
. (35)

The amplitudeA is used to define the vortex contrast (as in experiments, Coddington et al. (2004)), sinceA/ρb(x0, y0) is the ratio
between the ”missing” column density at vortex center and the corresponding TF value (see also Danaila (2005)). Only vortices
with a contrast greater than 0.3 are considered to compute core radii rv = (rx + ry)/2. Note that we used for the vortex fit (35)
an anisotropic Gaussian. In practice rx ≈ ry . As the vortex center position has been already computed, the fit is simplified by
setting x0 = xv, y0 = yv . When fitting the vortex center position during tests, we obtained the expected behaviour: x0 ≈ xv
and y0 ≈ yv . The fit following Eq. (35) is computed on individual vortex domains which are disks of radius 0.45dmin centered
on vortex center, as shown in Fig. 1(c). The Ipopt library is again used for the least-square fit, which ensures fast and reliable
results.

The program also computes the characteristics of the vortex lattice (vortex arrangement and vortex lattice parameter). A mesh is
built using vortex points as vertices, as shown in Fig. 1(d), on the top of the original density plot. This representation is useful
to better distinguish the arrangement of vortices in different types of vortex lattices (circular, triangular, squared) than commonly
used plots of contours of density. For the case of dense Abrikosov lattices (as shown in Sect. 6.1), we select vortices with 6
neighbours and compute the vortex lattice parameter as the average distance to these 6 neighbours.
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4 Vortex identification in 3D

Vortex identification in 3D combines the localization algorithm described in Sect. 3.1 with the graph-based method suggested by
Liu et al. (2020). The wave function is represented as a P1 finite element function on mesh elements which are now tetrahedrons.
Vortex lines are described by a series of points identified as the intersection of vortex lines with faces of a mesh element. The
algorithm is illustrated in Fig. 2 using numerical data corresponding to a superfluid helium field with vortex rings (Kobayashi
et al., 2021). A low-density isosurface of the initial data is presented in Fig. 2(a). An important difference when studying vortex
lines instead of points is the presence of reconnections (vortex line intersection) and closed loops.

The algorithm used for the localization of vortices in 2D is directly adapted to 3D by applying Eqs. (25), (29) and (31) on the
faces of each tetrahedron. The result is the detection of faces crossed by vortex lines. The position of the zero density point inside
those faces is computed and stored. Tetrahedrons crossed by vortex lines are plotted in Fig. 2(b). Following the method suggested
by Liu et al. (2020), a graph is then built by linking the points belonging to a same mesh element and using the fact that a given
point is inside two different tetrahedrons. The connectivity c of the graph allows an easy separation of vortex lines through the
following algorithm:

1. Choose a point of connectivity c = 1 and follow the graph while keeping an ordered list of visited points. Stop when
reaching a point where c = 1 (end of a line) or c > 2 (reconnection point). Remove all visited points from the graph except
if the end point is a reconnection point; in this case remove the link to the penultimate point and actualize connectivity.
Repeat this step until there are no points with c = 1 left. The ordered lists of points represent vortex lines.

2. The only remaining lines are now loops. Start by removing the ones that reconnect through the same process as before,
excepting that we start and stop at points where c > 2.

3. Only points with c = 2 remain. Starting from one such point and stopping when reaching the same point ends the
identification of a vortex loop. All lines have been extracted from the graph when all points have been extracted.

As the points are constrained to be on faces of tetrahedrons, the vortex line is not smooth, as illustrated in Fig. 2(c). Two
possibilities exist to smooth the vortex line. For a precise study of vortex lines, it is necessary to locate more accurately its
points through the interpolation of the wave function and a local minimization of the density to identify its zero. This local
minimization can be done using a Newton method (Villois et al., 2016) or by combining a pseudo-vorticity method and a gradient
descent minimization (Liu et al., 2020). The drawback of these methods is that they are time-consuming and directly related to
the spectral representation of the solution. We privileged a second possibility to smooth the vortex line, using a simple five-point
moving average along the line. This methodology proved to be very fast and sufficiently precise to identify 3D vortex lines.
Since this is a low-cost methodology, the results thus obtained could be eventually used as initial (guess) data in more complex
procedures, as those suggested by Villois et al. (2016); Liu et al. (2020), to identify vortex lines with spectral accuracy.

