Birecognition of prime graphs, and minimal prime graphs

Houmem Belkhechine, Cherifa Ben Salha, Pierre Ille

To cite this version:

Houmem Belkhechine, Cherifa Ben Salha, Pierre Ille. Birecognition of prime graphs, and minimal prime graphs. Discrete Mathematics, Algorithms and Applications, 2021, 10.1142/S1793830922500380 . hal-03848887

HAL Id: hal-03848887

https://hal.science/hal-03848887

Submitted on 11 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Birecognition of prime graphs, and minimal prime graphs

Houmem Belkhechine * Cherifa Ben Salha ${ }^{\dagger}$ Pierre Ille ${ }^{\ddagger}$

December 6, 2021

Abstract

Given a graph G, a subset M of $V(G)$ is a module of G if for each $v \in V(G) \backslash M, v$ is adjacent to all the elements of M or to none of them. For instance, $V(G), \varnothing$ and $\{v\}(v \in V(G))$ are the trivial modules of G. A graph G is prime if $|V(G)| \geq 4$ and all its modules are trivial.

Given a prime graph G, consider $X \mp V(G)$ such that $G[X]$ is prime. Given a graph H such that $V(G)=V(H)$ and $G[X]=H[X], G$ and H are $G[X]$-similar if for each $W \varsubsetneqq V(G) \backslash X, G[X \cup W]$ and $H[X \cup W]$ are both prime or not. The graph G is said to be $G[X]$-birecognizable if every graph, $G[X]$-similar to G, is prime. We study the graphs G that are not $G[X]$-birecognizable, where $X \varsubsetneqq V(G)$ such that $G[X]$ is prime, by using the following notion of a minimal prime graph. Given a prime graph G, consider $X \mp V(G)$ such that $G[X]$ is prime. Given $v, w \in V(G) \backslash X, G$ is $G[X \cup\{v, w\}]$-minimal if for each $W \nsubseteq V(G)$ such that $X \cup\{v, w\} \subseteq W$, $G[W]$ is not prime.

Mathematics Subject Classifications (2010): 05C75
Key words: Module; Prime graph; Primality birecognition; Minimal prime graph

1 Introduction

We consider only finite graphs. A graph, with at least 4 vertices, is prime if it is indecomposable under modular decomposition. We study birecognition (or mutual recognition) of primality introduced as follows. We consider two graphs with the same vertex set. We suppose that they coincide on a prime induced subgraph. We fix this prime induced subgraph from which we introduce the

[^0]birecognition. We suppose also that the subgraphs of both graphs, induced by the same proper subset of the vertex set, are both prime or not, when they contain the prime induced subgraph. Under these assumptions, the graphs are birecognizable if both are prime or not.

We study the prime graphs, that are not birecognizable, by using the notion of a minimal prime graph introduced by Cournier and Ille [3]. In this manner, we answer [9, Problem 13] as well.

Consider two graphs with the same vertex set. Another type of primality birecognition consists in considering the subgraphs of both graphs induced by the same proper subset of the vertex set, with given sizes (for instance, see [1]).

Lastly, Ille and Villemaire [9] introduced an inner primality recognition. Precisely, they considered a graph that admits a prime induced subgraph. They introduced a digraph (called outside digraph, see Subsection 1.1) that yields a necessary and sufficient condition for G to be prime.

Next, we formalize our presentation. A graph $G=(V(G), E(G))$ consists of a finite vertex set $V(G)$ and of an edge set $E(G)$, where an edge is an unordered pair of distinct vertices. For a graph $G, v(G)$ denotes the cardinality of $V(G)$. Given a graph G, with each subset X of $V(G)$ associate the subgraph $G[X]=$ $\left(X, E(G) \cap\binom{X}{2}\right.$) of G induced by X. For convenience, given a subset X of $V(G), G[V(G) \backslash X]$ is also denoted by $G-X$, and by $G-x$ if $X=\{x\}$.

Notation 1. Let G be a graph. Given $W \mp V(G)$ and $v \in V(G) \backslash W, v \longleftrightarrow{ }_{G} W$ means that

$$
v w \in E(G) \text { for every } w \in W \text { or } v w \notin E(G) \text { for every } w \in W
$$

The negation is denoted by $v \longleftrightarrow_{G} W$.
Given a graph G, a subset M of $V(G)$ is a module [11] (or a closed set [6, 10] or a homogeneous set [3]) of G if for every $v \in V(G) \backslash M$, we have $v \longleftrightarrow{ }_{G} W$. For example, $\varnothing, V(G)$ and $\{v\}, v \in V(G)$, are modules of G called trivial modules. A graph is indecomposable if all its modules are trivial, otherwise it is decomposable. A graph G, with $v(G) \leq 2$, is indecomposable, whereas a graph G, with $v(G)=3$, is decomposable. Hence, we introduce the following precision. A graph G is prime if it is indecomposable, with $v(G) \geq 4$. For instance, given $n \geq 4$, the path $P_{n}=(\{0, \ldots, n-1\},\{i(i+1): i \in\{0, \ldots, n-2\}\})$ is prime. Sumner [12] showed that every prime graph contains P_{4} as an induced subgraph.

We introduce the main notions as follows. For convenience, we use the next notation.

Notation 2. Let G be a graph. For $W \varsubsetneqq V(G), \bar{W}$ denotes $V(G) \backslash W$.
Definition 3. Given graphs G and H such that $V(G)=V(H), G$ and H are similar (in terms of modular decomposability) if G and H are prime or G and H are decomposable. As previously noted, a graph of cardinality 3 is decomposable. Therefore, all the graphs of cardinality 3 are similar.

Now, consider graphs G and H such that $V(G)=V(H)$. Suppose that there exists $X \mp V(G)$ such that $G[X]$ is prime and $G[X]=H[X]$. We say that G and H are $G[X]$-similar if for each $W \nsubseteq \bar{X}$, the subgraphs $G[X \cup W]$ and $H[X \cup W]$ are similar.

Definition 4. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. The graph G is said to be $G[X]$-birecognizable if every graph, $G[X]$ similar to G, is prime as well.

Ille (1994) conjectured the following.
Conjecture 5. There exists an integer $k \geq 1$ satisfying the following. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. If $|\bar{X}| \geq k$, then G is $G[X]$-birecognizable.

Remark 6. In fact, Conjecture 5 is false. Indeed, let $n \geq 7$. Consider $G=P_{n}$ and $H=G-((n-2)(n-1))$. Clearly, G is prime. Furthermore, $n-1$ is an isolated vertex of H, so H is decomposable. Set $X=\{0,1,2,3\}$. We have $G[X]=P_{4}$ and $G[X]=H[X]$. Lastly, consider a proper and nonempty subset Y of \bar{X}. If $n-1 \notin Y$, then $G[X \cup Y]=H[X \cup Y]$. Hence, suppose that $n-1 \in Y$. Since $n-1$ is an isolated vertex of $H, n-1$ is an isolated vertex of $H[X \cup Y]$, so $H[X \cup Y]$ is decomposable. Moreover, since $Y \nsubseteq \bar{X}$, we have $\{4, \ldots, n-2\} \backslash Y \neq \varnothing$. Set $p=\min (\{4, \ldots, n-2\} \backslash Y)$. We obtain that $\{0, \ldots, p-1\}$ is a module of $G[X \cup Y]$, so $G[X \cup Y]$ is decomposable. Consequently, G and H are $G[X]$-similar.

Other types of primality recognition were studied. For instance, Boussaïri et al. [1] introduced the \mathcal{N}-recognition, where \mathcal{N} is a set of negative integers, as follows. Consider graphs G and H such that $V(G)=V(H)$. We say that G and H are \mathcal{N}-similar if for each $X \subseteq V(G)$ such that $-|X| \in \mathcal{N}$ and $|X| \leq v(G)-4$, $G-X$ and $H-X$ are similar. Let G be a prime graph. The graph G is said to be \mathcal{N}-birecognizable if every graph, \mathcal{N}-similar to G, is prime. It is easy to see that prime graphs are not $\{-1\}$-birecognizable. Boussaïri et al. [1] proved that prime graphs are not $\{-2\}$-birecognizable, but they are $\{-2,-1\}$-birecognizable. Lastly, note that the primality recognition under the assumptions of Ulam's reconstruction is demonstrated in [7].

Our purpose is to study the counter-examples to Conjecture 5 . We use the notion of a minimal graph introduced by Cournier and Ille [4].
Definition 7. Let G be a prime graph. Given a nonempty subset W of $V(G)$, G is said to be $G[W]$-minimal if there does not exist $W^{\prime} \mp V(G)$ such that $W \subseteq W^{\prime}$ and $G\left[W^{\prime}\right]$ is prime.

Cournier and Ille [4] characterized the graphs G that are $G[W]$-minimal when $|W| \leq 2$. Ille and Villemaire [9] characterized the graphs G that are $G[X \cup$ $\{v\}]$-minimal when $X \mp V(G), G[X]$ is prime, and $v \in \bar{X}$ (see Theorem 16). To begin, we obtain the following result proved in Section 2.
Proposition 8. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that $|\bar{X}| \geq 5$. If G is not $G[X]$-birecognizable, then one of the following statements holds

- there exists $v \in \bar{X}$ such that G is $G[X \cup\{v\}]$-minimal;
- for every $u \in \bar{X}, G$ is not $G[X \cup\{u\}]$-minimal, but there exist distinct $v, w \in \bar{X}$ such that G is $G[X \cup\{v, w\}]$-minimal, $G-v$ is prime, and $G-w$ is prime.

We have the opposite direction when the first statement of Proposition 8 holds. The proof of the next lemma is provided in Section 2.

Lemma 9. Let G be a prime graph. Consider $X q V(G)$ such that $G[X]$ is prime. If there exists $v \in \bar{X}$ such that G is $G[X \cup\{v\}]$-minimal, then G is not $G[X]$-birecognizable.

Given Proposition 8 and Lemma 9, our aim is to characterize the graphs G that are $G[X \cup\{v, w\}]$-minimal, where $X q V(G), G[X]$ is prime, and v, w are distinct elements of \bar{X} (see [9, Problem 13]). Furthermore, this characterization provides the following direct and natural recognition theorem of prime graphs.

Theorem 10 (Theorem 12 of [9]). Given a graph G, consider $X q V(G)$ such that $G[X]$ is prime. Suppose that $|\bar{X}| \geq 3$. The graph G is prime if and only if for any $v, w \in \bar{X}$, with $v \neq w$, there exists $Y \subseteq \bar{X}$ such that $v, w \in Y$ and $G[X \cup Y]$ is $G[X \cup\{v, w\}]$-minimal.

1.1 Outside partition, graph, and digraph

Definition 11. Let G be a graph. With $X \mp V(G)$ such that $G[X]$ is prime, associate the following subsets of \bar{X}

- $\operatorname{Ext}_{G}(X)$ is the set of $v \in \bar{X}$ such that $G[X \cup\{v\}]$ is prime;
- $\langle X\rangle_{G}$ is the set of $v \in \bar{X}$ such that X is a module of $G[X \cup\{v\}]$;
- Given $\alpha \in X, X_{G}(\alpha)$ is the set of $v \in \bar{X}$ such that $\{\alpha, v\}$ is a module of $G[X \cup\{v\}]$.

The family

$$
\left\{\operatorname{Ext}_{G}(X),\langle X\rangle_{G}\right\} \cup\left\{X_{G}(\alpha): \alpha \in X\right\}
$$

is a partition of \bar{X} (see [5, Lemma 6.3]). It is called the outside partition associated with the prime induced subgraph $G[X]$ of G. It is denoted by $p_{(G, \bar{X})}$.

We recall the classic parity theorem [5, Theorem 6.5].
Theorem 12. Given a graph G, consider $X \nsubseteq V(G)$ such that $G[X]$ is prime and $|\bar{X}| \geq 2$. If G is prime, then there exist $v, w \in \bar{X}$ such that $v \neq w$ and $G[X \cup\{v, w\}]$ is prime.

The proof of Theorem 12 is based on the outside partition $p_{(G, \bar{X})}$. Theorem 12 led Ille [7] to consider the following graph.

Definition 13. Given a graph G, consider $X \varsubsetneqq V(G)$ such that $G[X]$ is prime. The outside graph $\Gamma_{(G, \bar{X})}$ is defined on \bar{X} as follows. Given $v, w \in \bar{X}$, with $v \neq w$, $v w \in E\left(\Gamma_{(G, \bar{X})}\right)$ if $G[X \cup\{v, w\}]$ is prime.

The outside graph is a usual tool to study prime graphs. Nevertheless, it is not precise enough to determine the primality of G even if it is sufficient under additional assumptions (see [9]). This led Ille and Villemaire [9] to introduce the following refinement. (Recall that a digraph $D=(V(D), A(D))$ consists of a finite vertex set $V(D)$ and of an arc set $A(D)$, where an arc is an ordered pair of distinct vertices.)

Definition 14. Given a graph G, consider $X \nsubseteq V(G)$ such that $G[X]$ is prime. The outside digraph $\Delta_{(G, \bar{X})}$ is defined on \bar{X} as follows. Given $v, w \in \bar{X}$, with $v \neq w, v w \in A\left(\Delta_{(G, \bar{X})}\right)$ if
$w \in\langle X\rangle_{G}$ and $X \cup\{v\}$ is not a module of $G[X \cup\{v, w\}]$
or
$w \in X_{G}(\alpha)$, where $\alpha \in X$, and $\{\alpha, w\}$ is not a module of $G[X \cup\{v, w\}]$.
The dipaths of the outside digraph play an important role. For instance, they allow a simple and concise characterization of graphs G that are $G[X \cup\{v\}]$ minimal, where $X \mp V(G)$ such that $G[X]$ is prime, and $v \in \bar{X}$ (see Theorem 16).

Definition 15. Given a graph G, consider $X \nsubseteq V(G)$ such that $G[X]$ is prime. Consider distinct $v_{0}, \ldots, v_{m} \in \bar{X}$, where $m \geq 1$. We say that $v_{0} \ldots v_{m}$ is a dipath of $\Delta_{(G, \bar{X})}$ if $v_{i} v_{i+1} \in A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{0, \ldots, m-1\}$. Moreover, a dipath $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$ is strict if we have (when $\left.m \geq 2\right) v_{i} v_{j} \notin A\left(\Delta_{(G, \bar{X})}\right.$) for $i \in\{0, \ldots, m-2\}$ and $j \in\{i+2, \ldots, m\}$. Lastly, a strict dipath $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$ is an arrow if there exists $B \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $v_{0} \notin B$ and $\left\{v_{1}, \ldots, v_{m}\right\} \subseteq B$.

Theorem 16 (Theorem 11 of [9]). Given a graph G, consider $X \varsubsetneqq V(G)$ such that $G[X]$ is prime. Given $v \in \bar{X} \backslash \operatorname{Ext}_{G}(X), G$ is $G[X \cup\{v\}]$-minimal if and only if the elements of \bar{X} can be indexed as v_{0}, \ldots, v_{m} in such a way that $v_{0} \ldots v_{m}$ is an arrow of $\Delta_{(G, \bar{X})}$, with $v_{m}=v$.

Notation 17. Given a graph G, consider $X \mp V(G)$ such that $G[X]$ is prime. Consider $v \in \bar{X} \backslash \operatorname{Ext}_{G}(X)$. Suppose that there exists $Y \subseteq \bar{X}$ such that $v \in Y$ and $G[X \cup Y]$ is prime. By Theorem 16, there exists $m \geq 1$ such that $\Delta_{(G, \bar{X})}$ admits an arrow $v_{0} \ldots v_{m}$ with $v_{m}=v$. The smallest integer $m \geq 1$, for which such an arrow exists, is denoted by $\delta_{(G, \bar{X})}(v)$.

