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Abstract

We consider the mean-field Zero-Range process in the regime where the potential function r
is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine
the mixing time of the system, and establish cutoff. We also prove that the Poincaré constant is
bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries
via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and
stochastic calculus.
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1 Introduction

1.1 Model

The Zero-Range process, introduced by Spitzer, is a model of interacting particle systems in con-
tinuous time. It describes the evolution of m ≥ 1 indistinguishable particles jumping randomly
across n ≥ 1 sites, where the speed of a particle only depends on the number of its cooccu-
pants (hence the name Zero-Range). More precisely, the interaction is represented by a function
r : {1, 2, ...} → (0,∞), called the potential function, where r(k) is the rate at which a site with
k particles expels a particle. For convenience, we let r(0) = 0 (no jump from empty sites). In
this paper, we focus on the mean-field version of the model, where a jumping particle chooses its
destination uniformly among all sites. More precisely, we consider a continuous-time Markov chain
X := (X(t))t≥0 = (X1(t), X2(t), ..., Xn(t))t≥0 taking values in the state space

Ω :=

{
x = (x1, x2, ..., xn) ∈ Zn

+ :
n∑

i=1

xi = m

}
, (1)

whose Markov generator L acts on an observable φ : Ω → R as follows:

(Lφ)(x) = 1

n

∑
1≤i,j≤n

r(xi)(φ(x− δi + δj)− φ(x)). (2)

Here (δi)1≤i≤n denotes the canonical basis of Zn
+. The generator L is irreducible and reversible

with respect to the following law:

π(x) ∝
n∏

i=1

xi∏
k=1

1

r(k)
, (3)

with the convention that an empty product is 1. The classical theory of Markov processes says
that starting from any probability on the state space Ω, X(t) will converge in distribution to the
stationary law π as t → ∞. The speed of convergence from the state x ∈ Ω is quantified by the
so-called mixing times:

tmix(x; ϵ) := min{t ≥ 0 : dtv
(
P t
x, π
)
≤ ϵ}. (4)

Here dtv (·, ·) is the total variation distance, defined by dtv (µ, ν) = max
A⊂Ω

|µ(A) − ν(A)|, and P t
x

denotes the distribution of X(t) under the probability Px: P
t
x(·) = Px [X(t) ∈ ·], where Px is the

law of the process starting from x. Of particular interest is the worst-case mixing time:

tmix(ϵ) := max{tmix(x; ϵ) : x ∈ Ω}, (5)

where we take the maximum of the mixing times over all initial configurations x.
We recall that the Dirichlet form associated with our process is defined by:

E(φ,ψ) := −⟨φ,Lψ⟩π ,

where ⟨φ,ψ⟩π :=
∑
x∈Ω

π(x)φ(x)ψ(x) denotes the usual inner-product in L2(Ω, π). Then the Poincaré

constant, denoted by λ∗, is defined by:

λ∗ := min

{
E(φ,φ)
Var [φ]

}
,
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where the minimum is taken over all non-constant observables, and Var [φ] denotes the variance of φ
under π. In our case, λ∗ coincides with the more classical absolute spectral gap due to reversibility
of the system:

λ∗ = lim
t→∞

−1

t
logmax

x∈Ω
dtv

(
P t
x, π
)
.

The purpose of the present paper is to estimate λ∗ and tmix(x; ϵ), under certain assumptions on
r(·).

Previous works. To the best of our knowledge, the total-variation mixing time of the Zero-Range
process has only been studied in a few cases: the case where r is constant in [7], [8], [10], the case
where r is non-decreasing and bounded in [6], and the somehow-trivial case of independent walkers
where r is linear. Regarding the Poincaré constant, a notable result is given in [11], where Morris
determines the order of magnitude of λ∗ in the case where r is constant. Another result is obtained
by Caputo in [3] for the case where r is homogeneously Lipschitz and increasing at infinity, i.e.

sup
k≥1

|r(k + 1)− r(k)| <∞, (6)

inf
k−l≥δ

r(k)− r(l) > 0, (7)

for some δ ∈ Z+, where he proves that the Poincaré constant is bounded away from zero. In [5],
Salez and Hermon prove a comparison principle that allows us to compare the Poincaré constant
of many models with that of the mean-field model. We will use this principle below.

1.2 Main results

We consider the “intermediate” regime where the function r is non-decreasing, unbounded but
grows slower than a linear function. More precisely, throughout the paper, we assume that r
satisfies:

r(k + 1) ≥ r(k), ∀k ∈ Z+, (8)

lim
k→∞

r(k) = ∞, (9)

sup
k∈Z+

r(k)

k
<∞. (10)

We study the regime where the number of sites diverges while the density of particles per site
remains bounded. More precisely, we always suppose that m = m(n) and x = x(n), and all
asymptotic statements refer to the regime:

n→ ∞,
m

n
≤ ρ, (11)

where ρ is a positive constant. To lighten the notation, we keep the dependency upon n implicit as
much as possible. By a dimension-free constant, we mean a number that depends only on r and
ρ. Our notation O (·) (resp. Ω(·), Θ(·), o(·)) means being upper bounded by (resp. lower bounded
by, upper and lower bounded by, negligible compared to) the quantity inside the brackets up to a
dimension-free prefactor. We define a function R : {1, 2, ...} → R as follows:

∀k ∈ Z+, R(k) =
k∑

i=1

1

r(i)
. (12)
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Under condition (10), we easily see that

lim
k→∞

R(k) = ∞. (13)

We prove that R(∥x∥∞) is a good estimate for tmix(x; ϵ), as stated in the following theorem:

Theorem 1 (Main result). For ϵ ∈ (0, 1) fixed, for any initial state x,

tmix(x; ϵ) ≤ (1 + o(1))R(∥x∥∞) +O (log n) . (14)

In addition, if the initial state x = x(n) satisfies
∥∥x(n)∥∥∞ n→∞−−−→ ∞, then

tmix(x; ϵ) ≥ (1− o(1))R(∥x∥∞).

Maximizing over all initial states x, we obtain

Corollary 2 (Cutoff). Suppose additionally that R(m) ≫ log n. Then for ϵ ∈ (0, 1) fixed,

tmix(ϵ)

R(m)
= 1 + o(1). (15)

In other words, the system exhibits cutoff at time R(m).

The class of functions r that satisfy conditions (8), (9), (10) is quite large. A natural example
is when r is of the form r(k) = kα, ∀k ∈ Z+, for some α ∈ (0, 1). In this case,

R(k) = (1 + o(1))
k1−α

1− α
, as k → ∞,

by the Stolz-Cesàro Theorem. Thereupon, a direct application of our result gives the following.

Example 1. Suppose that r(k) = kα, ∀k ∈ Z, for some α ∈ (0, 1), and suppose that m ≫

(log n)1/(1−α). Then the system exhibits cutoff at time
m1−α

1− α
.

Cutoff for the Zero-Range process was obtained in [10] for the case r(k) = 1 and more generally
in [6] for the case where r is non-decreasing and bounded. Our work complements these results by
investigating the case where r → ∞. We also prove that the Poincaré constant is bounded away
from zero and infinity:

Theorem 3 (Poincaré constant). λ∗ = Θ(1).

Thanks to the comparisons in the paper [5] of Hermon and Salez, we can extend this result
to the more general case where a jumping particle chooses its destination according to a doubly
stochastic matrix P rather than uniformly among all sites (for example, take P to be the transition
matrix of random walk on a regular graph). More precisely, let P be an irreducible doubly stochastic
transition matrix on [n] := {1, 2, ..., n}, and let LP be the generator on Ω that acts on an observable
φ : Ω → R by:

(LPφ)(x) =
∑

1≤i,j≤n

r(xi)P (i, j)(φ(x− δi + δj)− φ(x)).

Similarly, we can define the Poincaré constants λ∗(P ) and λ∗(LP ) of P and LP via their associated
Dirichlet forms and their stationary laws. Then we have the following.
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Corollary 4 (Poincaré constant in arbitrary geometry). λ∗(LP ) = Θ(λ∗(P )).

We give an example where we can compute λ∗(P ) explicitly to obtain explicit estimate on
λ∗(LP ).

Example 2 (Poincaré constant of torus model). Let P be the transition matrix of the simple
random walk on the lattice Zd/pZd, for some p, d ∈ Z+. Then λ∗(LP ) = Θ(1/(dp2)), as pd → ∞.

The calculation of λ∗(P ) is defered to the end of the paper.

Heuristics. If we ignore arrivals and only consider departures of particles, then R(∥x∥∞) is
exactly the expectation of the time it takes for the initially highest site to be emptied. In the true
system, due to the conditions imposed on r, the arrival rate at each site is uniformly bounded,
and consequently, R(∥x∥∞) remains a good approximation for the emptying-time. For the lower
bound, we prove that before time R(∥x∥∞), the initially highest site still has too many particles,
and hence the system has not yet reached equilibrium. For the upper bound, we will see that at
time t = (1 + o(1))R(∥x∥∞) + O (log n), ∥X(t)∥∞ = O (log n). Afterwards, the system quickly
reaches equilibrium.