For a line l, with points li, 1 ≤ i ≤ n, we compute new points mi, as follows:

mi =
0.8

5
(li−2 + li−1 + li + li+1 + li+2) + 0.2li. (36)

The ends of the line are kept fixed and a three point window is used for the second and penultimate points. The process is repeated,
with the number of iterations being an adjustable parameter. In practice, 10 iterations are usually enough. To obtain a smoother
result, it is possible to use a linear interpolation on line segments to increase the number of points before applying the moving
average. Figure 2(c) shows a comparison between the initial line and the smoothed result for one of the vortex lines (located at
the bottom left of the initial solution). The y axis of the figure is enlarged for the clarity of the visualisation. All lines identified
in the original field are plotted in Fig. 2(d).

An optional quantity that can be computed is the curvature γ of the vortex line. At a given pointmi, we estimate γ(mi) = α/∆s,
where ∆s is the arc-length variation between points mi−1 and mi+1 and α is the angle between line segments linking mi−1 to
mi and mi to mi+1.
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Figure 2: Illustration of the vortex identification algorithm in 3D. Test case with vortex rings in superfluid helium
(Kobayashi et al., 2021) simulated inside a cubic domain (spectral method). a) Isosurface of low density ρ, b)
tetrahedrons crossed by vortex lines, c) example of extracted vortex line (black) and smoothed vortex line (red), d)
final vortex lines reconstructed in the full domain.
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5 Vortex identification in experimental images

The toolbox distributed with this paper can be also used to analyse experimental images of BEC with vortices. Such images are
obtained by switching-off the magnetic trap and imaging the absorption of a resonant laser beam along the vertical axis. The
contrast in experimental pictures thus represents the atomic density integrated along the z-axis and vortices are visible as very
dark regular spots (see Fig. 3). Since the information concerning the phase of the wave function is not available, the algorithms
presented in Sect. 3 have to be adapted to analyse experimental images.

We illustrate the adapted algorithm by extracting vortex characteristics from an experimental image presented by Coddington
et al. (2004). It corresponds to a slowly rotating atomic BEC in an harmonic trap. The original image, shown in Fig. 3(a), is
transformed in the pgm format and then loaded in FreeFem++ as a rectangular array of grey values between 0 (dark) and 1 (white).
A triangular finite-element mesh is then constructed from the rectangular grid and the values of grey (representing the density
contrast) are represented as a P1 (piece-wise linear) function on this mesh.

The first step of the algorithm consists in separating vortex regions from the rest of the domain. We define a new variable
ρiso = 1ρ>ciso − 1ρ≤ciso , where 1 is the characteristic (indicator) function and ciso is an adjustable parameter. If it is
necessary to remove noisy artefacts on the border of the condensate, ρiso can be smoothed using algorithms inspired from image
processing techniques. We implemented a smoothing algorithm that balances between the accuracy of the fit of the contour and
the preservation of the length of the contour, but any other image smoothing algorithm can be tested. Figure 3(b) shows that ρiso
separates the mesh into three subdomains that can be identified as the condensate, the vortices domain (holes) and the exterior of
the condensate. If some vortices are not correctly separated from the background contrast, the value ciso can be adjusted by trials
and the above algorithm repeated.

For each vortex region, the vortex center (xv, yv) is computed as the minimum of the density in the region. Following this point,
all the information needed to apply the algorithms presented in Sect. 3.2 are available.

• A mesh Thtrunc is created by removing circles of radius 0.1dmin around each vortex point, where dmin is the minimum
distance between vortices.

• The background density ρb is then estimated following Eqs. (33) and (34). This density is plotted in Fig. 3(c).

• The vortex density ρv , presented in Fig. 3(d), is fitted with the Gaussian (35) to estimate vortex radius rv . To obtain a
better estimation of the position of the vortex center, x0 and y0 are also parameters of the fit (which was not the case for
the fit of 2D numerical data). The mesh of identified vortices is plotted in Fig. 3(e).

