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Multi-objective layout optimization of industrial environment

Xiaoxiao Song1, Emilie Poirson1, Yannick Ravaut2, Fouad Bennis1

Abstract— An optimal layout configuration has consid-
erable impacts on industrial engineering. The conventional
layout problem aims to find the optimal arrangement of
components inside the container while satisfying no com-
ponent overlap and no container protrusion constraints. In
this paper, we address accessibility requirements in layout
problems. The novel layout model consists of components
with solid and virtual parts. On the one hand, virtual
spaces associated with solid components represents the
accessibility of component. On the other hand, charac-
terizing accessibility as a constraint ensures components
are accessible from the container’s entry. The industrial
layout involves various objectives and is usually formu-
lated as a multi-objective problem. Hence, a novel multi-
objective layout optimization using constructive placement
and simulated annealing, named constructive optimization,
is developed. A complete layout is generated by construc-
tive placement and evaluated by simulated annealing. It
only explores the feasible space and greatly reduces the
computational effort. The experimental results prove that
the constructive optimization method is effective in solving
the problem of industrial layout.

Index Terms— Multi-objective, Industrial layout, Acces-
sibility, Constructive optimization

I. INTRODUCTION

Layout problems (LPs) are inherently multidisci-
plinary tasks and are usually solved as optimization
problems, expressed as finding the optimal arrange-
ments of components inside the container to optimize
the objectives and respect constraints. The research on
industrial layout optimization intensified in recent years.
Industrial layouts have complex environments and vari-
ous design goals and constraints to ensure that the layout
is in a good functional state. For example, different
components are placed inside the shelter, as illustrated in
Fig. 1. A proper shelter layout can effectively improve
the system performance. Light and mobile shelter with
on-board equipment provides complete protection for
personnel and against battlefield aggression.

In previous researches, the layout model defined by
representation of components, formulation of objectives
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Fig. 1. Shelter layout representation

and evaluation of constraints may be different. The
component is usually represented by a rectangle or a
circle to simplify the problem formulation. Indeed, a
majority of studies work on single-objective problem,
for example minimizes material handling cost [1] or
maximizes adjacency requirement [2]. However, indus-
trial layouts have more than one objective, such as
space utilization, activity cost, mass distribution, comfort
and so on. There are compromised solutions in the
multi-objective problem, widely known as Pareto-front.
One can solve the multi-objective as single-objective
problem using ε-constraint [3] or weighted-sum method
[4], whereas non-dominance based is a more generic
way [5]. In addition, geometrical constraints define no
component overlap and no container protrusion. More
importantly, the accessibility of components is one
functional constraint under research [6]. It expresses
that the component must be accessible for usability or
maintenance.

The discontinuous constraint satisfied region, the non-
linear and non-convex objective of layout formulation
make the optimization complex in nature. Exact al-
gorithms can optimize small-sized LPs [7]. Stochastic
algorithms with global search capabilities are widely
used in more complicated industrial applications [8]. For
layout optimization, using discrete formulation can re-
duce the search complexity. The constructive algorithms
can generate a complete layout by sequentially placing
components [9]. In addition, the constructive algorithm
applied with meta-heuristic proved to be an efficient
algorithm for layout optimization [10]. For instance,
genetic algorithm (GA) coupled with constructive algo-



rithm [11], [12] and simulated annealing (SA) algorithm
hybrid with constructive algorithm [13], [14]. SA has
fewer parameters and the simpler structure compared to
GA optimizations.

The reviewed studies have greatly enriched the layout
optimization. Most research work related to constructive
optimization was based on the iterative accumulation
of objectives to place components. They supposed that
the objective function values between components are
determined independently. However, these assumptions
are not true in reality. Furthermore, accessibility re-
quirements are not completely considered. The main
contributions are as follows: It develops a new multi-
objective layout formulation with solid and virtual com-
ponents under accessibility constraints. Because the dis-
continuous regions mainly cause the difficulty incurred
in LP, a constructive optimization is proposed to solve
the multi-objective layout model. A layout solution
is generated by constructive placement and evaluated
by non-domination based SA. Constructive placement
circumvents the difficulty arising from constraints and
SA conducts the global search ability. The proposed
algorithm effectively explores the feasible space and
reduces the computational effort.