Acknowledgment. The author warmly thanks Justin Salez for constructive discussions and his
comments on the draft. The author also kindly thanks the anonymous referee for his suggestion to
make the paper more clear and readable.

2 Lower bound on the mixing time

2.1 Preliminaries

We will use the following two graphical constructions of the process X.

Graphical construction 1. Let Ξ be a Poisson point process of intensity
1

n
dt⊗du⊗Card⊗Card

on [0,∞) × [0,∞) × [n] × [n], where Card denotes the counting measure. Define the piece-wise
constant process X = (X(t))t≥0 taking values in Ω as follows: X(0) = x, and for each point
(t, u, i, j) of Ξ,

X(t) :=

{
X(t−)− δi + δj , if u ≤ r(Xi(t−))

X(t−) otherwise.
(16)

Then X is a càdlàg Markov process starting from x with generator L.

Graphical construction 2. Let Ψ be a Poisson point process of intensity dt ⊗ du ⊗ Card on
[0,∞) × [0,∞) × [n]. Consider the piece-wise constant process X = (X(t))t≥0 which starts at
X(0) = x and has the following jumps: for each point (t, u, j) of Ψ,

X(t) :=

X(t−)− δi + δj , if
1

n

i−1∑
k=1

r (Xk(t−)) < u ≤ 1

n

i∑
k=1

r(Xk(t−)), for some i ∈ [n]

X(t−) otherwise.

(17)
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Then X is also a Markov process starting from x with generator L. We can view the Poisson
process in the graphical construction 2 as the repartition of the Poisson process in the graphical
construction 1 according to the destination of the jumps.

Filtration. We always note (Ft)t≥0 the filtration generated by the Poisson processes in the graph-
ical construction we are using, where Ft is the σ− algebra generated by these processes up to time
t. It is immediate that the process X is adapted to the filtration and has càdlàg trajectories.

Mean-field jump rate. At any time t, as the model is mean-field, the arrival rate at each site
is the same. We denote this quantity by ζ(t):

ζ(t) :=
1

n

n∑
j=1

r(Xj(t)).

Condition (10) implies that

ζ(t) ≤

 1

n

n∑
j=1

Xj(t)

 sup
k∈Z+

r(k)

k
≤ ρ sup

k∈Z+

r(k)

k
=: κ. (18)

Hence, the number of particles arriving at each site is stochastically dominated by a Poisson process
of dimension-free intensity κ.

Martingale associated with an observable. For any observable φ : Ω → R, under Px, the
process M = (M(t))t≥0 given by

M(t) := φ(X(t))− φ(x)−
∫ t

0
Lφ(X(u))du (19)

is a zero-mean martingale, see e.g [4]. Let φ1, φ2 be two observables, and let M1, M2 be the
associated martingales. Then the predictable covariation of M1 and M2 is given by

⟨M1,M2⟩t =
∫ t

0

∑
y∈Ω

L(X(u), y) (φ1(y)− φ1(X(u))) (φ2(y)− φ2(X(u))) du. (20)

We recall a lemma on the concentration of martingales with jumps (see [13]):

Lemma 5 (Concentration of martingale). Let (M(t))t≥0 be a zero-mean càdlàg martingale w.r.t a
filtration that satisfies the usual conditions. Suppose that M(0) = 0 and M(t) −M(t−) ≤ K for
all t > 0 and some 0 ≤ K <∞. Then for each a > 0, b > 0,

P
[
∃t ≥ 0 :M(t) ≥ a, ⟨M,M⟩t ≤ b2

]
≤ exp

[
− a2

2(aK + b2)

]
. (21)

Gain/loss at a site. We will need the following quantities:

1. For i ∈ [n], let Gi(t) be the counting process that counts the number of particles arriving at
site i up to time t. We call Gi the gain at site i.

2. Let Li(t) be the counting process that counts the number of particles jumping out of site i
up to time t. We call Li the loss at site i.

Obviously, Xi(t) = Xi(0) +Gi(t)− Li(t).
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2.2 Elementary concentration inequalities

We write ξ ∼ exp(λ) to mean that ξ is an exponential variable with parameter λ, i.e. ξ has
density λe−λx1{x>0}dx. We list here some useful inequalities, whose proofs are simple applications
of Chernoff’s bound (see, e.g. [1] for more details on Chernoff’s bound).

Lemma 6 (Poisson concentration). Let Z be a Poisson variable. Then for any B > 1,

P [Z ≥ BEZ] ≤ e−(1+B lnB−B)EZ .

Lemma 7 (Concentration of sum of independent exponential variables). Let λ1, ..., λk be positive
numbers, and let ξ1, ..., ξk be independent random variables such that ξi ∼ exp(λi), ∀1 ≤ i ≤ k. Let

S :=
k∑

i=1

ξi.

For B > 0 arbitrary, we have the following inequalities:

P
[
S − ES ≤ −

√
Var [S]B

]
≤ e−B2/4, (22)

and

P
[
S − ES ≥ λVar [S] +

B

λ

]
≤ e−B/2, (23)

where λ = min
1≤i≤k

{λi}.

2.3 Proof of the lower bound

In this subsection, we prove the lower bound on tmix(x; ϵ) in Theorem 1. First, we analyze the law
of a single site at equilibrium.

Proposition 8 (Single site marginals at equilibrium). There exists a dimension-free constant q > 0
such that

∀k ∈ Z+,
π(x1 = k)

π(x1 = k − 1)
<

q

r(k)
.

Proof. Let x be an arbitrary configuration in Ω such that x1 ≥ 1. Thanks to (11), the number of

sites that have at least 2ρ particles is at most
n

2
, and hence the number of sites that have less than

2ρ particles is at least
n

2
. For any l ∈ [n] \ {1} such that xl < 2ρ, thanks to (8),

π(x)

π(x− δ1 + δl)
=
r(xl + 1)

r(x1)
≤ r(⌈2ρ⌉)

r(x1)
.

Taking average over all sites l such that xl < 2ρ, we obtain

π(x) ≤ r(⌈2ρ⌉)
r(x1)

2

n

∑
l ̸=1

xl<2ρ

π(x− δ1 + δl)

≤ r(⌈2ρ⌉)
r(x1)

2

n

∑
l ̸=1

π(x− δ1 + δl).
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Now we take the sum over all x such that x1 = k to get:

π(x1 = k) ≤ r(⌈2ρ⌉)
r(k)

2

n

∑
x1=k

∑
l ̸=1

π(x− δ1 + δl)

=
r(⌈2ρ⌉)
r(k)

2

n

∑
l ̸=1

∑
x1=k

π(x− δ1 + δl)

=
r(⌈2ρ⌉)
r(k)

2

n

∑
l ̸=1

∑
z1=k−1,
zl≥1

π(z) (change of variable: z = x− δ1 + δl)

≤ r(⌈2ρ⌉)
r(k)

2

n

∑
l ̸=1

∑
z1=k−1

π(z)

=
r(⌈2ρ⌉)
r(k)

2

n

∑
l ̸=1

π(x1 = k − 1)

≤ r(⌈2ρ⌉)
r(k)

2n

n
π(x1 = k − 1)

=
q

r(k)
π(x1 = k − 1),

where q = 2r(⌈2ρ⌉).

Now we study the effect of arrivals at a particular site. Recall that Li denotes the loss at site
i, as defined at the end of subsection 2.1.

Lemma 9 (Effect of arrivals). Let x be an arbitrary initial configuration. For i ∈ [n] and h ∈ Z+

such that xi ≥ h, there exist independent variables Uk ∼ exp

(
n− 1

n
r(k)

)
, h ≥ k ≥ 1, such that

for any 0 ≤ k ≤ h− 1,

1. Tk := Uh + Uh−1 + ...+ Uh−k is a stopping time,

2. almost surely, Li(Tk) ≥ k + 1 ,

3. almost surely, Xi(t) ≥ h− k, ∀t ∈ [0, Tk).

The intuition is as follows: if we ignore arrivals and consider only departures at site i, then Tk
is the time to have k + 1 particles depart from i. Arrivals, on the one hand, slow down a site from
being emptied, but on the other hand, accelerate the rate of expelling and hence increase the loss.
So the inequalities at points 2 and 3 follow.

Proof. We use the graphical construction 1. We first prove for the case k = 0. Let Uh be defined
by

Uh = inf
{
t ≥ 0 : Ξ

(
[0, t]× [0, r(h)]× {i} × [n] \ {i}

)
> 0
}
.

It is clear that Uh is a stopping time and Uh ∼ exp

(
n− 1

n
r(h)

)
. Moreover, by definition of Uh,

Ξ
(
[0, Uh)× [0, r(h)]× {i} × [n] \ {i}

)
= 0,
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so before time Uh, Xi cannot fall from h to h − 1. In other words, ∀t ∈ [0, Uh), Xi(t) ≥ h. In
particular, Xi(Uh−) ≥ h, so there should be a jump from site i to [n] \ {i} at Uh. Consequently,
Li(Uh) ≥ 1 and Xi(Uh) = Xi(Uh−)− 1 ≥ h− 1, almost surely, which finishes the case k = 0.
Now we define Uk inductively by:

Uk = inf
{
t ≥ 0 : Ξ

(
(Th−k−1, Th−k−1 + t]× [0, r(k)]× {i} × [n] \ {i}

)
> 0
}
,

where Th−k−1 = Uh + ... + Uk+1. The variables (Uk)h≥k≥1 are independent by the stationary and
independent increments of Poisson processes. In addition,

Uk ∼ exp

(
n− 1

n
r(k)

)
.