Definition 18. Given a graph G, consider $X \nsubseteq V(G)$ such that $G[X]$ is prime. Consider a nonempty subset W of \bar{X}. An arrow $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$ is a W dipath if $W \subseteq\left\{v_{0}, \ldots, v_{m}\right\}, v_{m} \in W$, and $\delta_{(G, \bar{X})}\left(v_{m}\right)=m$. When $W=\{v\}$, we say also that $v_{0} \ldots v_{m}$ is a v-dipath. Lastly, we say that W is $G[X]$-reachable (in $\left.\Delta_{(G, \bar{X})}\right)$ if $\Delta_{(G, \bar{X})}$ admits a W-dipath. When $W=\{v\}$, we say also that v is $G[X]$-reachable.

Warning. We use an environment called Layout. We use it nine times: Layout 1 to Layout 9. In Layouts 1,2 , and 3, we consider the two cases where $\{v, w\} \cap$ $\operatorname{Ext}_{G}(X) \neq \varnothing$. In Layout 4, we consider the case where there exist distinct $B, C \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $v \in B$ and $w \in C$. The last five layouts are devoted to the three cases where there exists $B \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $v, w \in B$. The discussion is based on the notion of separated vertices (see Definition 40).

1.2 The first two results

Layout 1. In this subsection, we consider a graph G, a proper subset X of $V(G)$ such that $G[X]$ is prime, and distinct elements v, w of \bar{X}. We suppose that $\{v, w\} \cap \operatorname{Ext}_{G}(X) \neq \varnothing$.

Remark 19. We are looking for a characterization of G when G is $G[X \cup$ $\{v, w\}]$-minimal. One of our tools for this characterization is the outside digraph $\Delta_{(G, \bar{X})}$ (see Definition 14). If there exists $u \in \bar{X}$ such that G is $G[X \cup\{u\}]$ minimal, then Theorem 16 yields such a characterization. Consequently, we can assume that G is neither $G[X \cup\{v\}]$-minimal nor $G[X \cup\{w\}]$-minimal.

Lastly, observe that if G is $G[X \cup\{v, w\}]$-minimal and $\{v, w\}$ is $G[X]$ reachable, then G is $G[X \cup\{v\}]$-minimal or $G[X \cup\{w\}]$-minimal. Therefore, since G is supposed to be $G[X \cup\{v, w\}]$-minimal, we assume also that $\{v, w\}$ is not $G[X]$-reachable.

Layout 2. We suppose that $v, w \in \operatorname{Ext}_{G}(X)$.
Theorem 20. Suppose that $|\bar{X}| \geq 3$. Set $Y=X \cup\{v\}$ and $Z=X \cup\{w\}$. The graph G is $G[X \cup\{v, w\}]$-minimal if and only if the following statement holds
(S1) the elements of $\bar{X} \backslash\{v, w\}$ can be indexed as u_{0}, \ldots, u_{p} in such a way that $u_{0} \ldots u_{p} w$ is a w-dipath of $\Delta_{(G, \bar{Y})}$, and $u_{0} \ldots u_{p} v$ is a v-dipath of $\Delta_{(G, \bar{Z})}$.

Layout 3. Now, we suppose that $v \notin \operatorname{Ext}_{G}(X)$ and $w \in \operatorname{Ext}_{G}(X)$. Hence, there exists $B \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $v \in B$. Following Remark 19, we suppose also that G is not $G[X \cup\{v\}]$-minimal.

Theorem 21. The graph G is $G[X \cup\{v, w\}]$-minimal if and only if the following statement holds
(S2) there exist distinct elements v_{1}, \ldots, v_{m} of B and $v_{0} \in \bar{X} \backslash B$ such that

- $w \in \bar{X} \backslash\left\{v_{0}, \ldots, v_{m}\right\}$ and $\bar{X}=\{w\} \cup\left\{v_{0}, \ldots, v_{m}\right\}$;
- $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$;
- for $i \in\{1, \ldots, m\}, w v_{i} \notin E\left(\Gamma_{(G, \bar{X})}\right)$.

Let B and C be distinct elements of $p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$. In Theorem 39, we consider the case where $v \in B$ and $w \in C$. Difficulties appear when v and w belong to the same block of $p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$. We have to introduce the
notion of separated vertices (see Definition 40). The situation becomes arduous when $\{v, w\}$ is a module of $G[X \cup\{v, w\}]$ (see Defintion 24 below). In this case, v and w are indistinguishable from $G[X]$. The statements are too long to be provided in this section.

2 Partially critical graphs

Breiner et al. [2] introduced the following definition.
Definition 22. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. The graph G is said to be $G[X]$-critical if $G-x$ is decomposable for each $x \in \bar{X}$. A prime graph G is partially critical if it is $G[X]$-critical for some $X \varsubsetneqq V(G)$ such that $G[X]$ is prime.

The next result follows from [2, Lemma 4.1].
Fact 23. Given a graph G, consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that $|\bar{X}| \geq 2$. If G is $G[X]$-critical, then we have

$$
\begin{equation*}
\text { for every } Y \subseteq \bar{X} \text {, if }|Y|=1 \text { or } 3 \text {, then } G[X \cup Y] \text { is decomposable. } \tag{1}
\end{equation*}
$$

Now, we refine the partition $p_{(G, \bar{X})}$ in the following way.
Definition 24. Given a graph G, consider $X \nsubseteq V(G)$ such that $G[X]$ is prime. Let $\varepsilon_{(G, \bar{X})}$ be the graph defined on \bar{X} as follows. Given $v, w \in \bar{X}$, with $v \neq w$, we have $v w \in E\left(\varepsilon_{(G, \bar{X})}\right)$ if $\{v, w\}$ is a module of $G[X \cup\{v, w\}]$. Note that the components of $\varepsilon_{(G, \bar{X})}$ are complete. Let $q_{(G, \bar{X})}$ be the partition of \bar{X} given by the vertex sets of the components of $\varepsilon_{(G, \bar{X})}$. Observe that the partition $q_{(G, \bar{X})}$ of \bar{X} is finer than $p_{(G, \bar{X})}$. A partition similar to $q_{(G, \bar{X})}$ is directly defined from $p_{(G, \bar{X})}$ in [2].

The next theorem follows from [9, Theorem 17, Lemma 36, and Corollary 38]. The partition $q_{(G, \bar{X})}$ is used to state [9, Theorem 17 and Corollary 38]. It is also used in Sections 4 and 5.

Theorem 25. Given a graph G, consider $X \mp V(G)$ such that $|\bar{X}| \geq 2$ and $G[X]$ is prime. Suppose that (1) holds. The graph G is prime if and only if for each connected component C of $\Gamma_{(G, \bar{X})}$, we have $v(C)=2$ or C is prime.

As shown by the next result, partially critical graphs are birecognizable. This fact is useful to prove Proposition 8.

Proposition 26. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that $|\bar{X}| \geq 4$. If G is $G[X]$-critical, then G is $G[X]$ birecognizable.

Proof. Consider a graph H such that G and H are $G[X]$-similar. We have to show that H is prime. Since G is $G[X]$-critical, with $|\bar{X}| \geq 4$, it follows from

Fact 23 that G satisfies (1). Since G and H are $G[X]$-similar, with $|\bar{X}| \geq 4, H$ satisfies (1) as well. Furthermore, since G and H are $G[X]$-similar, with $|\bar{X}| \geq 3$, we have

$$
\begin{equation*}
\Gamma_{(G, \bar{X})}=\Gamma_{(H, \bar{X})} . \tag{2}
\end{equation*}
$$

It follows from Theorem 25 applied to G that for each connected component C of $\Gamma_{(G, \bar{X})}$, we have $v(C)=2$ or C is prime. By (2), the same holds for H. By Theorem 25 applied to H, H is prime.

The next result is the first step in the proof of Proposition 8.
Lemma 27. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that $|\bar{X}| \geq 4$. If G is not $G[X]$-birecognizable, then there exists $v \in \bar{X}$ such that G is $G[X \cup\{v\}]$-minimal or there exist distinct $u, v \in \bar{X}$ such that G is $G[X \cup\{u, v\}]$-minimal.

Proof. Since G is not $G[X]$-birecognizable, there exists a graph H such that G and H are $G[X]$-similar, and H is decomposable. Moreover, it follows from Proposition 26 that there exists $v \in \bar{X}$ such that $G-v$ is prime. Since G and H are $G[X]$-similar, $H-v$ is prime as well. Set $Y=\overline{\{v\}}$. Since H is decomposable, we have $v \in\langle Y\rangle_{H}$ or $v \in Y_{H}(\alpha)$, where $\alpha \in Y$ (see Definition 11). We distinguish the following three cases.

1. Suppose that $v \in\langle Y\rangle_{H}$. In this case, G is $G[X \cup\{v\}]$-minimal. Indeed, consider $W \nsubseteq V(G)$ such that $X \cup\{v\} \subseteq W$. Since Y is a module of H, $W \cap Y=W \backslash\{v\}$ is a module of $H[W]$. Hence, $H[W]$ is decomposable. Since G and H are $G[X]$-similar, $G[W]$ is decomposable.
2. Suppose that $v \in Y_{H}(\alpha)$, where $\alpha \in X$. In this case, G is $G[X \cup\{v\}]$ minimal. Indeed, consider $W \mp V(G)$ such that $X \cup\{v\} \subseteq W$. Since $\{\alpha, v\}$ is a module of $H,\{\alpha, v\} \cap W=\{\alpha, v\}$ is a module of $H[W]$. Hence, $H[W]$ is decomposable. Since G and H are $G[X]$-similar, $G[W]$ is decomposable.
3. Suppose that $v \in Y_{H}(\alpha)$, where $\alpha \in Y \backslash X$. In this case, G is $G[X \cup$ $\{\alpha, v\}]$-minimal. Indeed, consider $W \mp V(G)$ such that $X \cup\{\alpha, v\} \subseteq W$. Since $\{\alpha, v\}$ is a module of $H,\{\alpha, v\} \cap W=\{\alpha, v\}$ is a module of $H[W]$. Hence, $H[W]$ is decomposable. Since G and H are $G[X]$-similar, $G[W]$ is decomposable.

In the proof of the next proposition, we use [2, Corollary 4.5], stated as follows.

Fact 28. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. If G is $G[X]$-critical, then $\Gamma_{(G, \bar{X})}$ does not have isolated vertices.

Proposition 29. Let G be a prime graph. Consider $X \nsubseteq V(G)$ such that $G[X]$ is prime. Suppose that $|\bar{X}| \geq 5$. Given distinct $v, w \in \bar{X}$, if G is $G[X \cup\{v, w\}]$ minimal, then $G-v$ or $G-w$ is prime.

Proof. Consider distinct $v, w \in \bar{X}$, and suppose that G is $G[X \cup\{v, w\}]$-minimal. For a contradiction, suppose that G is $G[X]$-critical. By Fact 28 , there exists $v^{\prime} \in \bar{X} \backslash\{v\}$ such that $v v^{\prime} \in E\left(\Gamma_{(G, \bar{X})}\right)$. Set $Y=X \cup\left\{v, v^{\prime}\right\}$, so $G[Y]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal and $|\bar{X}| \geq 3$, we obtain $w \notin Y$. Since G is $G[X]$ critical, G is $G[Y]$-critical too. By Fact 28 , there exists $w^{\prime} \in \bar{Y} \backslash\{w\}$ such that $w w^{\prime} \in E\left(\Gamma_{(G, \bar{Y})}\right)$. Therefore, $G\left[Y \cup\left\{w, w^{\prime}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$ minimal, we obtain $V(G)=Y \cup\left\{w, w^{\prime}\right\}$, that is, $V(G)=X \cup\left\{v, v^{\prime}, w, w^{\prime}\right\}$, which contradicts $|\bar{X}| \geq 5$. It follows that G is not $G[X]$-critical. Hence, there exists $u \in \bar{X}$ such that $G-u$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we have $u=v$ or $u=w$.

Lemma 30. Let G be a prime graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Let v, w be distinct elements of \bar{X}. Suppose that G is $G[X \cup\{v, w\}]$ minimal. Suppose also that $G-v$ is prime, and G is not $G[X \cup\{v\}]$-minimal. If $G-w$ is decomposable, then G is $G[X]$-birecognizable.

Proof. Consider a graph H which is $G[X]$-similar to G. We have to show that H is prime. Since $G-w$ is decomposable, $H-w$ is decomposable. Since $G-v$ is prime, $H-v$ is prime. Thus

$$
\begin{equation*}
H-v \nsim H-w . \tag{3}
\end{equation*}
$$

Set $Y=\overline{\{v\}}$. Since G is not $G[X \cup\{v\}]$-minimal, there exists $Z \mp \bar{X}$ such that $v \in Z$ and $G[X \cup Z]$ is prime. Thus, $H[X \cup Z]$ is too. It follows that $v \notin\langle Y\rangle_{H}$. For a contradiction, suppose that there exists $\alpha \in Y$ such that $v \in Y_{H}(\alpha)$. We obtain that $H[(Y \backslash\{\alpha\}) \cup\{v\}]$ is prime, so $G[(Y \backslash\{\alpha\}) \cup\{v\}]$ is as well. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $w=\alpha$. It follows that $H-v \simeq H-w$ contradicting (3). Consequently, $v \notin Y_{H}(\alpha)$ for every $\alpha \in Y$. It follows that $v \in \operatorname{Ext}_{H}(Y)$, so H is prime.

Proposition 8 is a simple consequence of Lemma 27, Proposition 29, and Lemma 30. We complete this section with the proof of Lemma 9.

Proof of Lemma 9. Consider the graph H defined on $V(G)=V(H)$ by $H-v=$ $G-v$, and v is an isolated vertex of H. Since $\overline{\{v\}}$ is a module of H, H is decomposable. We verify that G and H are $G[X]$-similar. Let $Y q \bar{X}$. If $v \notin Y$, then $G[X \cup Y]=H[X \cup Y]$ because $H-v=G-v$. Now, suppose that $v \in Y$. Since $\overline{\{v\}}$ is a module of $H, \overline{\{v\}} \cap(X \cup Y)=(X \cup Y) \backslash\{v\}$ is a module of $H[X \cup Y]$. Hence, $H[X \cup Y]$ is decomposable. Since G is $G[X \cup\{v\}]$-minimal, $G[X \cup Y]$ is decomposable too. Therefore, G and H are $G[X]$-similar. Consequently, G is not $G[X]$-birecognizable.

3 Proofs of Theorems 20 and 21

Using Notation 17, we obtain the following simple consequences of Theorem 16 that are often used.

Corollary 31. Given a prime graph G, consider $X \mp V(G)$ such that $G[X]$ is prime.

1. For each $v \in \bar{X} \backslash \operatorname{Ext}_{G}(X), \Delta_{(G, \bar{X})}$ admits a v-dipath.
2. For each $v \in \bar{X}$, if $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$ (or an arrow of $\left.\Delta_{(G, \bar{X})}\right)$, then $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime.
A simple and important tool follows.
Lemma 32. Let G be a graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Consider a subset W of $V(G)$ such that $X \mp W$. Let W^{\prime} be a nonempty subset of $W \backslash X$. Suppose that there exists $B \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $W^{\prime} \subseteq B$. If

$$
\begin{equation*}
w w^{\prime} \notin A\left(\Delta_{(G, \bar{X})}\right) \text { for } w \in(W \backslash X) \backslash W^{\prime} \text { and } w^{\prime} \in W^{\prime} \tag{4}
\end{equation*}
$$

then one of the following assertions holds

- $B=\langle X\rangle_{G}$, and $W \backslash W^{\prime}$ is a nontrivial module of $G[W]$;
- $B=X_{G}(\alpha)$, where $\alpha \in X$, and $\{\alpha\} \cup W^{\prime}$ is a nontrivial module of $G[W]$.