6 Examples and benchmarks provided with the toolbox

Several other examples and benchmarks used to validate our numerical codes are provided with the toolbox. To reduce the size
of the files distributed with the 3D code, solutions have been truncated to remove tetrahedrons where ρ > ρthreshold, with
ρthreshold being adapted to each simulation to ensure that a high density area is still surrounding each vortex. Table 1 presents
the computational (CPU) time and the number of mesh elements for the different test cases. The first test cases in each category
correspond to examples used to explain algorithms in Sects. 3, 4 and 5.

Test case Figure CPU time (s) Number of triangles

2D data Quartic - quadratic potential 1 2.5 (14.7) 32258
Dense Abrikosov lattice 4 22.6 (79.6) 130050

3D data

Vortex rings 2 0.29 16574 (4368)
Bose-Einstein condensate 5 1.4 267963 (84562)
Vortex knot 6 0.5 95004 (3479)
k−3 Kelvin wave 7 1.08 273733 (912)
k−6 Kelvin wave 7 1.09 273673 (834)
1283 quantum turbulence 8 3.9 101189 (37756)
2563 quantum turbulence 8 774.7 99488250 (345541)

experimental Small Abrikosov lattice 3 13.82 91574
images Dense Abrikosov lattice 9 27.66 114720

Table 1: Computational (CPU) time and number of mesh elements for different test cases. For 2D data, the indicated
time corresponds to the computation of ρb using numerical parameters. The computational time when using a fit to
estimate ρb is indicated in parenthesis. For 3D cases, the number of tetrahedrons crossed by a vortex line is indicated
in parenthesis. 11
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Figure 3: Illustration of vortex identification steps in experimental images. Case of a vortex lattice in a slowly
rotating BEC (Coddington et al., 2004). a) Experimental image of atomic density ρ, b) region separated using a
density contour ρiso, c) fitted background (Thomas-Fermi) density ρTF, d) vortex density ρv , e) mesh of identified
vortices (blue points) and condensate border.
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6.1 Dense 2D Abrikosov vortex lattice

This case corresponds to a 2D Abrikosov lattice in a fast rotating BEC. The wave function field was obtained using a spectral solver
(Parnaudeau et al., 2015) for the scaled Gross-Pitaevskii equation (18) with parameters: Cg = 1000, CΩ = 0.95, ax = ay = 1.
The background density ρb is obtained by computing the Thomas-Fermi density directly from simulation parameters. The initial
data is shown in Fig. 4(a) and the identified vortices are plotted in Fig. 4(b). Characteristics of the Abrikosov lattice are plotted
in next panels: the vortex radius rv as a function of the distance to the condensate center r/RTF in Fig. 4(c) and the inter-vortex
distance sv in Fig. 4(d).
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Figure 4: Illustration of the vortex identification in 2D for a dense Abrikosov lattice in fast rotating BEC. Wave
function field obtained with a spectral GP code (Parnaudeau et al., 2015). a) Initial density ρ, b) mesh of identified
vortices, c) vortex radius rv as a function of the normalized distance from the vortex to the center of the condensate
r/RTF, d) inter-vortex distance sv .

13



6.2 Vortices in 3D Bose-Einstein condensates

To test the toolbox on an unstructured mesh, we simulated a 3D BEC with the GP finite-element toolbox distributed by Vergez
et al. (2016). A cut of the initial data with 12 vortices is shown in Fig. 5(a). The extracted lines are plotted in Fig. 5(b).

Figure 5: Illustration of the vortex line identification in 3D for a rotating BEC. Data obtained on an unstructured
mesh using a finite-element solver (Vergez et al., 2016). a) Cut of the initial density ρ, b) extracted vortex lines.