The claim is simply obtained by induction and by the strong Markov property.

Useful variables. Lemma 9 allows us to compare certain random times with the random variables
(Sk)k≥1 defined by

Sk =
k∑

i=1

ξi, (24)

where (ξi)i≥1 is a sequence of independent random variables such that ξi ∼ exp(r(i)), ∀i ∈ Z+.

Obviously, E [Sk] =
k∑

i=1

1

r(i)
= R(k), Var [Sk] =

k∑
i=1

1

r(i)2
. Due to (8), (9), (10), the functions r,R

diverge, so we easily see that

lim
k→∞

Var [Sk]

ESk
= 0. (25)

Lemma 9 makes precise the fact that arrivals can only slow down a site from being emptied,
while Proposition 8 together with condition (9) say that at equilibrium, the typical height of a site
cannot be very large. This leads to the lower bound on tmix(x; ϵ) in Theorem 1:

Proof of the lower bound in Theorem 1. Let δ ∈ (0, 1) be fixed, and let x ∈ Ω be arbitrary. We
only need to prove that for ∥x∥∞ sufficiently large,

tmix(x; ϵ)

R(∥x∥∞)
> 1− δ. (26)

Without loss of generality, suppose that site 1 is originally the highest, i.e. ∥x∥∞ = x1. We know
that for any A ⊂ Ω,

dtv
(
P t
x, π
)
≥ P t(x,A)− π(A).

We choose
A = {y ∈ Ω : y1 ≥ k},

where

k = sup

{
l ∈ Z+ : |R(l)| ≤ δ

2
R(∥x∥∞)

}
.
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We only need to show that π(A) = o(1), and for t = (1− δ)R(x1), P
t
x(A) = 1− o(1).

Thanks to (13), ∥x∥∞ ≫ 1 ensures that R(∥x∥∞) ≫ 1 and hence k ≫ 1, so by Proposition 8 and
(9), π(A) = o(1). On the other hand, we apply Lemma 9 with i = 1, h = x1 to conclude that there
exists a stopping time

Tx1−k−1
(d)
=

n

n− 1
(Sx1 − Sk),

where the sequence (Sk)k≥1 is defined in (24), such that X1(t) ≥ k+1, ∀t ∈ [0, Tx1−k−1). We define
Sk,x1 = Sx1 − Sk, for any k < x1. Then

P (1−δ)R(x1)
x [A] ≥ Px [Tx1−k−1 > (1− δ)R(x1)]

≥ P [Sk,x1 > (1− δ)R(x1)]

= 1− P [Sk,x1 ≤ (1− δ)R(x1)] .

Moreover, R(k) ≤ δ

2
R(x1) by definition of k, and hence E [Sk,x1 ] = R(x1)−R(k) ≥ (1− δ/2)R(x1).

So by the concentration inequality (22),

P [Sk,x1 ≤ (1− δ)R(x1)] ≤ P
[
Sk,x1 − ESk,x1 ≤ −δ

2
R(x1)

]
≤ exp

(
−1

4
· δ

2

4
R(x1)

2Var [Sk,x1 ]
−1

)
≤ exp

(
− δ

2

16
R(x1)Var [Sx1 ]

−1

)
.

= o(1),

where in the third inequality we have used the fact that Var [Sx1 ] > Var [Sk,x1 ], and in the last

equality we have used (25) and the fact that x1 = ∥x∥∞
n→∞−−−→ ∞. Hence P t

x(A) = 1− o(1), which
finishes our proof.

3 Upper bound on the mixing time

We will prove the following statements:

Proposition 10 (Dissolution). There exist dimension-free constants σ, α1 such that for any δ ∈
(0, 1) fixed, for any x ∈ Ω, for any t ≥ (1 + δ)R(∥x∥∞) + σ log n,

Px [∥X(t)∥∞ ≥ α1 log n] = O
(
n−2

)
.

Proposition 11 (Quick convergence to equilibrium). Let α1 be defined as in Proposition 10. Then
there exists a dimension-free constant α so that for any configuration x such that ∥x∥∞ ≤ α1 log n,

dtv

(
Pα logn
x , π

)
= O

(
n−2

)
.

First we see how these propositions lead to the upper bound on tmix(x; ϵ) in Theorem 1:
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Proof of the upper bound in Theorem 1: Let σ, α1, α be defined as in Proposition 10 and Propo-
sition 11. Let x be an arbitrary configuration; let t1 = (1 + δ)R(∥x∥∞) + σ log n, for some δ,
t2 = α log n, and t = t1 + t2. We only need to prove that for arbitrary δ ∈ (0, 1) fixed, for n large
enough, for any x ∈ Ω,

tmix(x; ϵ) ≤ t.

By the convexity of the total variation distance,

dtv
(
P t
x, π
)
≤
∑
y∈Ω

P t1
x (y)dtv

(
P t2
y , π

)
≤ Px [∥X(t1)∥∞ ≥ α1 log n] + max

∥y∥∞≤α1 logn
dtv

(
P t2
y , π

)
,

which is O
(
n−2

)
by Proposition 10 and Proposition 11, hence smaller than ϵ when n is large

enough.

The structure of the rest of this section is as follows. In Subsection 3.1, we prove Proposition
10 and provide some analysis on the trajectory of the system which will be used in the proof of
Proposition 11. In Subsection 3.2, we prove Proposition 11 by the path coupling method of Bubley
and Dyer.

3.1 Dissolution

Recall that Gi denotes the gain at site i, as defined at the end of subsection 2.1. First we give an
estimate on Gi at the predicted time.

Lemma 12 (Estimating the gain at a site). For any dimension-free constant d, there exists a
dimension-free constant c0 such that at time t = (1 + δ/4)(R(∥x∥∞) + d log n), for any δ ∈ (0, 1)
fixed,

P [Gi(t) ≥ c0(R(∥x∥∞) ∨ log n)] = O
(
n−5

)
. (27)

Proof. We use the graphical construction 2. Since ζ(t) < κ at all time (see (18)), Gi is simply
dominated by the Poisson process Ψ

∣∣
·×[0,κ]×{i}. Consequently, at time t = (1 + δ/4)(R(∥x∥∞) +

d log n), Gi(t) is stochastically dominated by a random variable Y ∼ Poisson
(
κ(1+δ/4)(R(∥x∥∞)+

d log n)
)
. Then the result is simply obtained by Lemma 6, for c0 large enough.

For any site i, Lemma 9 says that arrivals can only accelerate the loss Li, while Lemma 12 gives
us a (random) upper bound on Gi. They together lead to the following proposition:

Proposition 13 (First phase dissolution). Let d =
7

r(1)
, and let c0 be defined as in Lemma 12.

Then for any x ∈ Ω, for any δ ∈ (0, 1) fixed, for t = (1 + δ/4)(R(∥x∥∞) + d log n),

Px [∥X(t)∥∞ ≤ c0(R(∥x∥∞) ∨ log n)] = 1−O
(
n−2

)
. (28)

Proof. Let i ∈ [n]. We apply Lemma 9 with h = xi to conclude that there exists a stopping time

Txi−1
(d)
=

n

n− 1
Sxi such that Li(Txi−1) ≥ xi. Note that Sxi is dominated stochastically by S∥x∥∞ ,

11



hence by using (23), we deduce that

P
[
Txi−1 ≥

n

n− 1

(
E
[
S∥x∥∞

]
+ r(1)Var

[
S∥x∥∞

]
+

6 log n

r(1)

)]
= P

[
Sxi ≥

(
E
[
S∥x∥∞

]
+ r(1)Var

[
S∥x∥∞

]
+

6 log n

r(1)

)]
≤ P

[
S∥x∥∞ ≥

(
E
[
S∥x∥∞

]
+ r(1)Var

[
S∥x∥∞

]
+

6 log n

r(1)

)]
≤ n−3.

Note that Var
[
S∥x∥∞

]
= o(R(∥x∥∞) ∨ log n) by (25), and hence

n

n− 1

(
E
[
S∥x∥∞

]
+ r(1)Var

[
S∥x∥∞

]
+

6 log n

r(1)

)
< t,

when n is large enough. Consequently, for n large enough,

Px [Li(t) < xi] ≤ Px [Txi−1 > t] ≤ n−3.

We take a union bound of this and the event in (27) over all sites to conclude that

P [∃i, Gi(t) ≥ c0(R(∥x∥∞) ∨ log n)] + P [∃i, Li(t) < xi] = O
(
n−2

)
.

The claim follows.