Consequently, if (4) holds, then $G[W]$ is decomposable.
Proof. Suppose that (4) holds. To begin, suppose that $B=\langle X\rangle_{G}$. Let $w \in$ $(W \backslash X) \backslash W^{\prime}$ and $w^{\prime} \in W^{\prime}$. Since $w w^{\prime} \notin A\left(\Delta_{(G, \bar{X})}\right), X \cup\{w\}$ is a module of $G\left[X \cup\left\{w, w^{\prime}\right\}\right]$. It follows that $W \backslash W^{\prime}$ is a module of $G[W]$.

Now, suppose that $B=X_{G}(\alpha)$, where $\alpha \in X$. Let $w \in(W \backslash X) \backslash W^{\prime}$ and $w^{\prime} \in W^{\prime}$. Since $w w^{\prime} \notin A\left(\Delta_{(G, \bar{X})}\right),\left\{\alpha, w^{\prime}\right\}$ is a module of $G\left[X \cup\left\{w, w^{\prime}\right\}\right]$. It follows that $\{\alpha\} \cup W^{\prime}$ is a module of $G[W]$.

Proof of Theorem 20. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. Since $|\bar{X}| \geq 3, w \notin \operatorname{Ext}_{G}(Y)$. Since $w \in \operatorname{Ext}_{G}(X)$, we have $w \in Y_{G}(v)$. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{Y})}$ admits a w-dipath $w_{0} \ldots w_{n}$, and $G[Y \cup$ $\left.\left\{w_{0}, \ldots, w_{n}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $V(G)=$ $Y \cup\left\{w_{0}, \ldots, w_{n}\right\}$. Similarly, $v \in Z_{G}(w)$, and $\Delta_{(G, \bar{Z})}$ admits a v-dipath $v_{0} \ldots v_{m}$. Moreover, we have $V(G)=Z \cup\left\{v_{0}, \ldots, v_{m}\right\}$. Therefore, $\{v\} \cup\left\{w_{0}, \ldots, w_{n}\right\}=$ $\{w\} \cup\left\{v_{0}, \ldots, v_{m}\right\}$, so $m=n$. Set $p=m-1$. Since $w_{0} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{Y})}$, and $w \in Y_{G}(v), w_{p}$ is the unique element of $\bar{X} \backslash\{v, w\}$ such that $w_{p} \not \longleftrightarrow_{G}$ $\{v, w\}$ (see Notation 1). Similarly, v_{p} is the unique element of $\bar{X} \backslash\{v, w\}$ such that $v_{p} \nrightarrow_{G}\{v, w\}$. It follows that $v_{p}=w_{p}$. Set $u_{p}=v_{p}$. To continue, suppose that $p \geq 1$. We obtain that w_{p-1} is the unique element of $\bar{X} \backslash\left\{v, w, u_{p}\right\}$ such that $w_{p-1} \longleftrightarrow_{G}\left\{u_{p}, v, w\right\}$. Similarly, v_{p-1} is the unique element of $\bar{X} \backslash\left\{v, w, u_{p}\right\}$ such that $v_{p-1} \longleftrightarrow_{G}\left\{u_{p}, v, w\right\}$. It follows that $v_{p-1}=w_{p-1}$. Set $u_{p-1}=v_{p-1}$. By proceeding by induction, we obtain the sequence u_{0}, \ldots, u_{p}, where $u_{i}=v_{i}$ and $u_{i}=w_{i}$ for every $i \in\{0, \ldots, p\}$.

Conversely, suppose that Statement (S1) holds. By Corollary 31, $G[Y \cup$ $\left.\left\{u_{0}, \ldots, u_{p}\right\} \cup\{w\}\right]=G\left[X \cup\left\{u_{0}, \ldots, u_{p}\right\} \cup\{v, w\}\right]$ is prime. Since $\bar{X}=\left\{u_{0}, \ldots, u_{p}\right\} \cup$
$\{v, w\}, G$ is prime. To show that G is $G[X \cup\{v, w\}]$-minimal, consider $W \nsubseteq$ $V(G)$ such that $X \cup\{v, w\} \subseteq W$. We have to verify that $G[W]$ is decomposable. Since $X \cup\{v, w\} \subseteq W \mp V(G)$, there exists $i \in\{0, \ldots, p\}$ such that $u_{i} \notin W$. Set $W^{\prime}=\left\{u_{i+1}, \ldots, u_{p+1}\right\} \cap W$, where u_{p+1} denotes w. By Lemma 32 applied to $G[Y], G[W]$ is decomposable.

Proof of Theorem 21. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{X})}$ admits a v-dipath $v_{0} \ldots v_{m}$. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$. By Theorem 16, $G[Y]$ is $G[X \cup\{v\}]$-minimal. Since G is $G[X \cup\{v, w\}]$-minimal without being $G[X \cup\{v\}]$-minimal, we have $w \notin Y$. Since $w \in \operatorname{Ext}_{G}(X)$, we have $w \notin\langle Y\rangle_{G}$, and $w \notin Y_{G}(\alpha)$ for $\alpha \in X$. Furthermore, since $v_{1}, \ldots, v_{m} \notin \operatorname{Ext}_{G}(X)$ and $w \in \operatorname{Ext}_{G}(X)$, we obtain $w \notin Y_{G}\left(v_{i}\right)$ for $i \in$ $\{1, \ldots, m\}$. Now, suppose for a contradiction that there exists $i \in\{1, \ldots, m\}$ such that $w v_{i} \in E\left(\Gamma_{(G, \bar{X})}\right)$. Let I be the largest element of $\{1, \ldots, m\}$ such that $w v_{I} \in E\left(\Gamma_{(G, \bar{X})}\right)$. We obtain that $w v_{I} \ldots v_{m}$ is an arrow of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\{w\} \cup\left\{v_{I}, \ldots, v_{m}\right\}\right]$ is prime, which contradicts the fact that G is $G[X \cup\{v, w\}]$-minimal. Consequently, $w v_{i} \notin E\left(\Gamma_{(G, \bar{X})}\right)$ for every $i \in$ $\{1, \ldots, m\}$. In particular, we have $w v_{1} \notin E\left(\Gamma_{(G, \bar{X})}\right)$. It follows that $w \notin Y_{G}\left(v_{0}\right)$. Therefore, $w \in \operatorname{Ext}_{G}(Y)$. It follows that $G\left[X \cup\{w\} \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{X}=\{w\} \cup\left\{v_{0}, \ldots, v_{m}\right\}$. Thus, Statement (S2) holds.

Conversely, suppose that Statement (S2) holds. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$. By Corollary 31, $G[Y]$ is prime. Since $w \in \operatorname{Ext}_{G}(X)$, we have $w \notin\langle Y\rangle_{G}$, and $w \notin Y_{G}(\alpha)$ for $\alpha \in X$. Furthermore, since $v_{1}, \ldots, v_{m} \notin \operatorname{Ext}_{G}(X)$ and $w \in$ $\operatorname{Ext}_{G}(X)$, we obtain $w \notin Y_{G}\left(v_{i}\right)$ for $i \in\{1, \ldots, m\}$. Since $w v_{1} \notin E\left(\Gamma_{(G, \bar{X})}\right)$ and $v_{0} v_{1} \in E\left(\Gamma_{(G, \bar{X})}\right)$, we obtain $w \notin Y_{G}\left(v_{0}\right)$. It follows that $w \in \operatorname{Ext}_{G}(Y)$, so G is prime. Lastly, we verify that G is $G[X \cup\{v, w\}]$-minimal. Consider $W \varsubsetneqq V(G)$ such that $X \cup\{v, w\} \subseteq W$. There exists $i \in\{0, \ldots, m\}$ such that $v_{i} \notin W$. Note that $i<m$ because $v_{m}=v$ and $v \in W$. Set $W^{\prime}=\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. By Lemma 32, $G[W]$ is decomposable.

4 Technical preliminaries

To begin, we recall the definition of a module of a digraph. Given a digraph D, a subset of M of $V(D)$ is a module of D if for $x, y \in M$ and $v \in V(D) \backslash M$, we have: $x v \in A(D)$ (resp. $v x \in A(D)$) if and only if $y v \in A(D)$ (resp. $v y \in A(D)$). More weakly, we say that M is an absorbing subset of D if for $x, y \in M$ and $v \in V(D) \backslash M$, we have: $v x \in A(D)$ if and only if $v y \in A(D)$. The proof of the next lemma can be deduced from that of [9, Lemma 28].

Lemma 33. Given a graph G, consider $X \mp V(G)$ such that $G[X]$ is prime. Consider also $M \subseteq \bar{X}$ such that $|M| \geq 2$. The following two statements hold

1. if M is a module of G, then M is contained in a block of $q_{(G, \bar{X})}$, and M is a module of $\Delta_{(G, \bar{X})}$;
2. if M is an absorbing subset of $\Delta_{(G, \bar{X})}$ such that $M \cap \operatorname{Ext}_{G}(X)=\varnothing$, and M is contained in a block of $q_{(G, \bar{X})}$, then M is a module of G.
We complete the section with five technical results.
Claim 34. Let G be a graph. Consider $W_{1}, W_{2} \subseteq V(G)$ such that $W_{1} \cup W_{2}=$ $V(G)$ and $\left|W_{1} \cap W_{2}\right| \geq 2$. Suppose that $G\left[W_{1}\right]$ and $G\left[W_{2}\right]$ are prime. Suppose also that G is decomposable. For each nontrivial module M of G, there exist $w_{1} \in W_{1} \backslash W_{2}$ and $w_{2} \in W_{2} \backslash W_{1}$ such that $M=\left\{w_{1}, w_{2}\right\}$.

Proof. Let M be a nontrivial module of G. For a contradiction, suppose that $W_{1} \subseteq M$. Since $\left|W_{1} \cap W_{2}\right| \geq 2$, we obtain $\left|M \cap W_{2}\right| \geq 2$. Since $M \cap W_{2}$ is a module of $G\left[W_{2}\right]$, we obtain $M \cap W_{2}=W_{2}$. Hence $M=V(G)$, which contradicts the fact that M is a nontrivial module of G. It follows that $\left|M \cap W_{1}\right| \leq 1$. If $M \cap W_{1}=\varnothing$, then M is a nontrivial module of $G\left[W_{2}\right]$, which contradicts the fact that $G\left[W_{2}\right]$ is prime. Consequently, there exists $w_{1} \in W_{1}$ such that $M \cap W_{1}=\left\{w_{1}\right\}$. Similarly, there exists $w_{2} \in W_{2}$ such that $M \cap W_{2}=\left\{w_{2}\right\}$. Since $|M| \geq 2$, we obtain $w_{1} \in W_{1} \backslash W_{2}, w_{2} \in W_{2} \backslash W_{1}$, and $M=\left\{w_{1}, w_{2}\right\}$.

Fact 35. Let G be a graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that there exist distinct elements B and C of $p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$. Consider distinct elements v_{1}, \ldots, v_{m} of B, and distinct elements w_{1}, \ldots, w_{n} of C. Suppose that $V(G)=X \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$. If $w_{1} v_{1} \ldots v_{m}$ and $v_{1} w_{1} \ldots w_{n}$ are strict dipaths of $\Delta_{(G, \bar{X})}$, then G is prime.
Proof. Set $W_{1}=X \cup\left\{w_{1}\right\} \cup\left\{v_{1}, \ldots, v_{m}\right\}$. Since $v_{1}, \ldots, v_{m} \in B$ and $w_{1} \notin B$, $w_{1} v_{1} \ldots v_{m}$ is an arrow of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[W_{1}\right]$ is prime. Similarly, by setting $W_{2}=X \cup\left\{v_{1}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$, we obtain that $G\left[W_{2}\right]$ is prime. If $m=1$, then $V(G)=W_{1}$, so G is prime. Hence, suppose that $m \geq 2$. Similarly, suppose that $n \geq 2$. Since $V(G)=X \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}, V(G)=W_{1} \cup W_{2}$. Since $X \subseteq W_{1} \cap W_{2}$, we have $\left|W_{1} \cap W_{2}\right| \geq 2$. Moreover, we have $W_{1} \backslash W_{2}=\left\{v_{2}, \ldots, v_{m}\right\}$ and $W_{2} \backslash W_{1}=\left\{w_{2}, \ldots, w_{n}\right\}$. Let $i \in\{2, \ldots, m\}$ and $j \in\{2, \ldots, n\}$. Since v_{i} and w_{j} do not belong to the same block of $p_{(G, \bar{X})},\left\{v_{i}, w_{j}\right\}$ is not a module of G. It follows from Claim 34 that G is prime.

Fact 36. Let G be a graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that there exist distinct elements B and C of $p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$. Consider distinct elements v_{1}, \ldots, v_{m} of B, and distinct elements w_{1}, \ldots, w_{n} of C. Suppose that there exists $u \in \bar{X} \backslash(B \cup C)$ such that $V(G)=X \cup\{u\} \cup$ $\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$. If $u v_{1} \ldots v_{m}$ and $u w_{1} \ldots w_{n}$ are strict dipaths of $\Delta_{(G, \bar{X})}$, then G is prime.

Since the proof of Fact 36 is close to that of Fact 35, we omit it.
Fact 37. Let G be a graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that there exist distinct elements B and C of $p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$. Consider distinct elements v_{1}, \ldots, v_{m} of B, and distinct elements w_{1}, \ldots, w_{n} of C. Suppose that there exist $t \in \bar{X} \backslash\left(B \cup\left\{w_{1}, \ldots, w_{n}\right\}\right)$ and $u \in \bar{X} \backslash(C \cup$ $\left.\left\{v_{1}, \ldots, v_{m}\right\}\right)$ such that $t \neq u$ and $V(G)=X \cup\{t, u\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$. Under these assumptions, G is prime if the following statements hold

- $t v_{1} \ldots v_{m}$ and $u w_{1} \ldots w_{n}$ are strict dipaths of $\Delta_{(G, \bar{X})}$;
- for $i \in\{1, \ldots, m\}, v_{i} w_{1} \notin E\left(\Gamma_{(G, \bar{X})}\right)$;
- for $j \in\{1, \ldots, n\}, w_{j} v_{1} \notin E\left(\Gamma_{(G, \bar{X})}\right)$;
- $u v_{1} \notin A\left(\Delta_{(G, \bar{X})}\right)$ or $t w_{1} \notin A\left(\Delta_{(G, \bar{X})}\right)$.