The rest of the paper is organized as follows. Sec-
tion II formally defines the layout model. Then construc-
tive optimization framework is described in Section III.
Section IV presents the results analysis. Finally, the
conclusion and future work are discussed in Section V.

II. LAYOUT PROBLEM MODEL

The problem is to locate the rectangular components
in a rectangular container. Based on the different func-
tional characteristics of components, the novel compo-
nent including the solid and virtual part is defined:

• Solid components could not overlap with solid or
virtual components and have mass. For example the
equipment and device.

• Virtual components could overlap with virtual com-
ponents and have no mass. For example the acces-
sibility space of desk is virtual and it allows the
user sit down, and the space of the cabinet for door
opening and closing etc.

Each component is defined by convention ci = (si,vi j),
si is the solid component (solid rectangle), i = 1, ...,n,
n is the number of components; vi j is the associated
virtual component (dotted rectangle), j = 1, ...,ni, ni is
the number of associated virtual components, as shown
in Fig. 2. The solid component si is defined by a four-
element vector of coordinates and dimensions of the
rectangle (xi,yi,wi,hi). The virtual component vi j is

defined by coordinates (xi j,yi j) and size (wi j,hi j) in the
local frame of si, denoted as vi j = (xi j,yi j,wi j,hi j). For

Fig. 2. Component representation

a given number of components, we can evaluate the
feasible complexity by estimating the space capacity,
which is the most desirable question to inquire in
a layout design. The density represents the container
area occupied by the components. The density of solid
components βs =

∑
n
i=1(wi×hi)

W×H , and the density of virtual

components βv =
∑

n
i=1 ∑

ni
j=1(wi j×hi j)
W×H , W,H are the size of

the container space. However, the overlap among virtual
components is acceptable. A capacity index βc is defined
to measure the minimum occupied space of a given
number of solid and virtual components [15]. We can
deduce the relationship between the density and capacity
as

βs ≤ βc ≤ βs +βv (1)

If the LP is feasible, the capacity should be less than 1,
the larger the value, the more difficult to find feasible
solutions.

Fig. 3. 2D shelter model

We consider an application to find the optimal layout
of facilities in a shelter with three different spaces,
named storage zone, technical zone and operator zone,
as shown in Fig. 1. For our first study, we only consider
the technical zone with a capacity up to 0.82, as the
single container optimization problem. We simplify the
shelter into two-dimensional because the components
are full height, as shown in Fig. 3. Moreover, each
component is represented by a rectangle. A set of virtual
components attached to components (light color) repre-
sent accessibility spaces. For example, virtual spaces of



the cabinet guarantee interaction and correct usability.
The model involves two main objective functions: one
is to optimize the relative position of components, and
the other is to balance the mass distribution, denoted as
f1, f2 respectively. In the shelter problem, the distance
between cabinet 3, cabinet 4, cabinet 5 and energy box
12 should be maximized while the mass distribution
should be minimized.

III. CONSTRUCTIVE OPTIMIZATION

This section explains the constructive optimization
framework summarized in Algorithm 1: a constructive
placement algorithm, to place components sequentially
with placement sequences ccc and configuration sequences
ppp; a non-domination based SA algorithm, to evaluate the
corresponding objective values and optimize sequences
X = (ccc, ppp). The constructive placement circumvents the
difficulty arising from constraints and SA conducts the
global search. In particular, the constructive optimization
is introduced to decrease the computational complexity.

Algorithm 1 Constructive optimization
/* Block of SA algorithm */

while stop condition not met do
Given current state X = (ccc, ppp)
/* Block of constructive placement */

for ci in ccc do
Select available space by placement strategy
Place ci with pi ∈ ppp s.t. accessibility analysis
Space generation

end
Objective evaluations F = ( f1, f2)
Neighbor generation Xnew

end

A. Constructive placement

Constructive placement algorithm is inspired from
[16]. The former algorithm was developed for the cutting
problem and the virtual components are not considered.
To place components with respect to constraints, we in-
tegrate space generation of solid and virtual components.