6.3 3D vortex knot

For a more quantitative assessment of the results provided by the toolbox, we tested the programs for a case with known analytical
description of the vortex line. This is the vortex knot benchmark presented by Villois et al. (2016). The vortex line is defined as
s(σ) = (x−1

p (sx(σ)), y−1
p (sy(σ)), z−1

p (sz(σ))) with:

sx(σ) = [R0 +R1 cos(qσ)] cos(pσ), (37)

sy(σ) = [R0 +R1 cos(qσ)] sin(pσ), (38)

sz(σ) = R1 sin(qσ). (39)

Functions xp, yp and zp are introduced during the computation of the wave function to ensure periodic boundary conditions:

xp = −L
π

cos
(π
L
x
)
, (40)

yp = −L
π

cos
(π
L
y
)
, (41)

zp = − L

2π
cos

(
2π

L
z

)
. (42)

A comparison between the vortex line described analytically by Eq. (37) and the result obtained with the toolbox is shown in
Fig. 6(a). The wave function was computed with a 1283 grid, in a cubic domain of side 2π. The knot parameters are: R0 = 8ξ,
r1 = ξ/2, p = 2 and q = 5 with ξ = 0.5∆x. The curvature γ of the vortex line was computed as an additional test and compared
in Fig. 6(b) to analytical values. A fairly good approximation is observed. To reach the precision obtained by Villois et al. (2016),
a higher resolution and a better smoothing method are needed (with the drawback of considerably increasing the computational
time). The script used to create the initial wave function for this case is included in the toolbox.
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Figure 6: Illustration of the vortex line identification in 3D for a vortex knot. Test case suggested by Villois et al.
(2016). a) Vortex line (in red) inside the mesh elements identified of circulation κ = 1, b) comparison of the vortex
line curvature with analytical values.

6.4 Kelvin waves

Another validation against analytical forms of vortex lines considered Kelvin waves with a k−3 and k−6 energy spectrum. Oscil-
lations of the vortex line were generated following the method suggested by Proment et al. (2013). A Padé approximation of the
vortex profile (Berloff, 2004) was used in each xy plane. The vortex center in each plane was placed along a line (X(z), Y (z), z)
defined by:

X(z) + iY (z) = F−1
(√

nth(k)eiφ(k)
)
, (43)

where nth(k) is the imposed spectrum (here k−3 or k−6) and φ(k) is randomly distributed in [0, 2π[. F−1 denotes the inverse
Fourier transform.

To compute the spectrum, we start by remeshing the line on the interval [0, Lz] where Lz is the simulation box size. The line is
expressed as L(z) = (lx(z), ly(z), z) and the spectrum is:

nkw = |R̂(k)|2, (44)

where r(z) = lx(z) + ily(z) and R̂ is the Fourier transform of r. Figure 7 shows that the numerical spectrum is close to the
imposed power law nth(k) in both cases. The script used to create the initial wave function for this case is included in the toolbox.
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Figure 7: Kelvin wave spectrum for a vortex line scaling as k−3 (a) and k−6 (b). Test case suggested by Proment
et al. (2013). Numerical spectrum in black and theoretical spectrum in red. (c) Vortex line and density iso-surface
for the k−3 case, (d) vortex coordinates xv(z) and yv(z) for the same case.

16



6.5 3D quantum turbulence

The final test case for the 3D algorithm considered a quantum turbulence field with a large number of vortices. The wave function
field was obtained from a GP spectral simulation with an initial condition containing Taylor-Green vortices (Kobayashi et al.,
2021). Results are presented in Fig. 8: 155 vortex lines were identified from a 1283-grid simulation and 640 lines were found in
a 2563-grid simulation. The smaller vortex loops have a radius of the order of the mesh resolution. Vortex identification is fast,
as shown by computational times presented in Tab. 1, despite the large number of tetrahedrons involved in the process. Villois
et al. (2016) reported, for a similar test case, a CPU time of 6 hours on a 64 core cluster using MPI. As our method is local, higher
resolutions can be treated by separating the simulation in small subdomains that can be analysed separately. The vortex lines can
then be linked together before the smoothing.