Proof. Set $W_{1}=X \cup\{t\} \cup\left\{v_{1}, \ldots, v_{m}\right\}$ and $W_{2}=X \cup\{u\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$. Since $v_{1}, \ldots, v_{n} \in B$ and $t \in \bar{X} \backslash B, t v_{1} \ldots v_{m}$ is an arrow of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[W_{1}\right]$ is prime. Similarly, $G\left[W_{2}\right]$ is prime. Since $V(G)=$ $X \cup\{t, u\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}, V(G)=W_{1} \cup W_{2}$. We have $\left|W_{1} \cap W_{2}\right| \geq 2$ because $W_{1} \cap W_{2}=X$. Furthermore, $W_{1} \backslash W_{2}=\{t\} \cup\left\{v_{1}, \ldots, v_{m}\right\}$ and $W_{2} \backslash W_{1}=$ $\{u\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$. Let $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. Since v_{i} and w_{j} do not belong to the same block of $p_{(G, \bar{X})},\left\{v_{i}, w_{j}\right\}$ is not a module of G. We verify that $\left\{u, v_{i}\right\}$ is not a module of G. Since $u w_{1} \ldots w_{n}$ is a strict dipath of $\Delta_{(G, \bar{X})}$, $u w_{1} \in A\left(\Delta_{(G, \bar{X})}\right)$. Furthermore, since v_{i} and w_{1} do not belong to the same block of $p_{(G, \bar{X})}$, and $v_{i} w_{1} \notin E\left(\Gamma_{(G, \bar{X})}\right)$, we obtain $v_{i} w_{1} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Therefore, $\left\{u, v_{i}\right\}$ is not a module of $\Delta_{(G, \bar{X})}$. By Lemma $33,\left\{u, v_{i}\right\}$ is not a module of G. Similarly, $\left\{t, w_{j}\right\}$ is not a module of G. Lastly, we verify that $\{u, t\}$ is not a module of G. Since $t v_{1} \ldots v_{m}$ and $u w_{1} \ldots w_{n}$ are strict dipaths of $\Delta_{(G, \bar{X})}$, $t v_{1}, u w_{1} \in A\left(\Delta_{(G, \bar{X})}\right)$. Since $u v_{1} \notin A\left(\Delta_{(G, \bar{X})}\right)$ or $t w_{1} \notin A\left(\Delta_{(G, \bar{X})}\right),\{t, u\}$ is not a module of $\Delta_{(G, \bar{X})}$. By Lemma $33,\{t, u\}$ is not a module of G. It follows from Claim 34 that G is prime.

We end this section with the following claim, which is useful to examine non separated vertices (see Definition 40 and Lemma 43).

Claim 38. Let G be a graph. Consider $X \mp V(G)$ such that $G[X]$ is prime. Suppose that there exists $B \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $|B| \geq 2$. Consider distinct elements v and w of B. Suppose that $\{v, w\}$ is not $G[X]$-reachable (see Definition 18). Consider a v-dipath $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$, and a w-dipath $w_{0} \ldots w_{n}$ of $\Delta_{(G, \bar{X})}$. Under these assumptions, the following assertions hold

1. if there exist $i \in\{0, \ldots, m\}$ and $j \in\{0, \ldots, n\}$ such that $v_{i}=w_{j}$, then $i=j$, $i<m$, and $i<n$;
2. if there exist $i \in\{0, \ldots, m\}$ and $j \in\{0, \ldots, n\}$ such that $v_{i} \neq w_{j}$ and $\left\{v_{i}, w_{j}\right\}$ is a module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right]$, then $i=j$, and

$$
\left\{\begin{array}{l}
i=m=n \\
\text { or } \\
i<m \text { and } i<n .
\end{array}\right.
$$

Proof. For the first assertion, suppose that there exist $i \in\{0, \ldots, m\}$ and $j \in$ $\{0, \ldots, n\}$ such that $v_{i}=w_{j}$. Suppose that $i=0$. Since $v_{0} \notin B$ and $w_{l} \in B$ for
$l \in\{1, \ldots, n\}$, we obtain $j=0$. Similarly, if $j=0$, then $i=0$. Thus, suppose that $i \geq 1$ and $j \geq 1$. For a contradiction, suppose that $i=m$. Hence $v=w_{j}$. Since $v \neq w$, we obtain $j<n$, which contradicts the fact that $\{v, w\}$ is not $G[X]$ reachable. It follows that $i \in\{1, \ldots, m-1\}$. Analogously, $j \in\{1, \ldots, n-1\}$. The sequence $v_{0} \ldots v_{i-1} w_{j} w_{j+1} \ldots w_{n}$ is a dipath of $\Delta_{(G, \bar{X})}$. We can extract from $v_{0} \ldots v_{i-1} w_{j} w_{j+1} \ldots w_{n}$ an arrow $u_{0} \ldots u_{p}$ of $\Delta_{(G, \bar{X})}$ such that $u_{0}=v_{0}, u_{p}=w_{n}$, and $p \leq n-j+i$. Since $\delta_{(G, \bar{X})}(w)=n$, we obtain $i \geq j$. Analogously, we have $j \geq i$. Therefore $i=j$.

For the second assertion, set $H=G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right]$. Note that

$$
\begin{equation*}
\Delta_{(H, \bar{X})}=\Delta_{(G, \bar{X})}\left[\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right] . \tag{5}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
v_{0} \ldots v_{m} \text { is a } v \text {-dipath of } \Delta_{(H, \bar{X})} \text { and } w_{0} \ldots w_{n} \text { is a } w \text {-dipath of } \Delta_{(H, \bar{X})} \tag{6}
\end{equation*}
$$

We obtain that v and w are $H[X]$-reachable. It follows that

$$
\begin{equation*}
\delta_{(H, \bar{X})}(v)=m \text { and } \delta_{(H, \bar{X})}(w)=n . \tag{7}
\end{equation*}
$$

Now, we suppose that there exist $i \in\{0, \ldots, m\}$ and $j \in\{0, \ldots, n\}$ such that $v_{i} \neq w_{j}$ and $\left\{v_{i}, w_{j}\right\}$ is a module of H. By Lemma 33 applied to $H,\left\{v_{i}, w_{j}\right\}$ is a module of $\Delta_{(H, \bar{X})}$. Observe that if $i=0$, then $j=0$ because v_{0} and w_{0} are the only elements of $\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}$ that do not belong to B. Similarly, if $j=0$, then $i=0$. Now, suppose that $i>0$ and $j>0$. We distinguish the following two cases.

First, suppose that $i=m$. Suppose for a contradiction that $1 \leq j \leq n-$ 1. By (6), $w_{0} \ldots w_{n}$ is a w-dipath of $\Delta_{(H, \bar{X})}$. Since $\left\{v, w_{j}\right\}$ is a module of $\Delta_{(H, \bar{X})}, w_{0} \ldots w_{j-1} v w_{j+1} \ldots w_{n}$ is an arrow of $\Delta_{(H, \bar{X})}$. Therefore, $\{v, w\}$ is $H[X]$-reachable, which contradicts the fact that $\{v, w\}$ is not $G[X]$-reachable. It follows that $j=n$. Thus, $\{v, w\}$ is a module of $\Delta_{(H, \bar{X})}$. It follows from (6) that $v_{0} \ldots v_{m-1} w$ is an arrow of $\Delta_{(H, \bar{X})}$. Hence, $m \geq \delta_{(H, \bar{X})}(w)$. It follows from (7) that $m \geq n$. Similarly, $n \geq m$. Therefore, we obtain $m=n$. Consequently, if $i=m$, then $j=n$, and $m=n$. Analogously, if $j=n$, then $i=m$, and $m=n$.

Second, suppose that $m \geq 2, n \geq 2, i \in\{1, \ldots, m-1\}$, and $j \in\{1, \ldots, n-$ 1\}. We have to show that $i=j$. Since $\left\{v_{i}, w_{j}\right\}$ is a module of $\Delta_{(H, \bar{X})}$, $v_{0} \ldots v_{i-1} w_{j} w_{j+1} \ldots w_{n}$ is a dipath of $\Delta_{(H, \bar{X})}$. From $v_{0} \ldots v_{i-1} w_{j} w_{j+1} \ldots w_{n}$, we can extract an arrow $u_{0} \ldots u_{p}$ of $\Delta_{(H, \bar{X})}$ such that $u_{0}=v_{0}, u_{p}=w_{n}$, and $p \leq n-j+i$. Since $\delta_{(H, \bar{X})}(w)=n$ by (7), we obtain $n-j+i \geq p \geq n$, so $i \geq j$. Similarly, $j \geq i$. Therefore $i=j$.

5 The other results

Layout 4. In this section, we consider a graph G, a proper subset X of $V(G)$ such that $G[X]$ is prime, and distinct elements v, w of \bar{X}. In Theorems 20 and

21, we considered the case where $\{v, w\} \cap \operatorname{Ext}_{G}(X) \neq \varnothing$. Now, we suppose that $\{v, w\} \cap \operatorname{Ext}_{G}(X)=\varnothing$. Hence, there exist $B, C \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$ such that $v \in B$ and $w \in C$. To begin, we suppose that $B \neq C$.

Theorem 39. The graph G is $G[X \cup\{v, w\}]$-minimal if and only if there exist distinct elements v_{1}, \ldots, v_{m} of B, and distinct elements w_{1}, \ldots, w_{n} of C such that one of the following statements holds
(S3) $\bar{X}=\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$ and

- $w_{1} v_{1} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$,
- $v_{1} w_{1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$,
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$, if $i \geq 2$ or $j \geq 2$, then $v_{i} w_{j} \notin$ $E\left(\Gamma_{(G, \bar{X})}\right)$;
(S4) there exists $u \in \bar{X} \backslash(B \cup C)$ such that $\bar{X}=\{u\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$, and
- $u v_{1} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$,
- $u w_{1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$,
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}, v_{i} w_{j} \notin E\left(\Gamma_{(G, \bar{X})}\right)$;
(S5) there exist $t \in \bar{X} \backslash\left(B \cup\left\{w_{1}, \ldots, w_{n}\right\}\right)$ and $u \in \bar{X} \backslash\left(C \cup\left\{v_{1}, \ldots, v_{m}\right\}\right)$ such that $t \neq u, \bar{X}=\{t, u\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$, and
- $t v_{1} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$,
- $u w_{1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$,
- for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}, v_{i} w_{j} \notin E\left(\Gamma_{(G, \bar{X})}\right)$,
- for $i \in\{1, \ldots, m\}, u v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$,
- for $j \in\{1, \ldots, n\}, t w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right)$.

Proof. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{X})}$ admits a v-dipath $v_{0} \ldots v_{m}$, and a w-dipath $w_{0} \ldots w_{n}$. We distinguish the two following cases.

1. Suppose that there exist $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ such that $v_{i} w_{j} \in$ $E\left(\Gamma_{(G, \bar{X})}\right)$. Denote by I the largest $i \in\{1, \ldots, m\}$ such that there exists $j \in\{1, \ldots, n\}$ with $v_{i} w_{j} \in E\left(\Gamma_{(G, \bar{X})}\right)$. Now, denote by J the largest $j \in$ $\{1, \ldots, n\}$ such that $v_{I} w_{j} \in E\left(\Gamma_{(G, \bar{X})}\right)$. We obtain that $w_{J} v_{I} \ldots v_{m}$ and $v_{I} w_{J} \ldots w_{n}$ are strict dipaths of $\Delta_{(G, \bar{X})}$. It follows from Fact 35 that $G\left[X \cup\left\{v_{I}, \ldots, v_{m}\right\} \cup\left\{w_{J}, \ldots, w_{n}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$ minimal, we obtain $V(G)=X \cup\left\{v_{I}, \ldots, v_{m}\right\} \cup\left\{w_{J}, \ldots, w_{n}\right\}$. It follows that $I=1, J=1, v_{0}=w_{1}$, and $w_{0}=v_{1}$. Consequently, Statement (S3) holds.
2. Suppose that $v_{i} w_{j} \notin E\left(\Gamma_{(G, \bar{X})}\right)$ for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. In particular, we obtain $v_{0} \notin\left\{w_{1}, \ldots, w_{n}\right\}$, and $w_{0} \notin\left\{v_{1}, \ldots, v_{m}\right\}$. Thus

$$
\begin{equation*}
v_{0}, w_{0} \in \bar{X} \backslash\left(\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}\right) . \tag{8}
\end{equation*}
$$

For a contradiction, suppose that there exists $j \in\{2, \ldots, n\}$ with $v_{0} w_{j} \epsilon$ $A\left(\Delta_{(G, \bar{X})}\right)$. Denote by J the largest $j \in\{2, \ldots, n\}$ such that $v_{0} w_{j} \in$ $A\left(\Delta_{(G, \bar{X})}\right)$. We obtain that $v_{0} v_{1} \ldots v_{m}$ and $v_{0} w_{J} \ldots w_{n}$ are strict dipaths of $\Delta_{(G, \bar{X})}$. If $v_{0} \in C$, then $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{J}, \ldots, w_{n}\right\}\right]$ is prime by Fact 35 , which contradicts the fact that G is $G[X \cup\{v, w\}]$-minimal because $w_{0} \notin X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{J}, \ldots, w_{n}\right\}$ by (8). If $v_{0} \notin C$, then $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{J}, \ldots, w_{n}\right\}\right]$ is prime by Fact 36 , which contradicts the fact that G is $G[X \cup\{v, w\}]$-minimal because $w_{1} \notin X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup$ $\left\{w_{J}, \ldots, w_{n}\right\}$. It follows that $v_{0} w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $j \in\{2, \ldots, n\}$. Similarly, $w_{0} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{2, \ldots, m\}$. We distinguish the following three subcases.
2.1. Suppose that $v_{0} w_{1} \in A\left(\Delta_{(G, \bar{X})}\right)$. If $v_{0} \in C$, then $G\left[X \cup\left\{v_{0}\right\} \cup\right.$ $\left.\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}\right]$ is prime by Fact 35. If $v_{0} \notin C$, then $G\left[X \cup\left\{v_{0}\right\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}\right]$ is prime by Fact 36. It follows that $G\left[X \cup\left\{v_{0}\right\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $V(G)=X \cup\left\{v_{0}\right\} \cup\left\{v_{1}, \ldots, v_{m}\right\} \cup$ $\left\{w_{1}, \ldots, w_{n}\right\}$. Since $w_{0} \notin\left\{v_{1}, \ldots, v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$ by (8), we obtain $w_{0}=v_{0}$. Consequently, $v_{0} \notin B \cup C$, and hence Statement (S4) holds.
2.2. Suppose that $w_{0} v_{1} \in A\left(\Delta_{(G, \bar{X})}\right)$. Similarly, we obtain $w_{0}=v_{0}$, and Statement (S4) holds.
2.3. Suppose that $v_{0} w_{1} \notin A\left(\Delta_{(G, \bar{X})}\right)$ and $w_{0} v_{1} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Clearly, we have $v_{0} \neq w_{0}$. By Fact $37, G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $V(G)=X \cup$ $\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}$. Hence Statement (S5) holds.

Conversely, suppose that there exist distinct elements v_{1}, \ldots, v_{m} of B, and distinct elements w_{1}, \ldots, w_{n} of C such that one of Statements (S3), (S4) or (S5) holds. We distinguish the following three cases.
(i) Suppose that Statement (S3) holds. By Fact 35, G is prime. Consider $W \mp V(G)$ such that $X \cup\{v, w\} \subseteq W$. We have to verify that $G[W]$ is decomposable. For instance, assume that $v_{i} \notin W$, where $i \in\{1, \ldots, m\}$. Since $v_{m}=v, i<m$. Set $W^{\prime}=\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. Clearly, $v_{m} \in W^{\prime}$ and $W^{\prime} \subseteq B$. By Lemma $32, G[W]$ is decomposable.
(ii) Suppose that Statement (S4) holds. By Fact 36, G is prime. Consider $W \mp V(G)$ such that $X \cup\{v, w\} \subseteq W$. We have to verify that $G[W]$ is decomposable. To begin, suppose that $u \notin W$. Set $W^{\prime}=\left\{v_{1}, \ldots, v_{m}\right\} \cap W$. Clearly, $v_{m} \in W^{\prime}$ and $W^{\prime} \subseteq B$. By Lemma 32, $G[W]$ is decomposable.