1) Space generation: The space around the placed
components will be divided into available spaces. The
available rectangular space is defined by the vertices of
lower left corner, the dimensions along the axes where
a = (xa,ya,wa,ha). The complete space generation be-
tween the component space and available space gen-
erates four candidate available spaces aL,aR,aT ,aB, as
shown in Fig. 4(a). If the component space and available
space partially intersect, some candidate available space,

for example aR, may not exist in Fig. 4(b). To place
components in the feasible regions, aaa tracks the available
space generation of placed solid components while aaa′

records the available space generation of placed solid
and virtual components. In addition, before adding can-
didate available spaces to the space list, it should remove
the available space if it is included in any candidate
available space, and filter out the candidate available
space if it is included in any available space. The update
aims to release storage space. New virtual components

4.(a) Complete included case 4.(b) Partial intersected case

Fig. 4. Space generation

will be placed in aaa to benefit overlap between virtual
components, while new solid components will be placed
in aaa′ to guarantee non-overlap of solid components.
Placing the new components in available spaces ensures
the search for feasible solutions.

2) Placement strategy: For a component ci, it has
four rotation configurations. The placement is performed
only for available space in which the component fits. If
the selected space a ∈ aaa and a′ ∈ aaa′ are coincide, then
the component will be placed in the corners of selected
space with four rotations. It ensures less margin space
is generated. The feasible configurations are numbered
from 1 to 16 as shown in Fig. 5, and we have the
configuration sequence pi = (1,2, ...,16). Otherwise, the
solid component will be placed in the corners of a′,
where certain configurations will be adjusted according
to the selected space a. One example is given in Fig. 6,
instead of placing c2 in the corner in Fig. 6(a), the
position is refined to avoid overlapping with c1 in
Fig. 6(b).

5.(a) 5.(b) 5.(c) 5.(d)

Fig. 5. Placement examples a and a′ are coincide

The component configuration is decided by the se-
lected space in aaa and aaa′. The successive placement



6.(a) 6.(b)

Fig. 6. Placement adjustment

process can be treated as a combination problem. Thus,
an effective space selection rule, namely placement
strategy, is essential for a constructive placement. In
this paper, three placement strategies are proposed and
compared in experimental tests.

• Strategy 1: Check all the spaces.
• Strategy 2: Start the placement with the smallest

sized space.
• Strategy 3: Try the largest sized space.
3) Accessibility analysis: In the problem modeling,

we introduce the virtual components to deal with acces-
sibility. Indeed, the virtual space may be inaccessible if
there is no path to access it. Therefore, the proposed
method characterizes component accessibility as a con-
straint during the construction process.

Fig. 7. Connection path [ad , a2, a1]

Assuming one component is accessible from the en-
trance, there is at least one path for the human to
reach the component. The accessibility analysis uses
spaces in aaa = {a1, ...,am}, m is the number of spaces.
When placing a new component into the container, one
connection tree is built. The connection is measured by
intersection space:

max(0,min(xai +wai ,xa j +wa j)−max(xai ,xa j))≥ wr
(2)

max(0,min(yai +hai ,ya j +ha j)−max(yai ,ya j))≥ hr
(3)

where ai,a j ∈ aaa, the rectangle size (wr,hr) represents
the accessible space required by the human. Once the
tree generation is finished, check if there is one path for
accessibility. The path starts from the entrance space ad
and ends at the virtual space of the component. One
example presented in Fig. 7, the connection tree is {ad :

[a2],a2 : [a1],a1 : []}, the placement of v11 occupies a1,
and there is one path=[ad , a2, a1].

The placement of component ci may have more than
one feasible configurations satisfying the constraints. We
need the criteria to select which configuration is used
for the space generation. To enhance the feasibility,
we classify the configurations based on the container
boundary then select configuration according to the
overlap maximization rule.