Figure 8: Illustration of the vortex identification in 3D for quantum turbulence in superfluid helium. Spectral numer-
ical simulation of the GP equation (Kobayashi et al., 2021). Tetrahedrons with non-zero circulation on the left and
identified vortex lines on the right for two resolutions: 1283 (a,b) and 2563 (c,d).
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6.6 Experimental dense Abrikosov lattice image

To complete the test presented in Sect. 5, we considered the more challenging test of an experimental image with a dense
Abrikosov vortex lattice reported by Coddington et al. (2004). The result is shown in Fig. 9. Vortices on the side of the
condensate are not identified as they are in a very low contrast regions. The vortex lattice properties were also computed. We
notice in Fig. 9(d) that the vortex radius rv increases for vortices away from the BEC center, which is the expected behaviour
because of the low local atomic density. As the length scale information is not available with images, all quantities are expressed
in pixel size.
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Figure 9: Illustration of the vortex identification in an experimental image with dense Abrikosov vortex lattice
(Coddington et al., 2004). a) Initial image, b) background density ρb, c) mesh of identified vortex points and Thomas-
Fermi border, d) vortex radius rv as a function of the distance to the center of the BEC. In panel (c), only vortices
with high enough density contrast (and thus fitted with a Gaussian) are represented by blue circles.
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7 Description of the programs

In this section, we first describe the architecture of the programs and the organisation of the provided files. Then we describe the
input parameters and the structure of the output files for the different codes.

7.1 Program architecture

The Postproc toolbox directory is organized around three main subdirectories, postproc data 2D, postproc data 3D
and postproc image 2D, corresponding to the three algorithms described above: the case of 2D simulation data, that of 3D
simulation data and the case of experimental images. Each of these subdirectory contains a file: FFEM postproc $case.edp which
is the main FreeFem++ script file and a folder A macro containing macros used in main code. For example, to run the vortex
identification in 3D simulation data, the user can use the command FreeFem++ FFEM postproc data 3D.edp. Initial
data fields or images for the examples presented in this paper are stored in the INIT folder.

The obtained solutions are saved in the folder dircase. Depending on the output format selected by the user, data files are
generated in specific folders for visualization with Tecplot, Paraview or Gnuplot. We also provide in the folder Figures ready-
made layouts for Tecplot. The user can thus obtain the figures from this paper using newly generated data. More details about the
output structure are given in Sect. 7.4.

Before running the main scripts, it could be useful for the reader to get familiar with the initial data fields. This will help with
the use of the toolbox in different programming frameworks. For this purpose, we included some auxiliary (optional) scripts that
could be used to generate again data files for the examples presented in this paper (folder extra codes for examples) or
to have an example of how to link an external solver (GP or similar) to the toolbox (folder data example). More in detail:

1. The directory extra codes for examples contains codes generating the wave function and computing vortex line
properties for the examples described in Sects. 6.2 to 6.4:
• generate vortex knot.edp: generates the vortex knot wave function (Sect. 6.3).
• compute vortex knot curvature.edp: computes numerical and theoretical curvatures for the vortex knot and compares
them.
• generate sphere mesh.edp: generates a spherical mesh for the BEC example with 12 vortices (Sect. 6.2).
• generate Kelvin wave.edp: generates the wave function of a vortex line deformed by a Kelvin wave (Sect. 6.4).
• compute Kelvin spectrum.edp: computes the Kelvin wave spectrum of the vortex line identified in the field file generated
by the previous script.

2. The directory data example contains example codes showing how to save numerical data and parameters in the format
used in the toolbox:
• data example 2D.f90: Fortran code computing the wave function of a 2D BEC with three vortices.
• data example 3D.f90: Fortran code computing the wave function of a 3D BEC with a central vortex line.
• convert data 2D.edp: FreeFem++ script converting the data created by the 2D Fortran code to the FreeFem++ format
used in the toolbox.
• convert data 3D.edp: FreeFem++ script converting the data created by the 3D Fortran code to the FreeFem++ format
used in the toolbox.

Going back to main scripts, the complete architecture of the Postproc toolbox main directory is the following:

1. FFEM postproc generate files.edp is a FreeFem++ script used to automatically run preliminary or maintenance operations
and generate data and mesh used in the presented examples. It is useful to run this script before testing different examples.
A clean option was also added to help managing data files and results of compilation.