Now, suppose that $u \in W$. Since $X \cup\{v, w\} \subseteq W \varsubsetneqq V(G)$, we can assume that $v_{i} \notin W$, where $i \in\{1, \ldots, m\}$. Since $v_{m}=v, i<m$. Set $W^{\prime}=$ $\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. Clearly, $v_{m} \in W^{\prime}$ and $W^{\prime} \subseteq B$. By Lemma 32, $G[W]$ is decomposable.
(iii) Suppose that Statement (S5) holds. By Fact 37, G is prime. Consider $W \mp V(G)$ such that $X \cup\{v, w\} \subseteq W$. We have to verify that $G[W]$ is decomposable. To begin, suppose that $\{t, u\} \backslash W \neq \varnothing$. For instance, assume that $t \notin W$. Set $W^{\prime}=\left\{v_{1}, \ldots, v_{m}\right\} \cap W$. Clearly, $v_{m} \in W^{\prime}$ and $W^{\prime} \subseteq B$. By Lemma 32, $G[W]$ is decomposable. Now, suppose that $\{t, u\} \subseteq W$. Since $X \cup\{v, w\} \subseteq W \mp V(G)$, we can assume that $v_{i} \notin W$, where $i \in\{1, \ldots, m\}$. Since $v_{m}=v, i<m$. Set $W^{\prime}=\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. Clearly, $v_{m} \in W^{\prime}$ and $W^{\prime} \subseteq B$. By Lemma 32, $G[W]$ is decomposable.

Layout 5. In the sequel, we suppose that $B=C$.
We use the following notion of separated vertices.
Definition 40. We say that v and w are separated if for every v-dipath $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$, and for every w-dipath $w_{0} \ldots w_{n}$ of $\Delta_{(G, \bar{X})}$, both assertions below hold

$$
\left\{\begin{array}{l}
\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{0}, \ldots, w_{n}\right\}=\varnothing \tag{9}\\
\text { and } \\
G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right] \text { is prime. }
\end{array}\right.
$$

Layout 6. To begin, we suppose that v and w are separated.
We use the following notation.
Notation 41. Let G be a graph. Consider subsets X and Y of $V(G)$ such that $X \nsubseteq Y, G[X]$ is prime, and $G[Y]$ is prime. Let $B \in p_{(G, \bar{X})} \backslash\left\{\operatorname{Ext}_{G}(X)\right\}$. Set

$$
\widetilde{B}_{Y}=\left\{\begin{array}{l}
\langle Y\rangle_{G} \text { if } B=\langle X\rangle_{G} \\
Y_{G}(\alpha) \text { if } B=X_{G}(\alpha), \text { where } \alpha \in X
\end{array}\right.
$$

Clearly, we have $\widetilde{B}_{Y} \subseteq B$.
Theorem 42. The graph G is $G[X \cup\{v, w\}]$-minimal if and only if there exist distinct elements v_{1}, \ldots, v_{m} of B and $v_{0} \in \bar{X} \backslash B$, and there exist distinct elements w_{1}, \ldots, w_{n} of B and $w_{0} \in \bar{X} \backslash B$, satisfying the following statements
(A1) $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$,
(A2) $w_{0} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$,
(A3) $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}$,
and satisfying one of the following statements

$$
\begin{equation*}
\text { - }\{v\} \cup\left\{w_{1}, \ldots, w_{n}\right\} \text { is a module of } G-w_{0} \tag{S6}
\end{equation*}
$$

- for $i \in\{1, \ldots, m\}$ and $j \in\{0, \ldots, n\}, w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$;
(S7) Statement (S7) is obtained from Statement (S6) by interchanging the roles of v and w;

$$
\begin{align*}
& \text { - for } i \in\{1, \ldots, m\} \text { and } j \in\{0, \ldots, n\}, w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right) \text {, } \tag{S8}\\
& \text { - for } i \in\{0, \ldots, m\} \text { and } j \in\{1, \ldots, n\}, v_{i} w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right) \text {. }
\end{align*}
$$

Proof. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. By Corollary 31, $\Delta_{(G, \bar{X})}$ admits a v-dipath $v_{0} \ldots v_{m}$, and a w-dipath $w_{0} \ldots w_{n}$. Since v and w are separated, (9) holds. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{X}=$ $\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}$. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$, and $Z=X \cup\left\{w_{0}, \ldots, w_{n}\right\}$. By Corollary 31, $G[Y]$ and $G[Z]$ are prime. We verify that if $w \notin Y_{G}(v)$, then

$$
\left\{\begin{array}{l}
w \in \widetilde{B}_{Y}(\text { see Notation } 41) \tag{10}\\
\text { and } \\
v_{i} w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right) \text { for } i \in\{0, \ldots, m\} \text { and } j \in\{1, \ldots, n\}
\end{array}\right.
$$

Indeed, suppose that $w \notin Y_{G}(v)$. Since G is $G[X \cup\{v, w\}]$-minimal and $n \geq 1$, we obtain $w \notin \operatorname{Ext}_{G}(Y)$. Since $v_{0} \notin B$, we have $w \notin Y_{G}\left(v_{0}\right)$. Lastly, suppose that $m \geq 2$, and consider $i \in\{1, \ldots, m-1\}$. For a contradiction, suppose that $w \in Y_{G}\left(v_{i}\right)$. We obtain that $G\left[\left(Y \backslash\left\{v_{i}\right\}\right) \cup\{w\}\right]$ is prime, which contradicts the fact that G is $G[X \cup\{v, w\}]$-minimal. Therefore, $w \notin Y_{G}\left(v_{i}\right)$. It follows that $w \in\langle Y\rangle_{G}$ or $w \in Y_{G}(\alpha)$, where $\alpha \in X$. If $w \in\langle Y\rangle_{G}$, then $w \in\langle X\rangle_{G}$. Moreover, if $w \in Y_{G}(\alpha)$, where $\alpha \in X$, then $w \in X_{G}(\alpha)$. Consequently,

$$
\begin{equation*}
w \in \widetilde{B}_{Y} \tag{11}
\end{equation*}
$$

Furthermore, since G is prime, it follows from Corollary 31 applied to $G[Y]$ that $\Delta_{(G, \bar{Y})}$ admits a w-dipath $z_{0} \ldots z_{q}$, and $G\left[Y \cup\left\{z_{0}, \ldots, z_{q}\right\}\right]$ is prime. It follows from (11) that

$$
\begin{equation*}
\left\{z_{1} \ldots z_{q}\right\} \subseteq \widetilde{B}_{Y} \tag{12}
\end{equation*}
$$

Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{z_{0}, \ldots, z_{q}\right\}$. Therefore,

$$
\left\{w_{0}, \ldots, w_{n}\right\}=\left\{z_{0}, \ldots, z_{q}\right\} .
$$

In particular, we have $n=q$. If $w_{0} \in\left\{z_{1}, \ldots, z_{q}\right\}$, then $w_{0} \in \widetilde{B}_{Y}$, and hence $w_{0} \in B$. Thus, $w_{0}=z_{0}$, and hence $\left\{w_{1}, \ldots, w_{n}\right\}=\left\{z_{1}, \ldots, z_{q}\right\}$. It follows from (12) that

$$
\left\{w_{1}, \ldots, w_{n}\right\} \subseteq \widetilde{B}_{Y}
$$

Let $i \in\{0, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. Since $w_{j} \in \widetilde{B}_{Y}$, we obtain $v_{i} w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Consequently, (10) holds. Similarly, if $v \notin Z_{G}(w)$, then

$$
\left\{\begin{array}{l}
v \in \widetilde{B}_{Z} \tag{13}\\
\text { and } \\
w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right) \text { for } i \in\{1, \ldots, m\} \text { and } j \in\{0, \ldots, n\}
\end{array}\right.
$$

We distinguish the following three cases.

1. Suppose that $w \in Y_{G}(v)$. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{Y})}$ admits a w-dipath $z_{0} \ldots z_{q}$, and $G\left[Y \cup\left\{z_{0}, \ldots, z_{q}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{z_{0}, \ldots, z_{q}\right\}$. Therefore, $\left\{w_{0}, \ldots, w_{n}\right\}=\left\{z_{0}, \ldots, z_{q}\right\}$. In particular, we have $n=q$ and $Z=X \cup\left\{z_{0}, \ldots, z_{q}\right\}$. If $w_{0} \in\left\{z_{1}, \ldots, z_{q}\right\}$, then $w_{0} \in Y_{G}(v)$, and hence $w_{0} \in$ B because $v \in B$. It follows that $w_{0}=z_{0}$, so $\left\{w_{1}, \ldots, w_{n}\right\}=\left\{z_{1}, \ldots, z_{q}\right\}$, and hence $\left\{w_{1}, \ldots, w_{n}\right\} \subseteq Y_{G}(v)$. It follows that $\{v\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$ is a module of $G-w_{0}$.
Now, since $z_{0} \ldots z_{q}$ is a strict dipath of $\Delta_{(G, \bar{Y})}$ such that $z_{q}=w$, we have $z_{q-1} w \in A\left(\Delta_{(G, \bar{Y})}\right)$. Since $w \in Y_{G}(v)$, we obtain that $\{v, w\}$ is not a module of $G\left[Y \cup\left\{z_{q-1}, w\right\}\right]$. Therefore, we have $v \notin Z_{G}(w)$. It follows from (13) that for $i \in\{1, \ldots, m\}$ and $j \in\{0, \ldots, n\}, w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Hence, Statement (S6) holds.
2. Suppose that $v \in Z_{G}(w)$. We obtain that Statement (S7) holds.
3. Suppose that $v \notin Z_{G}(w)$, and $w \notin Y_{G}(v)$. It follows from (10) and (13) that Statement (S8) holds.
Conversely, suppose that there exist distinct elements v_{1}, \ldots, v_{m} of B and $v_{0} \in \bar{X} \backslash B$, and there exist distinct elements w_{1}, \ldots, w_{n} of B and $w_{0} \in \bar{X} \backslash B$ satisfying Statements (A1), (A2), (A3), and one of Statements (S6) or (S8). Since Statement (A1) holds, $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime. Similarly, since Statement (A2) holds, $G[X \cup$ $\left.\left\{w_{0}, \ldots, w_{n}\right\}\right]$ is prime. Since Statement (S6) or (S8) holds, we have $w_{j} v_{i} \notin$ $A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{1, \ldots, m\}$ and $j \in\{0, \ldots, n\}$. For a contradiction, suppose that G is decomposable. Recall that $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}$ because Statement (A3) holds. By Claim 34 applied with $W_{1}=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$ and $W_{2}=$ $X \cup\left\{w_{0}, \ldots, w_{n}\right\}$, there exist $i \in\{0, \ldots, m\}$ and $j \in\{0, \ldots, n\}$ such that $\left\{v_{i}, w_{j}\right\}$ is a module of G. By Lemma 33, $\left\{v_{i}, w_{j}\right\}$ is a module of $\Delta_{(G, \bar{X})}$. We cannot have $i \leq m-1$ because $v_{i} v_{i+1} \in A\left(\Delta_{(G, \bar{X})}\right)$ and $w_{j} v_{i+1} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Furthermore, we cannot have $i=m$ and $j \in\{1, \ldots, n\}$ because $w_{j-1} w_{j} \in A\left(\Delta_{(G, \bar{X})}\right)$ and $w_{j-1} v_{m} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Lastly, we cannot have $i=m$ and $j=0$ because $v_{m} \in B$ and $w_{0} \notin B$. It follows that G is prime. Lastly, we have to verify that G is $G[X \cup\{v, w\}]$-minimal. We distinguish the following two cases.

First, suppose that Statement (S6) holds. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$. We verify that G is $G[Y \cup\{w\}]$-minimal. Recall that $G[Y]$ is prime because Assertion (A1) holds. We show that

$$
\left\{\begin{array}{l}
w_{0} \notin Y_{G}\left(v_{m}\right) \tag{14}\\
\left\{w_{1}, \ldots, w_{n}\right\} \subseteq Y_{G}\left(v_{m}\right), \\
\text { and } \\
w_{0} \ldots w_{n} \text { is an arrow of } \Delta_{(G, \bar{Y})}
\end{array}\right.
$$

Since $v_{m} \in B$ and $w_{0} \in \bar{X} \backslash B$, we have $w_{0} \notin Y_{G}\left(v_{m}\right)$. Furthermore, since Statement (S6) holds, $\{v\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$ is a module of $G-w_{0}$. Therefore,
$\left\{w_{1}, \ldots, w_{n}\right\} \subseteq Y_{G}\left(v_{m}\right)$, and $\left\{v_{m}\right\} \cup\left\{w_{1}, \ldots, w_{n}\right\}$ is contained in a block of $q_{(G, \bar{X})}$. Consider $k \in\{0, \ldots, n-1\}$. Since $w_{0} \ldots w_{n}$ is a strict dipath of $\Delta_{(G, \bar{X})}$, we have $w_{k} w_{k+1} \in A\left(\Delta_{(G, \bar{X})}\right)$. Since Statement (S6) holds, we have $w_{k} v_{m} \notin$ $A\left(\Delta_{(G, \bar{X})}\right)$. It follows from Lemma 33 applied to $G\left[X \cup\left\{v_{m}, w_{k}, w_{k+1}\right\}\right]$ that $w_{k} \not \leftrightarrow_{G}\left\{v_{m}, w_{k+1}\right\}$. Since $w_{k+1} \in Y_{G}\left(v_{m}\right)$, we obtain $w_{k} w_{k+1} \in A\left(\Delta_{(G, \bar{Y})}\right)$. Suppose that $k+2 \leq n$, and consider $l \in\{k+2, \ldots, n\}$. Since $w_{0} \ldots w_{n}$ is a strict dipath of $\Delta_{(G, \bar{X})}, w_{k} w_{l} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Since Statement (S6) holds, $w_{k} v_{m} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Since v_{m} and w_{l} belong to the same block of $q_{(G, \bar{X})}$, it follows from Lemma 33 that $w_{k} \longleftrightarrow{ }_{G}\left\{v_{m}, w_{l}\right\}$. Since $w_{l} \in Y_{G}\left(v_{m}\right)$, we obtain $w_{k} w_{l} \notin A\left(\Delta_{(G, \bar{Y})}\right)$. Therefore, $w_{0} \ldots w_{n}$ is an arrow of $\Delta_{(G, \bar{Y})}$. Consequently, (14) holds. By Theorem 16, G is $G[Y \cup\{w\}]$-minimal.

To continue, we verify that G is $G[X \cup\{v, w\}]$-minimal. Consider a subset W of $V(G)$ such that $X \cup\{v, w\} \subseteq W \mp V(G)$.

1. Suppose that there exists $i \in\{0, \ldots, m-1\}$ such that $v_{i} \notin W$. Set $W^{\prime}=$ $\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. By Lemma 32, $G[W]$ is decomposable.
2. Suppose that $\left\{v_{0}, \ldots, v_{m}\right\} \subseteq W$. Hence, there exists $k \in\{0, \ldots, n-1\}$ such that $w_{k} \notin W$. Since G is $G[Y \cup\{w\}]$-minimal, $G[W]$ is decomposable.

Second, suppose that Statement (S8) holds. We verify that G is $G[X \cup$ $\{v, w\}]$-minimal. Consider a subset W of $V(G)$ such that $X \cup\{v, w\} \subseteq W q$ $V(G)$. By exchanging v and w if necessary, we can assume that there exists $i \in\{0, \ldots, m-1\}$ such that $v_{i} \notin W$. Set $W^{\prime}=\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. It follows from Lemma 32 that $G[W]$ is decomposable.
Layout 7. Now, we suppose that v and w are not separated. It follows that v and w are $G[X]$-reachable (see Definition 18). Therefore, $\delta_{(G, \bar{X})}(v)$ and $\delta_{(G, \bar{X})}(w)$ are well-defined (see Theorem 16 and Notation 17). For convenience, set $m=\delta_{(G, \bar{X})}(v)$ and $n=\delta_{(G, \bar{X})}(w)$. Moreover, following Remark 19, we assume that $\{v, w\}$ is not $G[X]$-reachable.