B. SA algorithm
With sequences X = (ccc, ppp), the placement algorithm

can constructively build a layout. Thus, the proposed
algorithm is based on the combinatorial problem. SA is a
stochastic neighborhood search approach for global op-
timization and has been successfully applied to various
combinatorial problems. In previous work, we proposed
a non-domination based SA [15] to solve multi-objective
problems and proved its good performance. So it is
used to improve the sequences X here. An external
archive is used to keep non-dominated solutions during
the optimization. And the neighbors are generated by a
swap operator. In the swap procedure of the placement
sequence, σ is related to temperature t:

σ = n∗ exp(−1/t) (4)

The integer parameter σ ∈ [1,n] determines the process
of neighbor generation. With high temperature and big
σ , any two elements of the sequence can be exchanged;
with low temperature and small σ , only the last few
elements could be exchanged. The mechanism is the
same in the configuration sequence. Given a state X ,
a layout with F(X) is generated using the constructive
placement. In SA, we consider the new state Xnew as a
better solution based on the non-domination relationship
between F(Xnew) and F(X). Assuming that all objective
functions are minimized, F(Xnew) dominates F(X) if
F(Xnew) is no worse than F(X) for all objectives and
F(Xnew) is better than F(X) for at least one objective.
Then definitely Xnew is a better solution. However, ac-
cepting a poor solution enables uphill moves sometimes.
The new state Xnew will replace the current state X if one
of the conditions is satisfied:

1) F(Xnew) dominates F(X).
2) F(X) dominates F(Xnew), rand(0,1) <

exp(−(F(Xnew)−F(X))/t)

3) F(Xnew) and F(X) are non-dominated solutions.
F(Xnew) is not dominated by any solution in the
archive; or F(Xnew) is not far from the obtained
Pareto-front.

The optimization searches for new solutions until it
reaches the maximum iterations L.



IV. EXPERIMENT RESULT

In this section, three different examples are formulated
to assess the developed constructive placement. Then the
constructive optimization is applied to solve the practical
shelter problem.

A. Test examples

Here, we design three layout examples to test the
different placement strategies. It is worth noting that
there is no objective but to verify the exploration ability
under constraints. In other words, with a given number
of iteration, the more feasible solutions it find, the better
the performance. The properties of the example are
summarized in TableI. Indeed, all the test examples have
high feasible complexity due to the dense capacity.

TABLE I
PROPERTIES OF TEST EXAMPLES

Property Test 1 Test 2 Test 3
Number of components 18 11 9
Density of solid components 0.54 0.47 0.38
Density of virtual components 0.54 0.66 0.65
Density of solid, virtual components 1.08 1.13 1.03
Capacity 0.81 0.75 0.77
Equal size Yes No No
Accessibility No Yes Yes
Number of components
edge on the wall 0 0 2

1) Test 1 – Equal-sized component: The equal-sized
component can eliminate the effect of different place-
ment sequences. There are only geometrical constraints.

2) Test 2 – Unequal-sized component: The unequal-
sized component is more common and realistic. Con-
sider the accessibility requirement and the geometrical
constraints.

3) Test 3 – Big-sized component: The quite big-sized
component introduces the size difference among the
unequal-sized components. Integrate the additional con-
straints such as edge on the wall, accessibility constraints
and the geometrical constraints.

The strategy comparison results are summarized in
TableII where the number of solutions are obtained
with a given number of iterations. Three strategies are
compared with fixed/permuted configuration sequence.
By comparison, we can conclude that

• The permutation of configuration sequence is nec-
essary for the diversity in the design space, espe-
cially in the case of equal-sized component.

• Considering the search ability under constraints,
strategy 2 is much better than strategy 3. The edge
constraints improve the performance of strategy 1
but it is time consuming. Strategy 2 conducts the

TABLE II
STRATEGY COMPARISON

Number of solutions Test 1 Test 2 Test 3

Fixed pi

Strategy 1 1/100 2/100 24/600
Strategy 2 1/100 37/100 21/600
Strategy 3 1/100 5/100 2/600

Permuted pi

Strategy 1 22/100 5/100 51/600
Strategy 2 26/100 40/100 50/600
Strategy 3 13/100 6/100 18/600

placement effectively and generates a number of
feasible solutions.

B. Practical example

Based on the above analysis, strategy 2 with config-
uration permutation proved to be the best placement
strategy for developing the constructive optimization
algorithm.