2. The directory Common Macros contains one file:
• Macro common.idp: macros used to create directories and save the results,

19



3. The directory postproc data 2D contains codes dedicated to vortex identification in 2D numerical data with the algo-
rithms presented in Sect. 3:
• FFEM postproc data 2D.edp: the main FreeFem++ script.
• INIT: directory containing data and parameter files for the Abrikosov lattice and quartic potential examples described
in Sects. 3 and 6.1.
• Figures: directory containing Tecplot layouts used to replot the figures shown in this article. The main code must be
run with the associated example before opening the layout to replot the figure.
• A macro: directory containing macros used for the vortex identification in 2D complex data.

4. The directory postproc data 3D contains codes dedicated to vortex identification in 3D numerical data with the algo-
rithms presented in Sect. 4:
• FFEM postproc data 3D.edp: the main FreeFem++ script.
• FFEM files for Kelvin wave vortex knot lay.edp: script used to generate the files necessary to replot the figures in Sects.
6.3 and 6.4.
• INIT: directory containing the data and parameter files for the examples presented in Sects. 4, 6.2 and 6.5: vortex rings in
superfluid helium, Bose-Einstein condensate and quantum turbulence. The scripts in the extra codes for examples
directory must be used to obtain the initial data for the examples described in Sects. 6.3 and 6.4.
• Figures: directory containing Tecplot layouts used to replot the figures shown in this article. The main code must
be run with the associated example before opening the layout to replot the figure. To obtain the curvature and spectrum
shown in Figs. 6 and 7, it is necessary to use the scripts in the extra codes for examples directory before opening
the layout.
• A macro: directory containing macros used for the vortex identification in 3D complex data.

5. The directory postproc image 2D contains codes dedicated to vortex identification in 2D experimental images with
the algorithms presented in Sect. 5:
• FFEM postproc image 2D.edp: the main FreeFem++ script.
• INIT: directory containing the data files for the vortex lattice presented in Sects. 5 and 6.6.
• Figures: directory containing Tecplot layouts used to replot the figures shown in this article. The main code must be
run with the associated example before opening the layout to replot the figure.
• A macro: directory containing macros used for the vortex identification in 2D experimental images.

7.2 Macros and functions

The different macros and functions used in the toolbox are:

1. In postproc data 2D, the directory A macro contains:
• M bec compute TF.edp: macro computing the Thomas-Fermi density ρTF and condensate radius RTF.
• M bec fit gaussian.edp: macro using Ipopt to fit the vortex density ρv with a Gaussian function (see Eq. (35)).
• M bec fit TF.edp: macro using Ipopt to fit the Thomas-Fermi density (see Eq. (34)).
•M bec lattice stats.edp: macro computing characteristics of the vortex lattice (radius and inter-vortex spacing as a func-
tion of the distance to the center of the BEC).
• M bec read data.edp: macro used to read the initial data (wave function field) and parameter files.
• M bec sort save results.edp: macro used to save the results.
• M bec vortex lattice.edp: macro building a mesh corresponding to the vortex lattice.
• M bec vortex regions.edp: macro computing the vortex position (Eqs. (29) and (31)) and building the mesh Thtrunc.

2. In postproc data 3D, the directory A macro contains:
• M bec build line.edp: macro building a vortex line following the method described in Sect. 4.
• M bec compute curvature.edp: macro computing the curvature of a vortex line.
• M bec compute TF.edp: macro computing the Thomas-Fermi density ρTF and condensate radius RTF.
• M bec read data.edp: macro used to read the initial data (wave function field) and parameter files.
• M bec smooth line.edp: macro smoothing a vortex line using a 5-point moving average (see Eq. (36)).
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3. In postproc image 2D, the directory A macro contains:
• M bec fit gaussian.edp: macro using Ipopt to fit the vortex density ρv with a Gaussian function (see Eq. (35)).
• M bec fit TF.edp: macro using Ipopt to fit the Thomas-Fermi density (see Eq. (34)).
•M bec lattice stats.edp: macro computing characteristics of the vortex lattice (radius and inter-vortex spacing as a func-
tion of the distance to the center of the BEC).
• M bec reduceres smooth.edp: macro used to smooth and lower the resolution of the initial image.
• M bec regularize isoline.edp: macro used to smooth the region borders in ρiso.
• M bec sort save results.edp: macro used to save the results.
• M bec vortex lattice.edp: macro building a mesh corresponding to the vortex lattice.
• M bec vortex regions.edp: macro computing the vortex position and building the mesh Thtrunc.