We now recall a simple version of Gronwall’s lemma that we will use a lot:

Lemma 14 (Gronwall’s lemma). Let α, β be some positive numbers. Let u : [0,∞) → R+ be a

continuously differentiable function such that
d

dt
u(t) ≤ −βu(t) + α. Then

u(t) <
α

β
+

(
u(0)− α

β

)
e−βt.

In particular, if t ≥ log u(0)

β
, then u(t) <

α

β
+ 1.

For θ a positive number, and for i ∈ [n], we define the observable φθ
i : Ω → R by

φθ
i (x) = eθxi , (29)

and we define the observable φθ by

φθ(x) =
1

n

n∑
i=1

φθ
i (x).

Lemma 15 (Estimate on Lφθ). For any dimension-free constants θ, β > 0, there exists a number
L = L(θ, β) such that, for any configuration x,

Lφθ(x) ≤ −βφθ(x)1{φθ(x)>L} + (eθ − 1)κφθ(x)1{φθ(x)≤L}. (30)

In particular,

Lφθ(x) ≤ −βφθ(x) + ((eθ − 1)κ+ β)L. (31)

12



Proof. For simplicity, we write φ instead of φθ and φi instead of φθ
i . It is not difficult to see that

Lφi(x)

φi(x)
=
eθ − 1

n

∑
j∈[n]\{i}

r(xj)−
1− e−θ

n

∑
j∈[n]\{i}

r(xi)

=
eθ − 1

n

∑
j∈[n]

r(xj)−
(
(1− e−θ)

n− 1

n
+
eθ − 1

n

)
r(xi).

Hence, by (18),

Lφi(x) ≤ (eθ − 1)κφi(x)− (1− e−θ)φi(x)r(xi).

Taking the average over all sites i we get

Lφ(x) ≤ (eθ − 1)κφ(x)− (1− e−θ)

∑
i∈[n] r(xi)φi(x)

n
.

The claim follows when φ(x) ≤ L. It remains to consider the case φ(x) > L. For any c ∈ Z+,
r(xi)φi(x) ≥ r(c)(φi(x)− eθc) due to the monotonicity of r, hence∑

i∈[n]

r(xi)φi(x) ≥ r(c)
∑
i∈[n]

(φi(x)− eθc)

≥ r(c)(nφ(x)− neθc).

Consequently,

Lφ(x) ≤ (eθ − 1)κφ(x)− (1− e−θ)r(c)(φ(x)− eθc).

Let L = L(c) = 2eθc. If φ(x) > L, then φ(x)− eθc >
φ(x)

2
, which implies:

Lφ(x) ≤ (eθ − 1)κφ(x)− (1− e−θ)r(c)
φ(x)

2
. (32)

We can take c large enough to make the right-hand side of the inequality above smaller than
−βφ(x), which finishes the proof of (30). (31) is obtained by rewriting (30) as follows,

Lφ(x) ≤ −βφ(x)(1− 1{φ(x)≤L}) + (eθ − 1)κφ(x)1{φ(x)≤L}

= −βφ(x) + ((eθ − 1)κ+ β)φ(x)1{φ(x)≤L}

≤ −βφ(x) + ((eθ − 1)κ+ β)L,

which is what we want.

A good estimate on Lφθ will guarantee good behavior of the trajectories of X, as stated in the
following proposition.
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Proposition 16 (Dissolution). Let θ, β > 0 be some dimension-free constants. Then for any x ∈ Ω,

for any t ≥ θ

β
∥x∥∞,

Px

[
∥X(t)∥∞ ≥ 6

θ
log n

]
= O

(
n−5

)
. (33)

Proof. We still write φ instead of φθ, for simplicity. Let L = L(θ, β) be defined as in Lemma 15.
Let u(t) = Ex [φ(X(t))]. By (19),

d

dt
u(t) = Ex [Lφ(X(t))] .

This and (31) imply:

d

dt
u(t) ≤ −βu(t) + ((eθ − 1)κ+ β)L.

Therefore, by Lemma 14,

u(t) ≤ ((eθ − 1)κ+ β)L

β
+ u(0)e−βt.

Hence for t ≥ θ

β
∥x∥∞, u(t) ≤ ((eθ − 1)κ+ β)L

β
+1. Note that eθ∥x∥∞ ≤ nφ(x), hence E

[
eθ∥X(t)∥∞

]
≤

nu(t). Then the claim is a simple consequence of Chernoff’s bound.

We now prove Proposition 10:

Proof of Proposition 10. We fix δ ∈ (0, 1). Let c0 be defined as in Lemma 12. Let θ1 > 0 be

fixed, and let β1 be such that
θ1c0
β1

≤ δ

2
. Let L1 = L(θ1, β1) as in Lemma 15. Let t1 = (1 +

δ/4)(R(∥x∥∞) + d log n), t2 =
δ

2
(R(∥x∥∞) ∨ log n). By definition of β1 and Proposition 13,

Px

[
θ1 ∥X(t1)∥∞

β1
≤ t2

]
= 1−O

(
n−2

)
.

By Markov property at time t1 and inequality (33) , we conclude that for any t ≥ t1 + t2,

Px

[
∥X(t)∥∞ ≥ 6

θ1
log n

]
= O

(
n−2

)
.

We choose α1 =
6

θ1
and σ =

5

4
d+

1

2
to conclude the proof.

The estimate on Lφθ in Lemma 15 also ensures that the system quickly reaches the set where
φθ is small.

Proposition 17 (Exponential moment of hitting time). Let θ, β > 0 be some dimension-free
constants, and let L = L(θ, β) be defined as in Lemma 15. Let T be the hitting time of the set
{x ∈ Ω : φθ(x) ≤ L}. Then for any x ∈ Ω,

Ex

[
eβT
]
≤ eθφθ(x)/L. (34)
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Proof. We write φ instead of φθ. The idea is that if φ is large, then the drift Lφ is negative, and
its magnitude is of the same order as φ. Hence the system will quickly reach the set where φ is
small, which will be made precise by stochastic calculus. Consider the function F : R2 → R defined
by F (u, v) = uv, which is twice continuously differentiable. By (19),

φ(X(t)) = φ(X(0)) +

∫ t

0
Lφ(X(u))du+M(t),

whereM(t) is a martingale. Moreover, φ(X) is a pure-jump process since X is piece-wise constant.
For a càdlàg process Y , we denote by ∆Y its jumps: ∆Y (s) = Y (s) − Y (s−). We define G(t) =
F (eβt, φ(X(t))). Note that the function t 7→ eβt has bounded variation. Consequently, applying
Itô’s formula (for example, see Theorem 33 in chapter 2 of [12]) to the function F and the semi-
martingales t 7→ φ(X(t)) and t 7→ eβt, we get:

G(t) =φ(X(0)) +

∫ t

0
eβuLφ(X(u))du+

∫ t

0
eβudM(u) +

∫ t

0
φ(X(u))βeβudu

+
∑

0≤s≤t

[
∆G(s)− ∂F

∂v

(
eβs−, φ(X(s−))

)
·∆φ(X(s))

]
.

(35)

On the other hand, as
∂F

∂v
(u, v) = u and the function t 7→ eβt is continuous,

∆G(s) = eβsφ(X(s))− eβsφ(X(s−)) = eβs∆φ(X(s)) =
∂F

∂v

(
eβs−, φ(X(s−))

)
·∆φ(X(s)).

Hence the last term in the right-hand side of (35) is zero. Moreover, the term
∫ t
0 e

βudM(u) is a
martingale. Applying the formula at time t ∧ T , we get:

eβ(t∧T )φ(X(t ∧ T ))

= φ(X(0)) +

t∧T∫
0

eβu
(
Lφ(X(u)) + βφ(X(u))

)
du+

t∧T∫
0

eβudM(u).
(36)

By Lemma 15, Lφ(X(u)) + βφ(X(u)) ≤ 0 when u < T . It follows that eβ(t∧T )φ(X(t ∧ T )) is a
supermartingale. Thus,

Ex

[
eβ(t∧T )φ(X(t ∧ T ))

]
≤ φ(x). (37)

Clearly, if x ∈ argminφ, then Lφ(x) ≥ 0, and hence by (30), φ(x) ≤ L. In particular, {φ ≤ L} ≠ ∅,
so T < ∞ a.s. as the process is irreducible. In (37), letting t → ∞ and using Fatou’s lemma, we
obtain

Ex

[
eβTφ(X(T ))

]
≤ φ(x).

It is easy to see that φ(X(T )) ≥ φ(X(T−))/eθ ≥ Le−θ, which leads to our claim.

The next lemma says that if we start from a configuration x such that ∥x∥∞ = O (log n), then
this remains true for a long time.
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Lemma 18 (Stability of trajectories). Let α1 be defined as in Proposition 10. There is a dimension-
free constant α2 such that

sup
∥x∥∞≤α1 logn

Px

[
∃t ∈ [0, (log n)2], ∥X(t)∥∞ > α2 log n

]
= O

(
n−3

)
. (38)

Proof. Suppose that ∥x∥∞ ≤ α1 log n. Let θ1 =
6

α1
, and let β1 be a constant, and let t =

θ1
β1
α1 log n ≥ θ1

β1
∥x∥∞. Then by (33),

Px [∥X(t)∥∞ > α1 log n] = O
(
n−5

)
.