We use the following lemma.
Lemma 43. There exists a v-dipath $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$, and there exist distinct elements w_{i+1}, \ldots, w_{n} of $B \backslash\left\{v_{0}, \ldots, v_{m}\right\}$, where $i \in\{0, \ldots, m-1\} \cap\{0, \ldots, n-1\}$, such that the following assertions hold

- $v_{0} \ldots v_{i} w_{i+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$;
- if $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{i+1}, \ldots, w_{n}\right\}\right]$ is decomposable, then $m=n, i=$ $m-1$, and $\left\{v_{m}, w_{n}\right\}$ is the only nontrivial module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\right.$ $\left\{w_{n}\right\}$].

Proof. Since v and w are not separated, there exist a v-dipath $v_{0} \ldots v_{m}$ of $\Delta_{(G, \bar{X})}$, and a w-dipath $w_{0} \ldots w_{n}$ of $\Delta_{(G, \bar{X})}$ that do not satisfy (9). Since $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}, G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime by Corollary 31. Similarly, $G\left[X \cup\left\{w_{0}, \ldots, w_{n}\right\}\right]$ is prime.

First, suppose that $\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{0}, \ldots, w_{n}\right\} \neq \varnothing$. We show that there exists $k \in\{0, \ldots, m-1\} \cap\{0, \ldots, n-1\}$ such that

$$
\left\{\begin{array}{l}
\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{k+1}, \ldots, w_{n}\right\}=\varnothing \tag{15}\\
\text { and } \\
v_{0} \ldots v_{k} w_{k+1} \ldots w_{n} \text { is a } w \text {-dipath of } \Delta_{(G, \bar{X})}
\end{array}\right.
$$

There exist $p \in\{0, \ldots, m\}$ and $q \in\{0, \ldots, n\}$ such that $v_{p}=w_{q}$. Set

$$
J=\max \left(\left\{q \in\{0, \ldots, n\}: w_{q} \in\left\{v_{0}, \ldots, v_{m}\right\}\right\}\right)
$$

It follows from the maximality of J that $\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{J+1}, \ldots, w_{n}\right\}=\varnothing$. Furthermore, since $w_{J} \in\left\{v_{0}, \ldots, v_{m}\right\}$, there exists $I \in\{0, \ldots, m\}$ such that $v_{I}=w_{J}$. By Claim 38, we have $I=J, I<m$, and $I<n$. Thus, $v_{0} \ldots v_{I} w_{I+1} \ldots w_{n}$ is a dipath of $\Delta_{(G, \bar{X})}$. Since $\delta_{(G, \bar{X})}(w)=n$, we obtain that $v_{0} \ldots v_{I} w_{I+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$. Therefore (15) holds for $k=I$. Let K be the largest $k \in\{0, \ldots, m-1\} \cap\{0, \ldots, n-1\}$ such that (15) holds.

Lastly, suppose that $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{K+1}, \ldots, w_{n}\right\}\right]$ is decomposable. Consider a nontrivial module M of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{K+1}, \ldots, w_{n}\right\}\right]$. Recall that $G\left[X \cup\left\{v_{0}, \ldots, v_{K}, w_{K+1}, \ldots, w_{n}\right\}\right]$ is prime by Corollary 31. By Claim 34 applied with $W_{1}=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$ and $W_{2}=X \cup\left\{v_{0}, \ldots, v_{K}, w_{K+1}, \ldots, w_{n}\right\}$, there exist $k \in\{K+1, \ldots, m\}$ and $l \in\{K+1, \ldots, n\}$ such that $M=\left\{v_{k}, w_{l}\right\}$. By Claim 38, we have $k=l$. Moreover, we have $k=m=n$ or $k<m$ and $k<n$. For a contradiction, suppose that $k<m$ and $k<n$. By Lemma $33,\left\{v_{k}, w_{k}\right\}$ is a module of $\Delta_{(H, \bar{X})}$, where $H=G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{K+1}, \ldots, w_{n}\right\}\right]$. It follows that $v_{0} \ldots v_{k} w_{k+1} \ldots w_{n}$ is a dipath of $\Delta_{(G, \bar{X})}$. In fact, $v_{0} \ldots v_{k} w_{k+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$ because $\delta_{(G, \bar{X})}(w)=n$. Furthermore, since $\left\{v_{0}, \ldots, v_{m}\right\} \cap$ $\left\{w_{K+1}, \ldots, w_{n}\right\}=\varnothing$ and $k \in\{K+1, \ldots, m\}$, we obtain $\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{k}, \ldots, w_{n}\right\}=$ \varnothing. Hence (15) holds for k, which contradicts the maximality of K. It follows that $k=m=n$. Consequently, $\left\{v_{m}, w_{m}\right\}$ is the unique nontrivial module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{K+1}, \ldots, w_{n}\right\}\right]$. We obtain that $v_{0} \ldots v_{m-1} w_{m}$ is a strict dipath of $\Delta_{(G, \bar{X})}$. In fact, $v_{0} \ldots v_{m-1} w_{m}$ is a w-dipath of $\Delta_{(G, \bar{X})}$ because $\delta_{(G, \bar{X})}(w)=n$ and $m=n$. Moreover, $w_{m} \notin\left\{v_{0}, \ldots, v_{m}\right\}$ because $\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{K+1}, \ldots, w_{n}\right\}=\varnothing$. It follows that (15) holds for $k=m-1$. We obtain $K=m-1$ by maximality of K.

Second, suppose that $\left\{v_{0}, \ldots, v_{m}\right\} \cap\left\{w_{0}, \ldots, w_{n}\right\}=\varnothing$. Since (9) does not hold, $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right]$ is decomposable. Consider a nontrivial module M of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{0}, \ldots, w_{n}\right\}\right]$. By Claim 34, there exist $r \in\{0, \ldots, m\}$ and $s \in\{0, \ldots, n\}$ such that $M=\left\{v_{r}, w_{s}\right\}$. By Claim 38, we have $r=s$. Moreover, we have $r=m=n$ or $r<m$ and $r<n$. We distinguish the following two cases.

1. Suppose that $r=s$ and $r=m=n$. Thus, $\left\{v_{m}, w_{m}\right\}$ is a nontrivial module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{m}\right\}\right]$. Since $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime, $\left\{v_{m}, w_{m}\right\}$ is the only one. Therefore, $v_{0} \ldots v_{m-1} w_{m}$ is a strict dipath of $\Delta_{(G, \bar{X})}$. Since $\delta_{(G, \bar{X})}(w)=n$ and $m=n, v_{0} \ldots v_{m-1} w_{m}$ is
a w-dipath of $\Delta_{(G, \bar{X})}$. Moreover, $w_{m} \notin\left\{v_{0}, \ldots, v_{m}\right\}$ because $\left\{v_{0}, \ldots\right.$, $\left.v_{m}\right\} \cap\left\{w_{0}, \ldots, w_{n}\right\}=\varnothing$. Consequently, $i=m-1$ is suitable to conclude.
2. Suppose that $r=s, r<m$, and $r<n$. We obtain that $v_{0} \ldots v_{r} w_{r+1} \ldots w_{n}$ is a dipath of $\Delta_{(G, \bar{X})}$. Since $\delta_{(G, \bar{X})}(w)=n, v_{0} \ldots v_{r} w_{r+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$. Consider the largest element I of $\{0, \ldots, m-1\} \cap\{0, \ldots, n-1\}$ such that $v_{0} \ldots v_{I} w_{I+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\left\{v_{0}, \ldots, v_{I}, w_{I+1}, \ldots, w_{n}\right\}\right]$ is prime.
Finally, suppose that $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$ is decomposable. Consider a nontrivial module M of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots\right.\right.$, $\left.w_{n}\right\}$]. By Claim 34 applied with $W_{1}=X \cup\left\{v_{0}, \ldots, v_{I}, v_{I+1}, \ldots, v_{m}\right\}$ and $W_{2}=X \cup\left\{v_{0}, \ldots, v_{I}, w_{I+1}, \ldots, w_{n}\right\}$, there exist $k \in\{I+1, \ldots, m\}$ and $l \in\{I+1, \ldots, n\}$ such that $M=\left\{v_{k}, w_{l}\right\}$. By Claim 38, we have $k=$ l. Moreover, we have $k=m=n$ or $k<m$ and $k<n$. For a contradiction, suppose that $k<m$ and $k<n$. Since $\left\{v_{k}, w_{k}\right\}$ is a module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$, it follows from Lemma 33 that $v_{0} \ldots v_{k} w_{k+1} \ldots w_{n}$ is a dipath of $\Delta_{(G, \bar{X})}$. Since $\delta_{(G, \bar{X})}(w)=n$, $v_{0} \ldots v_{k} w_{k+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$, which contradicts the maximality of I. Consequently, we have $k=l$ and $k=m=n$. Hence, $\left\{v_{m}, w_{m}\right\}$ is the unique nontrivial module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{m}\right\}\right]$. We obtain that $v_{0} \ldots v_{m-1} w_{m}$ is a dipath of $\Delta_{(G, \bar{X})}$. In fact, $v_{0} \ldots v_{m-1} w_{m}$ is a w-dipath of $\Delta_{(G, \bar{X})}$ because $\delta_{(G, \bar{X})}(w)=n$. By maximality of I, we have $I=m-1$. Therefore, $i=m-1$ is suitable to conclude.

Notation 44. The largest element i of $\{0, \ldots, m-1\} \cap\{0, \ldots, n-1\}$ such that Lemma 43 holds is denoted by I.

Layout 8. We suppose that

$$
\begin{equation*}
I \leq m-2 \text { or } I \leq n-2 . \tag{16}
\end{equation*}
$$

Theorem 45. The graph G is $G[X \cup\{v, w\}]$-minimal if and only if there exist distinct elements v_{1}, \ldots, v_{m} of $B, v_{0} \in \bar{X} \backslash B$, and distinct elements w_{I+1}, \ldots, w_{n} of $B \backslash\left\{v_{0}, \ldots, v_{m}\right\}$ satisfying the following statements
(A4) $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}$,
(A5) $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$,
(A6) $v_{0} \ldots v_{I} w_{I+1} \ldots w_{n}$ is a w-dipath of $\Delta_{(G, \bar{X})}$,
and one of the following statements
(S9) $I \leq n-2, n<m$, and

- for $i \in\{I+2, \ldots, m\}$ and $j \in\{I+1, \ldots, n\}$, we have $w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$,
- $\left\{v_{m}\right\} \cup\left\{w_{I+2}, \ldots, w_{n}\right\}$ is a module of $G-w_{I+1}$;
(S10) Statement (S10) is obtained from Statement (S9) by interchanging the roles of v and w;
- if $I \leq m-2$, then for $i \in\{I+2, \ldots, m\}$ and $j \in\{I+1, \ldots, n\}$, we have $w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$,
- if $I \leq n-2$, then for $i \in\{I+1, \ldots, m\}$ and $j \in\{I+2, \ldots, n\}$, we have $v_{i} w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right)$.

Proof. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. By Lemma 43, $\Delta_{(G, \bar{X})}$ admits a v-dipath $v_{0} \ldots v_{m}$ and a w-dipath $v_{0} \ldots v_{I} w_{I+1} \ldots w_{n}$, where w_{I+1}, \ldots, w_{n} are distinct elements of $B \backslash\left\{v_{0}, \ldots, v_{m}\right\}$. Hence, Assertions (A5) and (A6) hold. Furthermore, if $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$ is decomposable, then it follows from Lemma 43 that $I=m-1$ and $m=n$, which contradicts (16). Thus, $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we have $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}$. Hence Assertion (A4) holds. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$ and $Z=X \cup\left\{v_{0}, \ldots, v_{I}\right\} \cup$ $\left\{w_{I+1}, \ldots, w_{n}\right\}$. By Corollary $31, G[Y]$ and $G[Z]$ are prime. We show that

$$
\begin{equation*}
\text { if } w_{n} \in Y_{G}\left(v_{m}\right) \text {, then } m>n \text {. } \tag{17}
\end{equation*}
$$

Indeed, suppose that $w_{n} \in Y_{G}\left(v_{m}\right)$. It follows from Lemma 33 that $v_{0} \ldots v_{m-1} w_{n}$ is a strict dipath of $\Delta_{(G, \bar{X})}$. Thus $m \geq n$. For a contradiction, suppose that $m=n$. We obtain that $m-1$ satisfies Lemma 43. By maximality of I, we obtain $I=m-1$, which contradicts (16). Since $m \geq n$, it follows that $m>n$. Similarly,

$$
\begin{equation*}
\text { if } v_{m} \in Z_{G}\left(w_{n}\right) \text {, then } n>m \text {. } \tag{18}
\end{equation*}
$$

Now, we show that if $I \leq m-2$ and $v_{m} \notin Z_{G}\left(w_{n}\right)$, then

$$
\begin{equation*}
\text { for } i \in\{I+2, \ldots, m\} \text { and } j \in\{I+1, \ldots, n\}, w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right) \text {. } \tag{19}
\end{equation*}
$$

Indeed, suppose that $I \leq m-2$ and $v_{m} \notin Z_{G}\left(w_{n}\right)$. We have $v_{I+1} \notin Z \cup\left\{v_{m}\right\}$ because $I \leq m-2$. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $v_{m} \notin Z_{G}(u)$ for $u \in$ $Z \backslash X$. Furthermore, since G is $G[X \cup\{v, w\}]$-minimal and $m \geq I+2$, we obtain $v_{m} \notin \operatorname{Ext}_{G}(Z)$. It follows that $v_{m} \in \widetilde{B}_{Z}$. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{Z})}$ admits a v-dipath $y_{0} \ldots y_{p}$, and $G\left[Z \cup\left\{y_{0}, \ldots, y_{p}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\left\{y_{0}, \ldots, y_{p}\right\}=\left\{v_{I+1}, \ldots, v_{m}\right\}$. Since $v_{I} v_{I+1} \in A\left(\Delta_{(G, \bar{X})}\right)$ and $v_{I+1} \in B$, we obtain $v_{I+1} \notin \widetilde{B}_{Z}$. It follows that $y_{0}=v_{I+1}$ and $\left\{y_{1}, \ldots, y_{p}\right\}=\left\{v_{I+2}, \ldots, v_{m}\right\}$. Therefore, $\left\{v_{I+2}, \ldots, v_{m}\right\} \subseteq \widetilde{B}_{Z}$. Since $\left\{v_{I+2}, \ldots, v_{m}\right\} \subseteq B$, we obtain $w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{I+2, \ldots, m\}$ and $j \in\{I+1, \ldots, n\}$. Similarly, if $I \leq n-2$ and $w_{n} \notin Y_{G}\left(v_{m}\right)$, then

$$
\begin{equation*}
\text { for } i \in\{I+1, \ldots, m\} \text { and } j \in\{I+2, \ldots, n\}, v_{i} w_{j} \notin A\left(\Delta_{(G, \bar{X})}\right) \text {. } \tag{20}
\end{equation*}
$$

To conclude, we distinguish the following three cases.