4. The vortextools.cpp file is included in the FreeFem-sources/plugin/sec directory for FreeFem++ versions above
4.12 and contains functions used by the previously described scripts and macros:
• smoothCurve: function smoothing a vortex line using a 5-point moving average (see Eq. (36)).
• uZero: function computing vortices in a 3D complex field (see Eqs. (29) and (31)); it returns a P0 function of value 1 if
the tetrahedron is crossed by a vortex line and 0 otherwise.
• uZero2D: function computing vortices in a 2D complex field (see Eqs. (29) and (31)), returns a P0 function of value 1 if
the tetrahedron is crossed by a vortex line and 0 otherwise, an array containing vortex positions and dmin.
• ZeroLines: function used to identify the vortex lines through the graph described in Sect. 4.
• curvatureL: function computing the curvature of a curve described by a line 1D-mesh.
• abscisses: function computing the arc-length along a curve.
• interpol: function using linear interpolation to transform data from an irregular discretization to a uniform one.

7.3 Input parameters

Parameters for the identification process must be adapted in the main code file. They differ depending on the type of data and the
space dimension (2D/3D).
(1) In the file FFEM postproc data 2D.edp, the parameters are:

• paramread: defines the method to compute the background density: computes ρTF from the Gross-Pitaevskii parameters
(true) or uses the fit presented in Eq. (34) (false). If true, a parameter file must be provided.

• displayplot: controls the output information to plot. Possible values from 0 (no plots), to 2 (plots data for all vortices
during the fit).

• save: if true, data used in the Tecplot layouts will be saved.

• iwait: a Boolean indicating if the code must wait for user input when a plot is shown (true) or if it can continue (false).

• hole: a Boolean indicating whether the condensate has a central hole as in the quartic-quadratic potential test case.

• fcase: the name of the input file.

• dirInput: the name of the directory where the input file is stored.

• dircase: the name of the directory where the results will be stored.

(2) In the file FFEM postproc data 3D.edp, the parameters are:

• BEC: if true, the tetrahedrons outside the Thomas-Fermi zone will be removed. In this case, a parameter file must be
given.

• displayplot: controls the output information to plot. Possible values from 0 (no plots), to 2 (plots data for all vortices
during the fit).

• save: if true, data will be saved in the Tecplot folder.

• iwait: a Boolean indicating if the code must wait for user input when a plot is shown (true) or if it can continue (false).

• curv: the vortex line curvature is computed if true.

• npadd: the number of points to add on each segment of the line before smoothing. The minimum is 1 (the extremity of
the segment).

• smooth: a Boolean indicating whether to smooth the line or not.
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• nsmooth: the number of smoothing iterations.

• fcase: the name of the input file.

• dirInput: the name of the directory where the input file is stored.

• dircase: the name of the directory where the results will be stored.

(3) In the file FFEM postproc image.edp, the parameters are:

• displayplot: controls the output information to plot. Possible values from 0 (no plots), to 2 (plots data for all vortices
during the fit).

• save: if true, data will be saved in the Tecplot folder.

• iwait: a Boolean indicating if the code must wait for user input when a plot is shown (true) or if it can continue (false).

• reduceres: a Boolean, the image resolution is reduced when the value is true.

• fcase: the name of the input file.

• dirInput: the name of the directory where the input file is stored.

• dircase: the name of the directory where the results will be stored.

• cutisoval: value ciso used when separating the regions.

• cutisoval2: a second value ciso,2 used when separating the regions.

