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PERELMAN'S λ-FUNCTIONAL AND THE GRAVITATIONAL MONOPOLE EQUATIONS

We proved a theorem for a self-dual manifold M admitting the gravitational monopole, that there is a relationship between Perelman's λ-functional for the manifold and the signature of the manifold, and consequently with the first Pontryagin number of the manifold. The statement of the theorem is Theorem 0.1. For a self-dual manifold M admitting the gravitational monopole equations, the following relationship between the signature, first Pontryagin number, and Perelman's λ(g)-functional holds:

.

Introduction

For a Riemannian self-dual manifold M admitting the gravitational monopole, we find a relationship between the signature of the manifold and Perelman's λ-functional. The theorem is stated below (see the theorem (3.20) in the section (3)) Theorem 1.1. For a self-dual manifold M admitting the gravitational monopole equations, the following relationship between the signature, first Pontryagin number, and Perelman's λ(g)-functional holds:

(1. [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF] λ(g) ≤ -8π 1 3 p 1 (M )

1 2 = -8π σ(M ) 1 2 
.

In the following sections, we shall develop the necessary technical details to prove the theorem.

2. The preliminaries on the Ricci flow.

Richard Hamilton in [START_REF] Hamilton | Three manifolds with positive Ricci curvature[END_REF] introduced the Ricci flow equation, which is an evolution equation

(2.1) d dt g ij = -2R ij
where (M, g) is a Riemannian Manifold with a Riemannian metric g ij . In his famous paper, it has been proved by Hamilton that equation (2.1) has a unique solution for a short time for all C ∞ metrics on a closed manifold. One needs to place constraints on the curvature for the long-time behavior of the metric evolving under the Ricci flow (2.1) and can be very complicated.

In [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF] Perelman interpreted a Ricci flow modified by a diffeomorphism as a gradient flow with respect to the functional (that he introduced from the string theory [see Remark 1.4 of 4]):

(2.2)

F := M (R + |∇f | 2 )e -f dV,
for a riemannian metric g ij , a function f on a closed manifold M , and a volume element dV . Perelman showed in [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF] the symmetric tensor

(2.3) -(R ij + ∇ i ∇ j f ) is the L 2 gradient of the functional (2.4) F m = M (R + |∇f | 2 )dm, f = log dV dm .
Thus given a measure m, Perelman [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF] considered the gradient flow

(2.5) d dt g ij = -2(R ij + ∇ i ∇ j f ),
for F m . For general m the flow may not exist but when it exists, it can be shown, it is the Ricci flow, modified by a diffeomorphism [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF]. One can define, with respect to the volume form e -f dV the operators d (m) , ∇ (m) and their adjoints d * (m) , ∇ * (m) . Then using the Bochner-Lichnerovicz technique, one can prove the following [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF] for 1-form u and spinor ψ

∇ * (m) ∇ (m) u i = (d * (m) d m + d m d * (m) )u i -R m ij u j ∇ * (m) ∇ (m) ψ = (δ m ) 2 - 1 4 R m ψ (2.6)
where,

(2.7)

δ m ψ = δψ - 1 2 (∇f ) • ψ the Clifford composition and, (2.8) R m ij = R ij + ∇ i ∇ j f, R m = R + 2∆f -|∇f | 2 + R. In [4] Perelman also claimed (2.9) F m = M R m dm = M g ij R m ij dm.
However, we will not bother about (2.9) here, in this paper we need the functional F to define another functional, namely Perelman's λ-functional, here is the definition:

Definition 2.1.

(2.10)

λ(g) = inf f ∈C ∞ (M ) F(g, f ) : M e -f dV = 1 .
where

(2.11) F(g, f ) = M (R + |∇f | 2 )e -f dV ),
with R denoting the usual scalar curvature of M . Perelman claimed in [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF], λ(g) is the lowest eigenvalue to the operator (2.12) -4∆ + R.

He also proved that λ(g ij (t)) is nondecreasing in t, and moreover, if λ(t 1 ) = λ(t 2 ), then for t ∈ [t 1 , t 2 ] then one have the following equation

(2.13) R ij + ∇ i ∇ j f = 0
satisfied by all f s which minimize F.

In practice, it is better to use the scale-invariant version

(2.14) λ(g ij ) = λ(g ij )V 2 n (g ij ), dim M = n.
The following proposition is due to Perelman [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF] Proposition 1. λ(M ) is nondecreasing along the Ricci flow whenever λ(g ij ) ≤ 0. Definition 2.2 (Perelman invariant). The Perelman invariant λ is defined by

(2.15) λ := sup g∈C ∞ RM (M ) λ(g) : g ∈ C ∞ RM (M )
where the notation C ∞ RM (M ) stands for all Riemannian metrics on M .