1. Suppose that $w_{n} \in Y_{G}\left(v_{m}\right)$. We prove that Statement (S9) holds. Since $\left\{v_{m}, w_{n}\right\}$ is not a module of G, we obtain $v_{m} \notin Z_{G}\left(w_{n}\right)$. By (17), $m>$ n. It follows from (16) that $I \leq m-2$. By (19), we obtain $w_{j} v_{i} \notin$ $A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{I+2, \ldots, m\}$ and $j \in\{I+1, \ldots, n\}$. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{Y})}$ admits a w-dipath $z_{0} \ldots z_{q}$, and $G\left[Y \cup\left\{z_{0}, \ldots, z_{q}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\left\{z_{0}, \ldots, z_{q}\right\}=\left\{w_{I+1}, \ldots, w_{n}\right\}$. Hence, we have $n \geq I+2$ because $q \geq 1$. Furthermore, since $m \geq I+2, v_{I} v_{m} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Since $v_{I} w_{I+1} \in A\left(\Delta_{(G, \bar{X})}\right)$, it follows from Lemma 33 that $w_{I+1} \notin Y_{G}\left(v_{m}\right)$. Thus, $z_{0}=w_{I+1}$, and hence $\left\{z_{1}, \ldots, z_{q}\right\}=\left\{w_{I+2}, \ldots, w_{n}\right\}$. Therefore $\left\{w_{I+2}, \ldots, w_{n}\right\} \subseteq Y_{G}\left(v_{m}\right)$. It follows that $\left\{v_{m}\right\} \cup\left\{w_{I+2}, \ldots, w_{n}\right\}$ is a module of $G-w_{I+1}$. Consequently, Statement (S9) holds.
2. Suppose that $v_{m} \in Z_{G}\left(w_{n}\right)$. We obtain that Statement (S10) holds.
3. Suppose that $v_{m} \notin Z_{G}\left(w_{m}\right)$ and $w_{n} \notin Y_{G}\left(v_{m}\right)$. It follows from (19) and (20) that Statement (S11) holds.

Conversely, suppose that there exist distinct elements v_{1}, \ldots, v_{m} of $B, v_{0} \in$ $\bar{X} \backslash B$, and distinct elements w_{I+1}, \ldots, w_{n} of $B \backslash\left\{v_{0}, \ldots, v_{m}\right\}$ satisfying Assertions (A4), (A5), and (A6). Moreover, suppose that Statement (S9) or (S11) holds.

First, we prove that G is prime. For a contradiction, suppose that $G[X \cup$ $\left.\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$ is decomposable. Since I satisfies Lemma 43, we obtain $m=n$ and $I=m-1$, which contradicts (16). It follows that $G[X \cup$ $\left.\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$ is prime.

Second, we prove that $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right]$ is $G[X \cup\{v, w\}]-$ minimal. Consider a subset W of $V(G)$ such that $X \cup\{v, w\} \subseteq W \mp V(G)$. We have to show that $G[W]$ is decomposable. Suppose that there exists $i \epsilon$ $\{0, \ldots, I\}$ such that $v_{i} \notin W$. Since Assertions (A5) and (A6) hold, it suffices to apply Lemma 32 with $W^{\prime}=\left(\left\{v_{i+1}, \ldots, v_{m}\right\} \cup\left\{w_{I+1}, \ldots, w_{n}\right\}\right) \cap W$. Lastly, suppose that $\left\{v_{0}, \ldots, v_{I}\right\} \subseteq W$. We distinguish the following cases.

1. Suppose that Statement (S9) holds. We have $I+2 \leq m$ and $w_{j} v_{i} \notin$ $A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{I+2, \ldots, m\}$ and $j \in\{I+1, \ldots, n\}$. Therefore, if there exists $i \in\{I+1, \ldots, m\}$ such that $v_{i} \notin W$, then it suffices to apply Lemma 32 with $W^{\prime}=\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$. Hence, suppose that $\left\{v_{0}, \ldots, v_{m}\right\} \subseteq W$. There exists $j \in\{I+1, \ldots, n\}$ such that $w_{j} \notin W$. Since $w \in W$, we have $j \leq n-1$. Set $M=\left\{v_{m}\right\} \cup\left\{w_{j+1}, \ldots, w_{n}\right\}$. We prove that M is a module of $G-w_{j}$. Since Statement (S9) holds, $\left\{v_{m}\right\} \cup\left\{w_{I+2}, \ldots, w_{n}\right\}$ is a module of $G-w_{I+1}$. Hence, M is a module of $G-w_{j}$ if $j=I+1$. Thus, suppose that $j \geq I+2$. Let $k \in\{I+1, \ldots, j-1\}$. Since Assertion (A6) holds, we have $w_{k} w_{l} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $l \in\{j+1, \ldots, n\}$. Furthermore, since Statement (S9) holds, $w_{k} v_{m} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Since $\left\{v_{m}\right\} \cup\left\{w_{I+2}, \ldots, w_{n}\right\}$ is a module of $G-w_{I+1}, v_{m}$ and w_{j+1}, \ldots, w_{n} belong to the same block of $q_{(G, \bar{X})}$. It follows from Lemma 33 that $w_{k} \longleftrightarrow_{G} M$. Consequently, M is a module of $G-w_{j}$. It follows that $M \cap W$ is a module of $G[W]$. We have $|M \cap W| \geq 2$
because $v, w \in M \cap W$. Furthermore, $M \cap W \varsubsetneqq W$ because $X \subseteq W \backslash M$. Therefore, $M \cap W$ is a nontrivial module of $G[W]$.
2. Suppose that Statement (S11) holds. By exchanging v and w if necessary, we can assume that there exists $i \in\{I+1, \ldots, m\}$ such that $v_{i} \notin W$. In particular, we obtain $I+2 \leq m$ because $v_{m} \in W$. Since Statement (S11) holds, we have $w_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{I+2, \ldots, m\}$ and $j \in$ $\{I+1, \ldots, n\}$. As previously, we conclude by applying Lemma 32 with $W^{\prime}=\left\{v_{i+1}, \ldots, v_{m}\right\} \cap W$.

Layout 9. In what follows, we suppose that $m=n$ and $I=m-1$.
Theorem 46. Suppose that v and w do not belong to the same block of $q_{(G, \bar{X})}$. The graph G is $G[X \cup\{v, w\}]-m i n i m a l ~ i f ~ a n d ~ o n l y ~ i f ~ t h e r e ~ e x i s t ~ d i s t i n c t ~ e l e m e n t s ~$ v_{1}, \ldots, v_{m} of $B \backslash\{w\}$ and $v_{0} \in \bar{X} \backslash B$ satisfying the following statement
$v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}, v_{0} \ldots v_{m-1} w$ is a w-dipath of $\Delta_{(G, \bar{X})}$, and $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\{w\}$.

Proof. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. Since $m=n$ and $I=m-1, \Delta_{(G, \bar{X})}$ admits a v-dipath $v_{0} \ldots v_{m}$ such that $v_{0} \ldots v_{m-1} w$ is a w dipath of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime. Set $Y=$ $X \cup\left\{v_{0}, \ldots, v_{m}\right\}$. Since $\{v, w\}$ is not $G[X]$-reachable, we have $w \notin Y_{G}\left(v_{i}\right)$ for $0 \leq i \leq m-1$. Moreover, since v and w do not belong to the same block of $q_{(G, \bar{X})}$, we have $w \notin Y_{G}\left(v_{m}\right)$. Lastly, since $v_{m-1} w \in A\left(\Delta_{(G, \bar{X})}\right)$, we have $w \notin \widetilde{B}_{Y}$. It follows that $w \in \operatorname{Ext}_{G}(Y)$. Consequently, $G[Y \cup\{w\}]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\{w\}$.

Conversely, suppose that there exist distinct elements v_{1}, \ldots, v_{m} of $B \backslash\{w\}$ and $v_{0} \in \bar{X} \backslash B$ such that Statement (S12) holds. For a contradiction, suppose that G is decomposable. Since $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}, G[X \cup$ $\left.\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime by Corollary 31. Similarly, $G\left[X \cup\left\{v_{0}, \ldots, v_{m-1}\right\} \cup\{w\}\right]$ is prime. It follows from Claim 34 that $\left\{v_{m}, w\right\}$ is a module of G, which contradicts the fact that v and w do not belong to the same block of $q_{(G, \bar{X})}$. It follows that G is prime. Finally, we show that G is $G[X \cup\{v, w\}]$-minimal. Consider a subset W of $V(G)$ such that $X \cup\{v, w\} \subseteq W \varsubsetneqq V(G)$. There exists $i \in\{0, \ldots, m-1\}$ such that $v_{i} \notin W$. Set $W^{\prime}=\left(\left\{v_{i+1}, \ldots, v_{m}\right\} \cup\{w\}\right) \cap W$. By Lemma 32, $G[W]$ is decomposable.

Theorem 47. Suppose that v and w belong to the same block D of $q_{(G, \bar{X})}$. The graph G is $G[X \cup\{v, w\}]$-minimal if and only if there exist distinct elements v_{1}, \ldots, v_{m} of $B \backslash\{w\}, v_{0} \in \bar{X} \backslash B$, and distinct elements z_{0}, \ldots, z_{q} of $\bar{X} \backslash$ $\left\{v_{0}, \ldots, v_{m}\right\}$ satisfying the following assertions
(A7) $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$,
(A8) $q \geq 1, z_{q}=w$, and $\bar{X}=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{z_{0}, \ldots, z_{q}\right\}$,
(A9) for $r \in\{0, \ldots, q-1\},\{v\} \cup\left\{z_{r+1}, \ldots, z_{q}\right\}$ is a module of $G-z_{r}$, but not of G,
(A10) by exchanging v and w if necessary, we can assume that $z_{q-1} v \notin A\left(\Delta_{(G, \bar{X})}\right)$ and $z_{q-1} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right)$,
(A11) $\left\{z_{0}, v_{m}\right\}$ is not a module of $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{z_{0}\right\}\right]$,
and satisfying one of the following statements
(S13) $z_{0} \notin B$, and

- $z_{0} \ldots z_{q}$ is an arrow of $\Delta_{(G, \bar{X})}$,
- $z_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{1, \ldots, m\}$ and $j \in\{0, \ldots, q\}$;
(S14) $z_{0} \in B, m \geq 2$, and there exists $k \in\{0, \ldots, m-2\}$ such that
- $v_{0} \ldots v_{k} z_{0} \ldots z_{q}$ is an arrow of $\Delta_{(G, \bar{X})}$,
- $z_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{k+2, \ldots, m\}$ and $j \in\{0, \ldots, q\}$;
(S15) $z_{0} \in B, m \geq 2$, and $v_{i} z_{0} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{0, \ldots, m-2\}$;
(S16) $z_{0} \in B$, and $m=1$.
Proof. To begin, suppose that G is $G[X \cup\{v, w\}]$-minimal. Since $m=n$ and $I=m-1, \Delta_{(G, \bar{X})}$ admits a v-dipath $v_{0} \ldots v_{m}$ such that $v_{0} \ldots v_{m-1} w$ is a w dipath of $\Delta_{(G, \bar{X})}$. Hence, Assertion (A7) holds. By Corollary 31, $G[X \cup$ $\left.\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$. Since $v_{0} \ldots v_{m}$ and $v_{0} \ldots v_{m-1} w$ are strict dipaths of $\Delta_{(G, \bar{X})},\left\{v_{m}, w\right\}$ is a module of $\Delta_{(G, \bar{X})}\left[\left\{v_{0}, \ldots, v_{m}\right\} \cup\{w\}\right]$. Since $v_{m}, w \in D$, it follows from Lemma 33 that $w \in Y_{G}\left(v_{m}\right)$. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{Y})}$ admits a w-dipath $z_{0} \ldots z_{q}$ and $G\left[Y \cup\left\{z_{0}, \ldots, z_{q}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{Y}=$ $\left\{z_{0}, \ldots, z_{q}\right\}$. Hence, Assertion (A8) holds. Since $z_{0} \ldots z_{q}$ is a w-dipath of $\Delta_{(G, \bar{Y})}$, Assertions (A9) holds. Since Assertion (A9) holds, we have $z_{q-1} \leftrightarrow_{G}\{v, w\}$. Since $v, w \in D$, it follows from Lemma 33 that $\left|\left\{z_{q-1} v, z_{q-1} w\right\} \cap A\left(\Delta_{(G, \bar{X})}\right)\right|=1$. Therefore, Assertion (A10) holds. Since $z_{0} \ldots z_{q}$ is a w-dipath of $\Delta_{(G, \bar{Y})}$ and $w \in Y_{G}\left(v_{m}\right)$, we have $z_{0} \notin Y_{G}\left(v_{m}\right)$, that is, Assertion (A11) holds.

Since $z_{q-1} w \in A\left(\Delta_{(G, \bar{X})}\right)$ by Assertion (A10), we consider the smallest element L of $\{0, \ldots, q-1\}$ such that

$$
\begin{equation*}
z_{L} v \in A\left(\Delta_{(G, \bar{X})}\right) \text { or } z_{L} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right) \tag{21}
\end{equation*}
$$

We verify that

$$
\begin{equation*}
\text { if } L<q-1 \text {, then } z_{L} v, z_{L} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right) \tag{22}
\end{equation*}
$$

Indeed, suppose that $L<q-1$. Since Assertion (A9) holds, we have $z_{L} \longleftrightarrow_{G}$ $\left\{v, z_{q}\right\}$. It follows from Lemma 33 that $z_{L} v, z_{L} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right)$ or $z_{L} v, z_{L} z_{q} \notin$ $A\left(\Delta_{(G, \bar{X})}\right)$. By (21), we have $z_{L} v, z_{L} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right)$. Hence (22) holds.

To continue, we verify that $z_{0} \ldots z_{L} z_{q}$ is a strict dipath of $\Delta_{(G, \bar{X})}$. If $L=q-1$, then $z_{q-1} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right)$ by Assertion (A10). If $L<q-1$, then $z_{L} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right)$ by (22). Now, suppose that $L \geq 1$, and consider $p \in\{0, \ldots, L-1\}$. It follows from Assertion (A9) that $\{v\} \cup\left\{z_{p+2}, \ldots, z_{q}\right\}$ is a module of $G-z_{p+1}$. Thus, $z_{p} \longleftrightarrow_{G}\{v\} \cup\left\{z_{p+2}, \ldots, z_{q}\right\}$. By minimality of L, we have $z_{p} v \notin A\left(\Delta_{(G, \bar{X})}\right)$ and $z_{p} z_{q} \notin A\left(\Delta_{(G, \bar{X})}\right)$. It follows from Lemma 33 that $z_{p} u \notin A\left(\Delta_{(G, \bar{X})}\right)$ for every $u \in\{v\} \cup\left\{z_{p+2}, \ldots, z_{q}\right\}$. Furthermore, it follows from Assertion (A9) that $\{v\} \cup\left\{z_{p+1}, \ldots, z_{q}\right\}$ is a module of $G-z_{p}$, but not of G. We obtain $z_{p} \not \leftrightarrow_{G}$ $\left\{z_{p+1}, v\right\}$ and $z_{p+1}, v \in D$. Since $z_{p} v \notin A\left(\Delta_{(G, \bar{X})}\right)$, it follows from Lemma 33 that $z_{p} z_{p+1} \in A\left(\Delta_{(G, \bar{X})}\right)$. Consequently, $z_{0} \ldots z_{L} z_{q}$ is a strict dipath of $\Delta_{(G, \bar{X})}$.

We distinguish the following cases.