8.(a) Initial solution 8.(b) Optimal solution

Fig. 8. Solution in design space

TABLE III
OPTIMAL SOLUTION AND INITIAL SOLUTION

Objective Initial solution Optimal solution
f1 (maximization) 7164.6 8003.9
f2 (minimization) 74.3 47.4

Through limited iterations L = 4000, the algorithm
generates 337 configurations for the shelter. The al-
gorithm searches for solutions by considering the ge-
ometrical and functional constraints and objectives of
the problem formulation. Among these solutions, the
expert may choose, for instance, the solution realizes the
best compromise between optimization objectives. Fig. 8
shows the initial solution and an optimal solution. It can
be seen that there is a significant difference between
the optimal layout solution and the initial solution.
Table III illustrates that the optimal solution can realize
much better objective values compared to the initial
one. The experimental results prove that the proposed
optimization algorithm is effective in solving the LP in
the industry.



V. CONCLUSION

In most industrial layout applications, the discon-
tinuous constraint satisfied region, the non-linear and
non-convex objective of layout formulation make the
optimization complex in nature. This paper deals with
the LP with solid and virtual components under acces-
sibility constraints. It increases the computation com-
plexity, and needs an effective method to optimize the
new layout model. A non-domination based constructive
optimization method is proposed to solve the novel
multi-objective layout model. Layout solutions are gen-
erated by constructive placement and evaluated by non-
domination based SA algorithm. The strategy compar-
isons confirm that placement can effectively generate
feasible solutions according to placement and config-
uration sequences. The SA search technique explores
the layout configurations and conducts the global search
ability. The experimentation indicates the efficiency of
constructive optimization in finding high-qualified in-
dustrial layout solutions.

The proposed algorithm assumes having one container
space. Further research could extend the algorithm to
multi-container LPs. It could be interesting if the space
division (the partition in the shelter problem) is for-
mulated as one variable to ensure the automatic layout
design.

ACKNOWLEDGMENT

The authors would like to acknowledge THALES for
the application study.

REFERENCES

[1] Z. Lin and Z. Yingjie, “Solving the facility layout problem
with genetic algorithm,” in Proceedings of IEEE International
Conference on Industrial Engineering and Applications (ICIEA),
2019, pp. 164–168.

[2] F. Ghassemi Tari and H. Neghabi, “A new linear adjacency
approach for facility layout problem with unequal area depart-
ments,” Journal of Manufacturing Systems, vol. 37, pp. 93–103,
2015.

[3] A. Che, Y. Zhang, and J. Feng, “Bi-objective optimization for
multi-floor facility layout problem with fixed inner configura-
tion and room adjacency constraints,” Computers & Industrial
Engineering, vol. 105, pp. 265–276, 2017.

[4] H. Zhang, A. ping Li, and X. mei Liu, “Modeling and optimiza-
tion for hybrid layout design with behavioural constraints,” in
Proceedings of International Conference on Mechatronics and
Automation, 2009, pp. 5052–5056.

[5] A. Kaveh, M. Rastegar Moghaddam, and M. Khanzadi, “Efficient
multi-objective optimization algorithms for construction site lay-
out problem,” Scientia Iranica, vol. 25, no. 4, pp. 2051–2062,
2018.

[6] X. Song, E. Poirson, Y. Ravaut, and F. Bennis, “Interactive design
optimization of layout problems,” in Proceedings of IFIP In-
ternational Conference on Advances in Production Management
Systems, 2021, pp. 387–395.

[7] E. Ouassam, N. Hmina, B. Bouikhalene, and H. Hachimi,
“Heuristic methods: Application to complex systems,” in Pro-
ceedings of the 7th International Conference on Optimization
and Applications, 2021, pp. 1–8.

[8] Q. Zheng and Y.-G. Liang, “A study on the particle swarm opti-
mization with adaptive weight constrained layout optimization,”
in Proceedings of the 8th International Conference on Intelligent
Human-Machine Systems and Cybernetics, 2016, pp. 283–287.

[9] H. Hosseini nasab, S. Fereidouni, S. Ghomi, and M. Fakhrzad,
“Classification of facility layout problems: a review study,” The
International Journal of Advanced Manufacturing Technology,
vol. 94, pp. 957–977, 2018.

[10] F. Halawa, S. Chalil Madathil, and M. T. Khasawneh, “Integrated
framework of process mining and simulation–optimization for
pod structured clinical layout design,” Expert Systems with
Applications, vol. 185, no. 12, pp. 1–17, 2021.
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