Moreover, by Lemma 6, for a dimension-free constant α′
2 large enough,

P
[
Gi(t) ≥ α′

2 log n
]
= O

(
n−5

)
.

Taking a union bound, we deduce that

Px

[
{∥X(t)∥∞ > α1 log n} ∪ {∃i : Gi(t) ≥ α′

2 log n}
]
= O

(
n−4

)
.

This implies

Px

[
∥X(t)∥∞ ≤ α1 log n, sup

s∈[0,t]
∥X(s)∥∞ ≤ (α1 + α′

2) log n

]
≥ 1−O

(
n−4

)
.

The inequality remains true when we take the supremum over all x such that ∥x∥∞ ≤ α1 log n.
Iterating, and using the Markov property, we deduce that, for any k ∈ Z+,

Px

[
∥X(kt)∥∞ ≤ α1 log n, sup

s∈[0,kt]
∥X(s)∥∞ ≤ (α1 + α′

2) log n

]
≥ (1−O

(
n−4

)
)k ≥ 1−O

(
kn−4

)
.

We finish the proof simply by taking k = ⌊(log n)2⌋, and α2 = α1 + α′
2.

In the next proposition, we prove that the bound on ∥X∥∞ above leads to a strong bound on
φθ(X) for some θ > 0.

Proposition 19 (Strong concentration of trajectories). Let θ2 and β2 be two positive dimension-
free constants and L2 = L(θ2, β2) as in Lemma 15. Let T be the hitting time of the set {φθ2 ≤ L2}.
Let α1 be defined as in Proposition 10. Then, provided that θ2 is small enough, for any x such that
∥x∥∞ ≤ α1 log n,

Px

[
sup

s∈[T,(logn)2]
φθ2(X(s)) > L2 + 4

]
= O

(
n−3

)
. (39)

We will need the following lemma:
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Lemma 20 (Martingale estimate). Let α1 be defined as in Proposition 10. Let θ2 be a positive
dimension free constant. Suppose that ∥x∥∞ ≤ α1 log n, and let (M(t))t≥0 be defined by

M(t) = φθ2(X(t))− φθ2(X(0))−
∫ t

0
Lφθ2(X(u))du,

which is a martingale according to (19). Then, for θ2 small enough,

Px

[
sup

s∈[0,(logn)2]
|M(s)| ≥ 1

]
= O

(
n−3

)
.

For simplicity, in the proofs of Lemma 20 and Proposition 19, we still write φ instead of φθ2

and φi instead of φθ2
i . First we see how Lemma 20 leads to Proposition 19:

Proof of Proposition 19. Let θ2 and M be as in Lemma 20. We will prove that{
sup

s∈[T,(logn)2]
φ(X(s)) > L2 + 4

}
⊂

{
sup

s∈[0,(logn)2]
|M(s)| ≥ 1

}⋃ {
T ≥ (log n)2

}
,

and then we show that the probabilities of the events on the right-hand side is O
(
n−3

)
. By contra-

positivity, suppose that for a realization ofX which is càdlàg almost surely, we have sup
s∈[0,(logn)2]

|M(s)| <

1 and T < (log n)2. We prove that

sup
s∈[T,(logn)2]

φ(X(s)) ≤ L2 + 4.

For h ∈ [T, (log n)2] arbitrary, let sh = sup{s ∈ [0, h] : φ(X(s−)) ≤ L2}. Note that for any
s ∈ [0, (log n)2],

|∆φ(X(s))| = |∆M(s)| ≤ 2 sup
s∈[0,(logn)2]

|M(s)| ≤ 2.

Moreover, by definition of sh, φ(X(sh−)) ≤ L2, and hence φ(X(sh)) ≤ L2 +∆φ(X(sh)) ≤ L2 + 2.
Also by definition of sh, φ(X(u)) > L2 when sh ≤ u < h, and hence Lφ(X(u)) < 0 by Lemma 15.
Consequently,

φ(X(h)) = φ(X(sh))−M(sh) +M(h) +

∫ h

sh

Lφ(X(u))du ≤ L2 + 4, (40)

which proves the inclusion. Besides, Proposition 17 gives us Px

[
T ≥ (log n)2

]
= O

(
n−3

)
by Cher-

noff’s bound. Combining this and Lemma 20, we deduce the claim.

Now we prove Lemma 20:

Proof of Lemma 20. We will provide good control on ∆M and ⟨M,M⟩, and afterward we use
Lemma 5. By (19), the process Mi(t) defined by

Mi(t) = φi(X(t))− φi(X(0))−
∫ t

0
Lφi(X(u))du
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is a zero-mean martingale. It it clear that M is the average of Mi:

M(t) =
1

n

n∑
i=1

Mi(t).

Due to the conservation of the number of particles, the martingales (Mi)i∈[n] have negative covari-
ations. More precisely, according to (20), we have

d ⟨Mi,Mj⟩t =
∑

1≤k,l≤n

r(Xk(t))

n

(
φi(X(t)− δk + δl)− φi(X(t))

)(
φj(X(t)− δk + δl)− φj(X(t))

)
.

Note that when i ̸= j, (φi(x− δk + δl)− φi(x)) (φj(x− δk + δl)− φj(x)) is negative if {k, l} =
{i, j} and is zero otherwise. Hence ⟨Mi,Mj⟩t ≤ 0, ∀i ̸= j. Consequently, for all t positive,

⟨M,M⟩t ≤
1

n2

n∑
i=1

⟨Mi,Mi⟩t .

Let α2 be defined as in Lemma 18, and let U be the exit time from {∥·∥∞ ≤ α2 log n}. Note that,
almost surely, for any u ≥ 0, ∆M(u) = 0 or there exist k, l ∈ [n] such that

∆M(u) = φ(X(u)− δk + δl)− φ(X(u)) =
1

n
(eθ2 − 1)(eθ2Xl(u−) − eθ2(Xk(u−)−1)).

In either case, before time U , almost surely,

|∆M(u)| ≤ 1

n
(eθ2 − 1)eθ2∥X(u−)∥∞ ≤ (eθ2 − 1)nθ2α2−1.

Similarly,
|φi(x− δk + δl)− φi(x)| ≤ (eθ2 − 1)eθ2∥x∥∞(1{k=i} ∨ 1{l=i}).

Hence for any u < U ,

|φi(x− δk + δl)− φi(x)|2 ≤ (eθ2 − 1)2n2θ2α2(1{k=i} ∨ 1{l=i}).

Then by dividing the double sum to the sum where k = i or l = i or k ̸= i ̸= l, we get

〈
MU

i ,M
U
i

〉
t
=

∫ t∧U

0

∑
1≤k,l≤n

r(Xk(u))

n
(φi(X(u)− δk + δl)− φi(X(u)))2 du

≤
∫ t∧U

0
(r(Xi(u)) + ζ(u))(eθ2 − 1)2n2θ2α2du,

where we recall that ζ(u) is the mean-field jump rate. Taking the sum over i ∈ [n], we get

〈
MU ,MU

〉
t
≤ 1

n2

∫ t∧U

0
2nζ(u)n2θ2α2(eθ2 − 1)2du

≤ 1

n2

∫ t∧U

0
2nκn2θ2α2(eθ2 − 1)2du

= O
(
tn2θ2α2−1

)
,
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where we have used (18) in the second inequality. Now for θ2 small enough, 2θ2α2−1 < −1/2, which
implies ∆M(u) = O (1/

√
n) and

〈
MU ,MU

〉
t
= O (1/

√
n) if u < U and t = (log n)2. Then we apply

Lemma 5 to the martingale MU∧(logn)2(·) :=M(U ∧ (log n)2 ∧ ·), with a = 1, K = b2 = O (1/
√
n),

to obtain

Px

[
sup
s≥0

MU∧(logn)2(s) ≥ 1

]
≤ e−Ω(

√
n).

Using the same argument for −M , and taking a union bound, we deduce that

Px

[
sup
s≥0

∣∣∣MU∧(logn)2(s)
∣∣∣ ≥ 1

]
≤ 2e−Ω(

√
n).

Taking a union bound with the event in Lemma 18, we get

Px

[
∃s ∈ [0, (log n)2] : |Ms| ≥ 1

]
≤ Px

[
sup
s≥0

∣∣∣MU∧(logn)2(s)
∣∣∣ ≥ 1

]
+ Px

[
U ≤ (log n)2

]
= O

(
n−3

)
,

which finishes our proof.