1. Suppose that $z_{0} \notin B$. We prove that Statement (S13) holds. We have $z_{1}, \ldots, z_{q} \in Y_{G}\left(v_{m}\right)$, so $z_{1}, \ldots, z_{q} \in B$. Since $z_{0} \notin B, z_{0} \ldots z_{L} z_{q}$ is an arrow of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\left\{z_{0}, \ldots, z_{L}\right\} \cup\left\{z_{q}\right\}\right]$ is prime. Set $Z=X \cup\left\{z_{0}, \ldots, z_{L}\right\} \cup\left\{z_{q}\right\}$. Since G is $G[X \cup\{v, w\}]$-minimal and $v_{0} \notin Z \cup\left\{v_{m}\right\}$, we have $v_{m} \notin \operatorname{Ext}_{G}(Z)$. Since G is $G[X \cup\{v, w\}]$-minimal, $v_{m} \notin Z_{G}\left(z_{r}\right)$ for $0 \leq r \leq L$. For a contradiction, suppose that $v_{m} \in Z_{G}\left(z_{q}\right)$. Recall that $z_{q} \in Y_{G}\left(v_{m}\right)$. Since $\left\{v, z_{q}\right\}$ is not a module of G, we have $L<q-1$. Since G is prime, it follows from Corollary 31 that $\Delta_{(G, \bar{Z})}$ admits a v-dipath $y_{0} \ldots y_{k}$, and $G\left[Z \cup\left\{y_{0}, \ldots, y_{k}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we have $V(G)=Z \cup\left\{y_{0}, \ldots, y_{k}\right\}$. Therefore, we have $\bar{Z} \backslash Z_{G}\left(z_{q}\right)=\left\{y_{0}\right\}$. Since $Z_{G}\left(z_{q}\right) \subseteq B$ and $v_{0} \notin B$, we obtain $v_{0} \in \bar{Z} \backslash Z_{G}\left(z_{q}\right)$. Thus, $y_{0}=v_{0}$, so $\bar{Z} \backslash Z_{G}\left(z_{q}\right)=\left\{v_{0}\right\}$. Moreover, since $L<q-1$, it follows from Assertion (A9) that $z_{L} \longleftrightarrow_{G}\left\{z_{L+1}, z_{q}\right\}$. Therefore, $z_{L+1} \notin Z_{G}\left(z_{q}\right)$. Clearly, $z_{L+1} \neq v_{0}$, which contradicts $\bar{Z} \backslash Z_{G}\left(z_{q}\right)=\left\{v_{0}\right\}$. It follows that $v_{m} \notin Z_{G}\left(z_{q}\right)$. Consequently, we have $v_{m} \in \widetilde{B}_{Z}$. It follows that $z_{L} v_{m} \notin A\left(\Delta_{(G, \bar{X})}\right)$. By $(22), L=q-1$. Hence $Z=X \cup\left\{z_{0}, \ldots, z_{q}\right\}$, and $\bar{Z}=\left\{v_{0}, \ldots, v_{m}\right\}$ by Assertion (A8). Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{Z}=\left\{y_{0}, \ldots, y_{k}\right\}$. It follows that $\left\{v_{0}, \ldots, v_{m}\right\}=\left\{y_{0}, \ldots, y_{k}\right\}$. Since $y_{0} \ldots y_{k}$ is a v-dipath of $\Delta_{(G, \bar{Z})}$, we have $\left\{y_{1}, \ldots, y_{k}\right\} \subseteq \widetilde{B}_{Z} \subseteq B$. Since $v_{0} \notin B$, we obtain $v_{0}=y_{0}$. Thus $\left\{v_{1}, \ldots, v_{m}\right\} \subseteq \widetilde{B}_{Z}$. It follows that $z_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{1, \ldots, m\}$ and $j \in\{0, \ldots, q\}$. Hence Statement (S13) holds.
2. Suppose that $z_{0} \in B$. If $m=1$, then Statement (S16) holds. Therefore, suppose that $m \geq 2$. If $v_{i} z_{0} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{0, \ldots, m-2\}$, then Statement (S15) holds. Lastly, suppose that there exists $i \in\{0, \ldots, m-$ $2\}$ such that $v_{i} z_{0} \in A\left(\Delta_{(G, \bar{X})}\right)$. We consider the smallest element k of $\{0, \ldots, m-2\}$ such that $v_{k} z_{0} \in A\left(\Delta_{(G, \bar{X})}\right)$. We prove that Statement (S14) holds. Let $j \in\{1, \ldots, q\}$. As previously seen, $z_{j} \in Y_{G}\left(v_{m}\right)$. Let $l \in\{0, \ldots, k\}$. Since $v_{l} v_{m} \notin A\left(\Delta_{(G, \bar{X})}\right)$, it follows from Lemma 33 that $v_{l} z_{j} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Moreover, when $k \geq 1$, it follows from the minimality of k that $v_{l} z_{0} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $l \in\{0, \ldots, k-1\}$. Therefore, $v_{0} \ldots v_{k} z_{0} \ldots z_{L} z_{q}$
is a strict dipath of $\Delta_{(G, \bar{X})}$. Since $v_{0} \notin B$ and $\left\{v_{1}, \ldots, v_{k}\right\} \cup\left\{z_{0}, \ldots, z_{L}\right\} \cup$ $\left\{z_{q}\right\} \subseteq B, v_{0} \ldots v_{k} z_{0} \ldots z_{L} z_{q}$ is an arrow of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\left\{v_{0}, \ldots, v_{k}\right\} \cup\left\{z_{0}, \ldots, z_{L}\right\} \cup\left\{z_{q}\right\}\right]$ is prime. Set $Z=X \cup\left\{v_{0}, \ldots, v_{k}\right\} \cup$ $\left\{z_{0}, \ldots, z_{L}\right\} \cup\left\{z_{q}\right\}$. Since G is $G[X \cup\{v, w\}]$-minimal, $v_{m} \notin Z_{G}(u)$ for $u \epsilon$ $\left\{v_{0}, \ldots, v_{k}\right\} \cup\left\{z_{0}, \ldots, z_{L}\right\}$. Since $m \geq k+2, v_{k+1} \in \bar{Z} \backslash\left\{v_{m}\right\}$. It follows that $v_{m} \notin \operatorname{Ext}_{G}(Z)$ because G is $G[X \cup\{v, w\}]$-minimal. For a contradiction, suppose that $v_{m} \in Z_{G}\left(z_{q}\right)$. Recall that $z_{q} \in Y_{G}\left(v_{m}\right)$. Since $\left\{v, z_{q}\right\}$ is not a module of G, we obtain $L<q-1$. Since G is prime, it follows from Corollary 31 applied with $G[Z]$ that $\Delta_{(G, \bar{Z})}$ admits a v_{m}-dipath $y_{0} \ldots y_{l}$, and $G\left[Z \cup\left\{y_{0}, \ldots, y_{l}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]$-minimal, we obtain $\bar{Z}=\left\{y_{0}, \ldots, y_{l}\right\}$. It follows that $\bar{Z} \backslash Z_{G}\left(z_{q}\right)=\left\{y_{0}\right\}$. Since $L<q-1$, we have $z_{L} v, z_{L} z_{q} \in A\left(\Delta_{(G, \bar{X})}\right)$ by (22). It follows from Lemma 33 and Assertion (A9) that $z_{L} z_{L+1} \notin A\left(\Delta_{(G, \bar{X})}\right)$, so $z_{L+1} \notin Z_{G}\left(z_{q}\right)$. Furthermore, since $m \geq k+2$, we have $v_{k} z_{q} \notin A\left(\Delta_{(G, \bar{X})}\right)$. Since $v_{k} v_{k+1} \in A\left(\Delta_{(G, \bar{X})}\right)$, it follows from Lemma 33 that $v_{k+1} \notin Z_{G}\left(z_{q}\right)$. Therefore, $v_{k+1} \neq z_{L+1}$ and $v_{k+1}, z_{L+1} \notin Z_{G}\left(z_{q}\right)$, which contradicts $\bar{Z} \backslash Z_{G}\left(z_{q}\right)=\left\{y_{0}\right\}$. Consequently, $v_{m} \notin Z_{G}\left(z_{q}\right)$, and hence $v_{m} \in \widetilde{B}_{Z}$. If $L<q-1$, then $z_{L} v \in A\left(\Delta_{(G, \bar{X})}\right)$ by (22), which contradicts $v_{m} \in \widetilde{B}_{Z}$. Hence $L=q-1$. Since G is prime, it follows from Corollary 31 applied with $G[Z]$ that $\Delta_{(G, \bar{Z})}$ admits a $v_{m^{-}}$ dipath $y_{0} \ldots y_{l}$, and $G\left[Z \cup\left\{y_{0}, \ldots, y_{l}\right\}\right]$ is prime. Since G is $G[X \cup\{v, w\}]-$ minimal, we obtain $\left\{v_{k+1}, \ldots, v_{m}\right\}=\left\{y_{0}, \ldots, y_{l}\right\}$. Therefore, we have \bar{Z}, $\widetilde{B}_{Z}=\left\{y_{0}\right\}$. Since $v_{k} v_{k+1} \in A\left(\Delta_{(G, \bar{X})}\right)$, we have $v_{k+1} \notin \widetilde{B}_{Z}$. It follows that $y_{0}=v_{k+1}$, so $\left\{v_{k+2}, \ldots, v_{m}\right\}=\left\{y_{1}, \ldots, y_{l}\right\}$, and hence $\left\{v_{k+2}, \ldots, v_{m}\right\} \subseteq \widetilde{B}_{Z}$. We obtain that $z_{j} v_{i} \notin A\left(\Delta_{(G, \bar{X})}\right)$ for $i \in\{k+2, \ldots, m\}$ and $j \in\{0, \ldots, q\}$. Consequently, Statement (S14) holds.

Conversely, suppose that there exist distinct elements v_{1}, \ldots, v_{m} of $B \backslash\{w\}$, $v_{0} \in \bar{X} \backslash B$, and distinct elements z_{0}, \ldots, z_{q} of $\bar{X} \backslash\left\{v_{0}, \ldots, v_{m}\right\}$ satisfying Assertions (A7),...,(A11), and one of Statements (S13), (S14), (S15) or (S16).

First, we show that G is prime. By Assertion (A7), $v_{0} \ldots v_{m}$ is a v-dipath of $\Delta_{(G, \bar{X})}$. By Corollary 31, $G\left[X \cup\left\{v_{0}, \ldots, v_{m}\right\}\right]$ is prime. Set $Y=X \cup\left\{v_{0}, \ldots, v_{m}\right\}$. It follows from Assertion (A9) that $z_{1}, \ldots, z_{q} \in Y_{G}\left(v_{m}\right)$. By Assertion (A11), $z_{0} \notin Y_{G}\left(v_{m}\right)$. Lastly, it follows from Assertion (A9) that $z_{0} \ldots z_{q}$ is a strict dipath of $\Delta_{(G, \bar{Y})}$. Since $z_{0} \notin Y_{G}\left(v_{m}\right)$ and $\left\{z_{1}, \ldots, z_{q}\right\} \subseteq Y_{G}\left(v_{m}\right), z_{0} \ldots z_{q}$ is an arrow of $\Delta_{(G, \bar{Y})}$. By Corollary 31 applied with $G[Y], G\left[Y \cup\left\{z_{0}, \ldots, z_{q}\right\}\right]$ is prime. It follows from Assertion (A8) that G is prime.

Second, we prove that G is $G[X \cup\{v, w\}]$-minimal. Consider a subset W of $V(G)$ such that $X \cup\{v, w\} \subseteq W \varsubsetneqq V(G)$. Suppose that $\left\{v_{0}, \ldots, v_{m}\right\} \subseteq W$. There exists $r \in\{0, \ldots, q-1\}$ such that $z_{r} \notin W$. As previously seen, $z_{q} \in Y_{G}\left(v_{m}\right)$ and $z_{0} \ldots z_{q}$ is a w-dipath of $\Delta_{(G, \bar{Y})}$. Set $W^{\prime}=W \cap\left\{z_{r+1}, \ldots, z_{q}\right\}$. It follows from Lemma 32 applied to $G[Y]$ that $G[W]$ is decomposable. Finally, suppose that there exists $i \in\{0, \ldots, m\}$ such that $v_{i} \notin W$. Since $v \in W, i \leq m-1$. We distinguish the following cases.

1. Suppose that Statement (S13) holds. Set $W^{\prime}=W \cap\left\{v_{i+1}, \ldots, v_{m}\right\}$. By

Lemma $32, G[W]$ is decomposable.
2. Suppose that Statement (S14) holds.

- Suppose that $0 \leq i \leq k$. Set $W^{\prime}=W \cap\left(\left\{v_{i+1}, \ldots, v_{m}\right\} \cup\left\{z_{0}, \ldots, z_{q}\right\}\right)$. By Lemma 32, $G[W]$ is decomposable.
- Suppose that $k+1 \leq i \leq m-1$. Set $W^{\prime}=W \cap\left\{v_{i+1}, \ldots, v_{m}\right\}$. By Lemma 32, $G[W]$ is decomposable.

3. Suppose that Statement (S15) holds. Set $W^{\prime}=W \cap\left(\left\{v_{i+1}, \ldots, v_{m}\right\} \cup\right.$ $\left.\left\{z_{0}, \ldots, z_{q}\right\}\right)$. By Lemma 32, $G[W]$ is decomposable.
4. Suppose that Statement (S16) holds. Since $m=1$, we have $i=0$. We obtain $W \backslash X \subseteq B$. It follows that $G[W]$ is decomposable.

6 Conclusion

Initially, our aim is to study the counter-examples to Conjecture 5. Proposition 8 leads us to characterize the prime graphs G that are $G[X \cup\{v, w\}]$-minimal, where X is a proper subset of $V(G)$ such that $G[X]$ is prime, and $v, w \in \bar{X}$. Theorem 16 provides a nice characterization when $v=w$ in terms of the outside digraph $\Delta_{(G, \bar{X})}$ (see Definiton 14). In Sections 1.2 and 5 , we treat the case $v \neq w$. We consider seven situations (see Theorems 20, 21, 39, 42, 45, 46, and 47) that are induced from the locations of v and w in \bar{X}, described by using the outside partition $p_{(G, \bar{X})}$ (see Definition 11), and its refinement $q_{(G, \bar{X})}$ (see Definition 24). It is not difficult to provide graphs that correspond with each of these seven situations. Nevertheless, we did not complete our initial characterization. Indeed, for each of these seven situations, we have still to identify the counter-examples to Conjecture 5 .

Acknowledgements

The authors thank the referee for his constructive suggestions that allow for notable improvements to the manuscript.

References

[1] A. Boussaïri, A. Chaïchaâ, P. Ille, Indecomposability graph and indecomposability recognition, Proceedings of ROGICS'08, European J. Combin. 37 (2014) 32-42.
[2] A. Breiner, J. Deogun, P. Ille, Partially critical indecomposable graphs, Contrib. Discrete Math. 3 (2008) 40-59.
[3] A. Cournier, M. Habib, An efficient algorithm to recognize prime undirected graphs, Graph-theoretic Concepts in Computer Science, Lecture Notes in Computer Science 657, E. W. Mayr, (Editor), Springer, Berlin (1993), pp. 212-224.
[4] A. Cournier, P. Ille, Minimal indecomposable graph, Discrete Math. 183 (1998) 61-80.
[5] A. Ehrenfeucht, T. Harju, G. Rozenberg, The Theory of 2-Structures, A Framework for Decomposition and Transformation of Graphs (World Scientific, Singapore, 1999).
[6] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66.
[7] P. Ille, Recognition problem in reconstruction for decomposable relations, Finite and Infinite Combinatorics in Sets and Logic B. Sands, N. Sauer, R. Woodrow, (Editors), Kluwer Academic Publishers (1993), pp. 189-198.
[8] P. Ille, Indecomposable graphs, Discrete Math 173 (1997) 71-78.
[9] P. Ille, R. Villemaire, Recognition of prime graphs from a prime subgraph, Discrete Math. 327 (2014) 76-90.
[10] F. Maffray, M. Preissmann, A translation of Tibor Gallai's paper: Transitiv orientierbare Graphen, Perfect Graphs J.L. Ramirez-Alfonsin and B.A. Reed, (Editors), Wiley, New York (2001), pp. 25-66.
[11] J. Spinrad, P_{4}-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263-291.
[12] D. P. Sumner, Graphs indecomposable with respect to the X-join, Discrete Math. 6 (1973) 281-298.

[^0]: *University of Carthage, Bizerte Preparatory Engineering Institute, Bizerte, Tunisia; houmem.belkhechine@ipeib.rnu.tn.
 ${ }^{\dagger}$ University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia; cherifa.bensalha@fsb.u-carthage.tn.
 ${ }^{\ddagger}$ Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France; pierre.ille@univ-amu.fr.