7.4 Outputs

When a computation starts, the OUTPUT $case directory is created. It contains five folders. The RUNPARAM directory contains
a copy of the code and data files, allowing an easy identification of each case and preparing an eventual rerun of the same case.
The other folders contains different output format files of the computed solution, to be visualised with Tecplot, Paraview, Gnuplot
or FreeFem++ . The content of those subfolders depends on the case and on the computation parameters:

• For 2D data, the Gnuplot folder contains multiple files. Computed quantities are stored in the vortex coord $case.dat
file. The column are in order: the vortex number, the vortex coordinates xv and yv , the radius, the distance from the cen-
ter of the BEC and a boolean indicating if Ipopt has converged (value 0) or not (value 1) when fitting the vortex. The
sorted radius.dat and stats lattice.dat contain respectively the core radius and the inter-vortex distance
(second column) sorted by increasing distance to the center of the condensate (first column). The Tecplot folder con-
tains files for the initial density (rhoinit.dat), the background density (rhoTF.dat), the vortex wave function on the
whole domain (rhov.dat) and only on vortex regions (rhovVortex.dat), as well as meshes for the Thomas-Fermi
border of the condensate (TF meshL.dat) and the estimated vortex points (vortex mesh.dat).

• For 3D data: The smoothed vortex lines are stored as .vtk files in the Paraview folder, as FreeFem++ .meshb files in
the meshL folder and as .dat files in the Gnuplot folder (as a succession of point coordinates x, y, z). The file
names are line followed by fcase and the line number. Files starting by zeroline in the Gnuplot and Paraview
folders are the vortex lines before smoothing. The Tecplot folder contains the initial density (rho init.dat), a
mesh of the tetrahedrons crossed by vortex lines (vortex mesh.dat) and if it is computed, the Thomas-Fermi density
(rho TF.dat). If the curvature is computed, it is saved in the Gnuplot folder as curv followed by the line number.

• For experimental images, the Gnuplot and Tecplot folders are almost the same as in the 2D data case. The only
difference is that there are two meshes built from vortex points: the first one uses the points estimated from the vortex re-
gions (vortex mesh estimated.dat) and the second one uses vortex positions obtained from the fit with a Gaussian
(vortex mesh fitted.dat).
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8 Summary and conclusions

The main advantage of the toolbox distributed with this paper is its ability to give fast and accurate results for vortex identification
in different configurations: 2D, 3D and experimental images. While more precise numerical methods for the identification of
vortices could be set by combining local minimization and Fourier interpolation (Villois et al., 2016; Caliari and Zuccher, 2017),
we showed that the the computation of the zeros of a P1 finite element function is a reliable method to obtain a good degree of
precision while keeping the computational cost low. This approach is well suited for fields with a large number of vortices, as
obtained in high resolution simulation of quantum turbulence, where local minimization would be too costly. Another advantage
of the toolbox is to be adaptable to any computational framework (finite elements, spectral, finite differences) providing the wave
function field. Examples how to interface the toolbox with other software are also provided.

The toolbox was created with FreeFem++ , a free and open-source software for the resolution of partial differential equations and
the manipulation of finite elements. The main steps of the method are (i) the search of the zeros of the wave function (ii) the
delimitation of the vortex region (in 2D) or the vortex line (in 3D) (iii) the computation of vortex characteristics. The numerical
code was validated against a wide range of test cases available in the literature for both 2D and 3D configurations.

To facilitate its use, the toolbox is provided with separate folders containing all the necessary files (parameters, restart files) to run
all the cases described in the paper. Ready-made scripts and layouts allow the user to generate the figures presented in this paper
with newly generated data after running the programs. As a consequence,the present toolbox can be easily tested and modified for
the computation of other diagnostics or the identification of vortices in other types of systems (e. g. vortices in superconductors
described by a Ginzburg-Landau wave function field).
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Berloff, N. G., 2004. Padé approximations of solitary wave solutions of the Gross–Pitaevskii equation. Journal of Physics A:
Mathematical and General 37 (5), 1617.

Bewley, G. P., Lathrop, D. P., Sreenivasan, K. R., 2006. Visualization of quantized vortices. Nature 441, 588.
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