3.2 Path coupling via tagged particles

For k ∈ Z+, define
∆(k) := r(k + 1)− r(k) ≥ 0. (41)

Let Θ be a Poisson point process of intensity
1

n
dt⊗du⊗Card on R+×R+× [n], independent of the

Poisson processes used in the graphical construction of X. For a site i ∈ [n], define an [n]- valued
process I = (I(t))t≥0 by setting I(0) = i and for each (t, u, k) in Θ,

I(t) :=

{
k if u ≤ ∆(XI(t−))

I(t−) otherwise,
(42)

where XI(t) := XI(t)(t). This definition means that conditionally on X, the process I(t) will
jump with the time-varying rate ∆(XI(t)), and the destination is uniformly chosen among all
sites. A simple but important observation is that (X(t) + δI(t))t≥0 has the same distribution as
a Zero-Range process starting at x + δi. We call I a tagged particle, and we stress here that the
construction of I relies strictly on condition (8). For j another site, similarly we can construct
a second tagged particle J starting from J(0) = j using the same process Θ. Thus we have a
coupling (X(t) + δI(t), X(t) + δJ(t))t≥0 of two Zero-Range processes starting at x + δi and x + δj
respectively.We call the particles of X non tagged particles. We note Px,i,j for the law of the
process (X, I, J) starting from (x, i, j) and Ex,i,j for the expectation taken w.r.t Px,i,j . Let τ be the
coalescence time of I and J :

τ := inf{t ≥ 0 : I(t) = J(t)}. (43)

By the classical relation between dtv (·, ·) and coupling, we have:

dtv

(
P t
x+δi

, P t
x+δj

)
≤ Px,i,j [τ > t] . (44)
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By construction, if the two tagged particles manage to jump at the same time, then coalescence
occurs. However, the jump rates of the tagged particles depend on their number of cooccupants,
which complicates our task. We will need to analyze carefully the trajectories of (X, I, J) to obtain
a good estimate on τ .
The inequality (44) gives us the estimate on the total variation distance of two processes starting
from two adjacent configurations. However, comparing processes starting from two arbitrary con-
figurations directly by coupling is in general not easy. Nevertheless, if we are interested only in
total variation, and if the comparison using coupling of processes from adjacent configurations is
simpler, we can extend the comparison to two arbitrary configurations by choosing a path between
them and then use triangle inequality. This simple but powerful idea, originally due to Bubley and
Dyer in [2], is the strategy that we will implement.
Throughout this subsection, α1 will be as in Proposition 10, and θ2, β2, L2 will be as in Proposi-
tion 19. Proposition 19 and (34) imply that starting from any configuration x such that ∥x∥∞ ≤
α1 log n, the system will reach the set {φθ2 ≤ L2} quickly (in time O (log n)) and then remains in
{φθ2 ≤ L2 + 4} for a long time (namely Ω((log n)2)). We will prove that if this is the case, then
the coalescence time τ is likely to be O (log n).

From now on, let Good := {φθ2 ≤ L2 + 4}. We say that a configuration x is good if x ∈ Good
and x is bad otherwise. We introduce the process (X∗, I∗) taking values in Good × [n] whose
infinitesimal generator L∗ acts on an observable φ : Good× [n] → R by:

L∗φ(x, i) =
∑
k,l

r(xk)

n
(φ(x− δk + δl, i)− φ(x, i))1{x−δk+δl∈Good} +

n∑
j=1

∆(xi)

n
(φ(x, j)− φ(x, i)).

(45)
This definition means that X∗ is a Zero-Range process constrained to staying good, and I∗ jumps
with a time-varying rate ∆(X∗

I (t)) := ∆(X∗
I∗(t)(t)) and chooses its destination uniformly among all

sites. We can use the same Poisson processes in the graphical construction of (X, I) and (X∗, I∗) to
obtain a coupling of them, and we can construct the second tagged particle J∗ analogously. By their
construction, if the processes (X, I, J) and (X∗, I∗, J∗) start from the same configuration (x, i, j),
then they coincide up to the time when X turns bad. For any θ > 0, we define the observable
φθ
∗ : Good× [n] → R+ by

φθ
∗(x, i) := φθ

i (x) = eθxi .

Lemma 21 (Exponential moment of the number of cooccupants). There exist dimension-free
constants c2 and K such that for any (x, i, j) ∈ Good× [n]× [n], when t ≥ c2(xi ∨ xj),

Ex,i,j

[
eθ2(X

∗
I (t)∨(X

∗
J (t))

]
≤ K. (46)

Proof. We will prove that there exist positive dimension-free constants a2, b2 such that

L∗φθ2
∗ (x, i) ≤ −a2φθ2

∗ (x, i) + b2, (47)

for any (x, i) ∈ Good× [n]. Let us see how (47) leads to the claim:
Let u(t) = Ex,i

[
φθ2
∗ (X∗(t), I∗(t))

]
. Then

u′(t) = Ex,i

[
L∗φθ2

∗ (X∗(t), I∗(t))
]
≤ −a2u(t) + b2.
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Hence, by Lemma 14,

Ex,i

[
eθ2(X

∗
I (t))

]
≤ b2
a2

+ 1,

for any t ≥ θ2
a2
xi. We take c2 =

θ2
a2
, K = 2

(
b2
a2

+ 1

)
, so the claim follows from the inequality

eθ2(X
∗
I (t)∨X

∗
J (t)) ≤ eθ2X

∗
J (t) + eθ2X

∗
I (t).

It remains to prove (47). It is similar to Lemma 15 except now we have an extra term corresponding
to the jump of the tagged particle I, which is controlled by the fact that the system is constrained
to staying good. More precisely,

L∗φθ2
∗ (x, i) =

∑
k ̸=i

r(xk)

n

(
eθ2 − 1

)
φθ2
∗ (x, i)1{x−δk+δi∈Good}

+
∑
k ̸=i

r(xi)

n

(
e−θ2 − 1

)
φθ2
∗ (x, i)1{x−δi+δk∈Good}

+
n∑

j=1

∆(xi)

n
(φθ2

∗ (x, j)− φθ2
∗ (x, i)).

We will bound the three terms above to obtain an upper bound on L∗φθ2
∗ :

The first term: since
1

n

n∑
k=1

r(xk) ≤ κ by (18), hence,

∑
k ̸=i

r(xk)

n

(
eθ2 − 1

)
φθ2
∗ (x, i)1{x−δk+δi∈Good} ≤ κ(eθ2 − 1)φθ2

∗ (x, i).

The third term is negative when xi >
1

θ2
log(L2 + 4) since x ∈ Good, hence,

∆(xi)

(∑n
j=1 e

θ2xj

n
− eθ2xi

)
< max

k≤
1

θ2
log(L2+4)

∆(k)(L2 + 4)=:c,

for some dimension-free constant c.
For the second term, we first observe that there are at most

n

N
sites l such that xl > Nρ, for any

constant N > 0, thanks to (11). On the other hand, if xi > Nρ and xl ≤ Nρ, then φθ2(x−δi+δl) ≤
φθ2(x), so if x is good, then so is x− δi + δl. Consequently, as e

−θ2 − 1 is negative, we have∑
k ̸=i

r(xi)

n
(e−θ2 − 1)φθ2

∗ (x, i)1{x−δi+δk∈Good}

≤
∑
k ̸=i

r(xi)

n
(e−θ2 − 1)φθ2

∗ (x, i)1{x−δi+δk∈Good}1{xi>Nρ}

≤
∑
k ̸=i

r(⌈Nρ⌉)
n

(e−θ2 − 1)φθ2
∗ (x, i)1{xi>Nρ}1{xk≤Nρ}

≤r(⌈Nρ⌉)(e−θ2 − 1)φθ2
∗ (x, i)1{xi>Nρ}(1− 1/N)

=r(⌈Nρ⌉)(e−θ2 − 1)φθ2
∗ (x, i)(1− 1/N) + r(⌈Nρ⌉)(1− e−θ2)φθ2

∗ (x, i)(1− 1/N)1{xi≤Nρ}.
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We sum the three inequalities, and afterwards we take

a2 = −κ(eθ2 − 1) + (1− 1/N)r(⌈Nρ⌉)(1− e−θ2)

and
b2 = c+ r(⌈Nρ⌉)eθ2Nρ.

We choose N large enough to make a2 > 0, which is what we needed.

We fix a constant c2 which satisfies Lemma 21. For any initial configuration (x, i, j) ∈ Good×
[n]× [n], we define successively the stopping times (Tk)k≥1 as follows:

T1 = c2(xi ∨ xj) + 1 = c2(X
∗
I (0) ∨X∗

J(0)) + 1,

Tk = Tk−1 + c2 (X
∗
I (Tk−1) ∨X∗

J(Tk−1)) + 1.
(48)

Lemma 22 (Bound of τ by Tk). Let (Tk)k≥1 be defined as in (48). Then there exists a dimension-
free constant c3 such that for any (x, i, j) ∈ Good× [n]× [n], for any k ≥ 1,

Px,i,j

[
τ ≥ Tk;X

∣∣
[0,Tk]

= X∗∣∣
[0,Tk]

]
≤ (1− c3)

k. (49)

Proof. We only need to prove for k = 1, then use induction and the strong Markov property. Let
c2 be the constant used in the definition of (Tk)k≥1, and let K be the corresponding constant in
Lemma 21, and let t = c2(xi ∨ xj) = T1 − 1. By (46) and Chernoff’s bound,

Px,i,j [X
∗
I (t) ∨X∗

J(t) ≥ a] ≤ K

eθ2a
,

for any a > 0. We choose a large enough to make the right-hand side less than 1/2. We will prove
that for any (x, i, j) ∈ Good× [n]× [n] such that xi ∨ xj<a, there exists a dimension-free constant
c > 0 such that

Px,i,j [τ < 1] > c. (50)

Assuming for the moment that we have (50), let us prove the lemma. It is not hard to see that

Px,i,j

[
τ > T1, X

∣∣
[0,T1]

= X∗∣∣
[0,T1]

]
≤ Px,i,j [X

∗
I (t) ∨X∗

J(t) ≥ a] + Px,i,j

[
X∗

I (t) ∨X∗
J(t) < a,X

∣∣
[0,t]

= X∗∣∣
[0,t]

, τ>t+ 1
]

≤ Px,i,j [X
∗
I (t) ∨X∗

J(t) ≥ a] + (1− c)Px,i,j [X
∗
I (t) ∨X∗

J(t) < a]

≤ 1− cPx,i,j [X
∗
I (t) ∨X∗

J(t) < a]

≤ 1− c/2.

In the second inequality, we have used (50) and the Markov property at time t. We deduce the
claim simply by taking c3 = c/2. It remains to prove (50):
Suppose that x is good and xi ∨ xj < a. The scenario is that in a finite time, there is no particle
arriving at i and j, and the tagged particles wait for two sites i, j to be completely emptied, and
afterwards they jump at the same time. More precisely, we use the mixed graphical construction for
the process X as follows: let Ξ and Ψ be two independent Poisson processes defined as in Graphical
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construction 1 and Graphical construction 2. Consider the process X which starts from x and has
the following jumps: for each (t, u, e) ∈ Ψ where e ∈ {i, j},

X(t) :=

X(t−)− δl + δe, if
1

n

l−1∑
k=1

r (Xk(t−)) < u ≤ 1

n

l∑
k=1

r(Xk(t−)), for some l ∈ [n]

X(t−) otherwise,

(51)

and for each (t, u, k, l) ∈ Ξ where l ∈ [n] \ {i, j},

X(t) :=

{
X(t−)− δk + δl, if r(Xk(t−)) ≥ u

X(t−) otherwise.
(52)

Then X is a Markov process with generator L on Ω. Here we use Ψ to indicate the jumps to two
sites i, j and Ξ to indicate other jumps. Let

• A = {Ψ([0, 1]× [0, κ]× {i, j}) = 0},

• Bi = {Ξ([0, 1/2]× [0, r(1)]× {i} × [n] \ {i, j}) ≥ a},

• Bj = {Ξ([0, 1/2]× [0, r(1)]× {j} × [n] \ {i, j}) ≥ a},

• C = {Θ([0, 1/2]× [0,max
k≤a

∆(k)]× [n]) = 0)} ∩ {Θ([1/2, 1]× [0, r(1)]× [n]) ≥ 1}.

In fact, A is the event that there is no non-tagged particle arriving at two sites i, j up to time 1. If
A happens, then Bi and Bj ensure that all non-tagged particles of two sites i, j jump to [n] \ {i, j}
in [0, 1/2]. If A,Bi, Bj happen, then two sites i, j are empty in [1/2, 1], and event C ensures that
the two tagged particles stay at {i, j} in [0, 1/2] then jump at the same time (hence coalescence)
in [1/2, 1]. Moreover, the Poisson random variables used in the definitions of these events are
independent and have parameters Θ(1). We conclude that the events above are independent and
their probabilities are Θ(1). It follows that

Px,i,j [τ < 1] ≥ Px,i,j [A ∩Bi ∩Bj ∩ C] = Θ(1),

which finishes our proof.

Lemma 23 (Exponential moment of Tk). Let c2 and (Tk)k≥1 be as in (48), and let K be the
corresponding constant in Lemma 21. Let θ3 = θ2/c2. Then for any (x, i, j) ∈ Good× [n]× [n], for
any k ≥ 1,

Ex,i,j

[
eθ3Tk

]
≤ n(Keθ3)k(L2 + 4).

Proof. By convention, let T0 = 0. For any k ≥ 2, note that Tk−1 is FTk−2
-measurable by its

definition. Conditionally on FTk−2
, we have

Ex,i,j

[
eθ3Tk

]
= Ex,i,j

[
Ex,i,j

[
eθ3Tk |FTk−2

]]
= Ex,i,j

[
eθ3(Tk−1+1)Ex,i,j

[
eθ3c2(X

∗
I (Tk−1)∨X∗

J (Tk−1))|FTk−2

]]
= Ex,i,j

[
eθ3(Tk−1+1)EX∗(Tk−2),I∗(Tk−2),J∗(Tk−2)

[
eθ2(X

∗
I (T1)∨X∗

J (T1))
]]

≤ Keθ3E
[
eθ3Tk−1

]
,
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where the inequality is due to (46). Moreover,

Ex,i,j

[
eθ3T1

]
= Ex,i,j

[
eθ2(xi∨xj)+θ3

]
≤ n(L2 + 4)eθ3 ,

where the last inequality is due to the fact that x ∈ Good. The claim is then obtained by induction.

Corollary 24 (Quick coalescence while staying good). There exists a dimension-free constant α3

such that for any (x, i, j) ∈ Good× [n]× [n],

Px,i,j [τ > α3 log n;X(t) = X∗(t), ∀t ≤ α3 log n] = O
(
n−3

)
. (53)

Proof. For any α3 > 0 and k ∈ Z+, the left-hand side is upper bounded by

Px,i,j [Tk > α3 log n] + Px,i,j

[
τ ≥ Tk;X

∣∣
[0,Tk]

= X∗∣∣
[0,Tk]

]
≤ n(Keθ3)k(L2 + 4)n−θ3α3 + (1− c3)

k,

for some dimension-free constants K, θ3, c3, due to Lemma 22, Lemma 23, and Chernoff’s bound.
We choose k = O (log n) such that (1−c3)k = O

(
n−3

)
and α3 large enough such that (Keθ3)kn1−θ3α3 =

O
(
n−3

)
to get what we wanted.

Now we can finally prove the quick coalescence for a configuration x such that ∥x∥∞ ≤ α1 log n.

Proposition 25 (Quick coalescence). Recall that α1 is fixed in this subsection. There exists a
dimension-free constant α such that for any x such that ∥x∥∞ ≤ α1 log n, for any i, j ∈ [n],

Px,i,j [τ ≥ α log n] = O
(
n−3

)
. (54)

Proof. Let α = α4+α3, where α3 is as in Corollary 24, and α4 is a dimension-free constant that we
will choose later. Let T be the hitting time of the set {φθ2 ≤ L2}. The probability that we want
to estimate does not exceed the following sum:

Px [T ≥ α4 log n]

+ Px

[
sup

s∈[T,(logn)2]
φθ2(X(s)) > L2 + 4

]

+ Px,i,j

[
T < α4 log n; sup

s∈[T ;(logn)2]

φθ2(X(s)) ≤ L2 + 4; τ ≥ T + α3 log n

]
.

(55)

We simply prove that all the terms are O
(
n−3

)
:

1. The first term: By (34) and Chernoff’s bound, it is upper bounded by O
(
nθ2α1−β2α4

)
,

which is O
(
n−3

)
when α4 is large enough.

2. The second term is O
(
n−3

)
by Proposition 19.

3. The last term: From the time T onward, we couple the processes (X, I, J) and (X∗, I∗, J∗)
starting from (X(T ), I(T ), J(T )) by using the same Poisson processes for their graphical con-
structions. We observe that up to time (log n)2, (X, I, J) and (X∗, I∗, J∗) coincide. Therefore,
this term is O

(
n−3

)
by the strong Markov property at time T and (53), which finishes our

proof.
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Now we can prove Proposition 11.

Proof of Proposition 11. Let t = α log n, where α is as in Proposition 25. We say that two config-
urations are adjacent if they differ only by one jump. (54) implies that for any x, y such that x, y
are adjacent and ∥x∥∞∨∥y∥∞ ≤ α1 log n, dtv

(
P t
x, P

t
y

)
= O

(
n−3

)
. Now for x, y arbitrary such that

∥x∥∞ ∨ ∥y∥∞ ≤ α1 log n, we can always connect x and y by a path, i.e. a sequence (ω0, ω1, ..., ωk)
in Ω such that ω0 = x, ωk = y, and ωl−1 is adjacent to ωl for 1 ≤ l ≤ k. Furthermore, we can pick
one of the shortest paths to make sure that k ≤ m and

max
1≤l≤k

∥ωl∥∞ ≤ ∥x∥∞ ∨ ∥y∥∞ ≤ α1 log n.

Then by triangle inequality,

dtv
(
P t
x, P

t
y

)
≤

k∑
u=1

dtv

(
P t
ωu−1

, P t
ωu

)
≤ mO

(
n−3

)
= O

(
n−2

)
,

where the last equality is due to (11). By stationarity of π and convexity of dtv (·, ·),

dtv
(
P t
x, π
)
≤
∑
y∈Ω

π(y)dtv
(
P t
x, P

t
y

)
=

∑
{y:∥y∥∞>α1 logn}

π(y)dtv
(
P t
x, P

t
y

)
+

∑
{y:∥y∥∞≤α1 logn}

π(y)dtv
(
P t
x, P

t
y

)
≤ π(∥y∥∞ > α1 log n) + π(∥y∥∞ ≤ α1 log n)O

(
n−2

)
.

Moreover, by letting t→ ∞ in Proposition 10, we obtain π(∥y∥∞ > α1 log n) = O
(
n−2

)
. Combin-

ing it with the above inequality, we deduce the claim.

4 The Poincaré constant

This section is devoted to proving Theorem 3 and Corollary 4. We first recall a classical lemma for
general Markov processes:

Lemma 26 (Lower bound on Poincaré constant). Let Ω be a finite state space, and let L be an
irreducible reversible Markov generator on Ω. Fix γ > 0, and suppose that for any (x, y) ∈ Ω × Ω
such that L(x, y) > 0, there exists a coupling Px,y of two processes with generator L starting from
x and y such that

Ex,y [e
γτ ] <∞,

where τ is the coalescence time of the two processes. Then λ∗(L) > γ.

Proof. Let A = max
x,y:L(x,y)>0

Ex,y [e
γτ ]. Then for any x, y such that L(x, y) > 0,

dtv
(
P t
x, P

t
y

)
≤ Px,y [τ > t] ≤ e−γtEx,y [e

γτ ] ≤ Ae−γt.
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Now for (x, y) ∈ Ω × Ω arbitrary, as L is irreducible, we can connect x and y by a path, i.e. a
sequence (ω0, ω1, ..., ωk) in Ω such that ω0 = x, ωk = y, and L(ωl−1, ωl) > 0, for 1 ≤ l ≤ k. Picking
one of the shortest path ensures that k ≤ |Ω|. Hence by the triangle inequality,

dtv
(
P t
x, P

t
y

)
≤

k∑
l=1

dtv

(
P t
ωl−1

, P t
ωl

)
≤ A|Ω|e−γt.

By stationarity of π and convexity of dtv (·, ·),

dtv
(
P t
x, π
)
≤
∑
y∈Ω

π(y)dtv
(
P t
x, P

t
y

)
≤ A|Ω|e−γt.

We deduce that

−1

t
logmax

x∈Ω
dtv

(
P t
x, π
)
≥ γ − 1

t
(logA+ log |Ω|).

The claim is obtained simply by letting t→ ∞.

Thanks to Lemma 26, in order to prove λ∗ = Ω(1), we just need to prove the following:

Proposition 27 (Exponential moment of coalescence time). There exists a dimension-free constant
γ such that for all (x, i, j) ∈ Ω × [n] × [n], for the coupling of two Zero-Range processes starting
from x+ δi, x+ δj using tagged particles as described above,

Ex,i,j [e
γτ ] <∞. (56)

Proof. We only need to prove the result for big enough n. Let α1 be as in Proposition 10. Let
θ1 = 6/α1, β1 be a dimension-free constant, and L1 = L(θ1, β1) as in Lemma 15. Let θ2 < θ1 be a
constant that satisfies Proposition 19, and let L2 > L1 and Good be defined as in subsection 3.2.
Let T1 be the hitting time of the set {φθ1 ≤ L1}. (34) says that Ex

[
eβ1T1

]
is finite for all x ∈ Ω, so

we only need to prove the result for x ∈ {φθ1 ≤ L1}. By abuse of notation, we will note P∗(·) (resp.
E∗(·)) for the maximum of Px,i,j(·) (resp. Ex,i,j(·)) taken over all x such that φθ1(x) ≤ L1 and all
(i, j) ∈ [n] × [n]. We will prove that there exists γ such that E∗

[
eγ(τ∧k)

]
is bounded uniformly in

k. Then the claim is proved simply by letting k tend to infinity using the Monotone Convergence
Theorem.
Let A = Good ∪ {y : ∃x ∈ Good, L(x, y) > 0}. Let Tbad be the exit time from Good, and let
T2 := Tbad ∧α3 log n, where α3 is defined in Corollary 24. In fact, A is the set of all possible values
of X up to time Tbad, and in particular, X(T2) ∈ A. By our definitions of the dimension free
constants, when n is large enough, {φθ1 ≤ L1} ⊂ {φθ2 ≤ L2} ∩ {∥·∥∞ ≤ α1 log n}. Consequently,
by Proposition 19 and Proposition 25,

P∗ [τ ≥ T2] = O
(
n−3

)
.

Note that T2 ≤ α3 log n, and hence E∗
[
eγ(τ∧k)1{τ<T2}

]
≤ eγα3 logn = nγα3 . We deduce that

E∗

[
eγ(τ∧k)

]
≤ nγα3 + E∗

[
eγ(τ∧k)1{τ≥T2}

]
.
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Conditionally on FT2 , by the strong Markov property, we have

E∗

[
eγ(τ∧k)1{τ≥T2}

]
≤ E∗

[
eγ(T2∧k)1{τ≥T2}EX(T2)

[
eγ(τ∧k)

]]
≤ nγα3P∗ [τ ≥ T2] max

y∈A
Ey

[
eγT1

]
E∗

[
eγ(τ∧k)

]
,

where in the last inequality we use the fact that X(T2) ∈ A, almost surely. Putting things together,
we obtain

E∗

[
eγ(τ∧k)

]
≤ nγα3 +O

(
nγα3−3

)
max
y∈A

Ey

[
eγT1

]
E∗

[
eγ(τ∧k)

]
. (57)

Consequently,

E∗

[
eγ(τ∧k)

]
≤ nγα3

1−O (nγα3−3)max
y∈A

Ey [eγT1 ]
,

provided that the denominator of the right-hand side is positive. Note that for y ∈ A, ∥y∥∞ =
O (log n), and hence φθ1(y) < np, for some dimension-free constant p. Then by (34) and Jensen’s
inequality, for all y ∈ A and γ < β1,

Ey

[
eγT1

]
≤ Ey

[
eβ1T1

]γ/β1

= O
(
nγp/β1

)
.

Then the denominator above is 1 − O
(
nγα3+γp/β1−3

)
, which is positive when γ is small enough.

This finishes our proof.

We now prove Theorem 3 and Corollary 4.

Proof of Theorem 3 and Corollary 4. In [5] (more precisely, in Corollary 3 and Lemma 13), the
authors prove that for P a doubly stochastic transition matrix on [n],

λ∗(L) ≤
λ∗(LP )

λ∗(P )
≤ (1− 1/n)

E [r(X1)]

Var [X1]
,

where the expectation and the variance are taken with respect to the stationary law π of L. Lemma

26 and Proposition 27 readily imply that λ∗(L) = Ω(1), and hence so is
λ∗(LP )

λ∗(P )
. It remains to

prove that
E [r(X1)]

Var [X1]
= O (1) . (58)

We consider two cases: the case where the density is bounded away from zero :
1

2
≤ E [X1] =

m

n
≤ ρ,

and the case of low density: E [X1] =
m

n
<

1

2
.

In case the density is bounded away from zero, it is easy to deduce from Proposition 8 that
E [r(X1)] = Θ(1) and Var [X1] = Θ(1), and hence the claim.

In the case of low density, we have Var [X1] ≥ E [X1] − E [X1]
2 and E [r(X1)] ≤ sup

k∈Z+

r(k)

k
E [X1].

We deduce that

E [r(X1)]

Var [X1]
≤

sup
k∈Z+

r(k)

k

1− E [X1]
< 2 sup

k∈Z+

r(k)

k
,

which finishes the proof.
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Finally, we compute the Poincaré constant of the transition matrix P in Example 2.

Proof of example 2. Let P1 be the transition matrix of the simple random walk on Z/pZ. It is not
hard to see that both P and P1 are reversible w.r.t the uniform measures on their domains. Note
that, for f1, ..., fd some eigenfunctions of P1 with eigenvalues λ1, ..., λd respectively, the function
f : (Z/pZ)d → R defined by

f(x1, ..., xd) =
d∏

i=1

fi(xi)

is an eigenfunction of P with eigenvalue λ :=

∑d
i=1 λi
d

. Moreover, as the eigenfunctions of P1

generate the space of functions from Z/pZ to R due to reversibility, the functions f of the form
above also generate the space of functions from (Z/pZ)d to R. Hence every eigenvalue of P is of

the form λ =

∑d
i=1 λi
d

, where λi, 1 ≤ i ≤ d, are some eigenvalues of P1. It is well-known that the

eigenvalues of P1 are cos

(
2πk

p

)
, 0 ≤ k ≤ p (see e.g. Chapter 12 of [9]). Due to reversibility of P ,

λ∗(P ) is the smallest eigenvalue of I − P (see e.g. Chapter 12 of [9]), so it is given by

λ∗(P ) = 1− 1

d

(
cos

(
2π

p

)
+ d− 1

)
=

1

d

(
1− cos

(
2π

p

))
≈ 1

d
· 2π

2

p2
,

which finishes our proof.
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