The Gravitational Monopole Equations

Let (M 4 , g) be a Riemannian 4-manifold with a Spin C -structure with a connection A on the Spin C -bundle L with the corresponding curvature F A . Let ∇ A is the corresponding Levi-Civita connection on L. The Clifford algebra bundle Cl(X 4 ) is a vector bundle over M 4 with fiber at x ∈ M 4 is the Clifford algebra Cl(T x M ). With respect to the metric g, one identifies (isomorphism) Cl(T x M ) with Cl(T *

x M ). Therefore, as a vector space, this is isomorphic to ∧T *

x M. Let us also assume E → M is a Clifford module bundle with a covariant derivative ∇ E . Then for each x ∈ M there is a Clifford action c : 

T * x M ⊗ E x → E x via c(α ⊗ s) = c(α)s = α • s.
/ ∇ := c • ∇ E : C ∞ (M, E) → C ∞ (M, E).
In [START_REF] Bhattacharya | Gourab Gravitational Monopoles[END_REF], the following equations are introduced which can be realized in terms of a moment map equation as in [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF] (sometimes we omit the mapping c, and denote by " • " the Clifford multiplication (or composition) and the dimension 4 for the convenience of computations):

/ ∇ψ = (d + d * )ψ = 0, c(W + g ) = 1 4 ⟨e i • e j ψ, ψ⟩e i ∧ e j , (3.2) 
It is elementary to show Proposition 2. For k ̸ = l, ⟨e k e l ψ, ψ⟩ is purely imaginary.

Proposition 3.

(3.3)

|⟨e k e l ψ, ψ⟩| 2 = 2|ψ| 4 .

One can rewrite (3.2) in the following form

/ ∇ψ = 0, c(W + g ) = ψ * ⊗ ψ - |ψ| 2 2 Id, (3.4) therefore (3.5) |W + | 2 = |ψ| 4 8 .
The Bochner formula [START_REF] Fang | Yuguang Perelman's λ-functional and Seiberg-Witten equations Front[END_REF] for the spinor ψ says,

(3.6) 2∆|ψ| 2 + 4|∇ A ψ| 2 + R|ψ| 2 + |ψ| 2 = 0.
The following proposition is known as Kato's inequality [START_REF] Fang | Yuguang Perelman's λ-functional and Seiberg-Witten equations Front[END_REF] Proposition 4. For a harmonic spinor ψ (that is satisfying / ∇ψ = 0), we have the following inequality

(3.7) |∇|ψ|| 2 ≤ |∇ A ψ| 2 ,
at all points of nonzero ψ, the equality occurs if ∇ A ψ ≡ 0.

Let ε > 0 be arbitrary, then define

(3.8) |ψ| 2 ε = |ψ| 2 + ε 2 .
Let us assume ψ is harmonic, then by Kato's inequality [START_REF] Fang | Yuguang Perelman's λ-functional and Seiberg-Witten equations Front[END_REF], we get

(3.9) |∇|ψ| ε | 2 (p) ≤ |ψ| |ψ| |∇|ψ|| 2 (p) ≤ |∇ A ψ| 2 (p)
pointwise so that ψ(p) ̸ = 0. According to the continuity assumption and the desnseness of {p ∈ M : ψ(p) ̸ = 0} in M , we conclude (3.9) holds everywhere in M [START_REF] Fang | Yuguang Perelman's λ-functional and Seiberg-Witten equations Front[END_REF]. Now, the Bochner formula (3.6) and a further closedness assumption on M implies, (3.10)

M |∇ A ψ| 2 + 1 4 R|ψ| 2 dV = - 1 4 M |ψ| 4 dV.
Using the inequality (3.9)

(3.11) M |∇|ψ| ε | 2 + R 4 |ψ| 2 ε dV ≤ - 1 4 M |ψ| 4 dV + ε 2 R 4 dV.
Since, it was observed in Perelman [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF], that λ(g) is the lowest eigenvalue of the operator -4∆+R g , therefore, using partial integration on the closed manifold, and using the definition of λ(g), we get

(3.12) λ(g) M |ψ| 2 ε dV g ≤ M 4|∇ A |ψ| ε | 2 + R g |ψ| 2 dV g .
Therefore λ(g) ≤ 0 for sufficiently small ε ≪ 1. Using Schwarz inequality [START_REF] Fang | Yuguang Perelman's λ-functional and Seiberg-Witten equations Front[END_REF], we get, λ(g)Vol g (M )

1 2 M |ψ| 2 ε dV g 1 2 ≤ λ(g) M |ψ| 2 ε dV g ≤ - M |ψ| 4 dV g + ε 2 M R g dV g .
(3.13)

In the limit ε → 0, we get

(3.14) λ(g) = λ(g)Vol g (M ) 1 2 ≤ - M |ψ| 4 dV g 1 2 .
The second equation of the Gravitational monopole (3.4) gives

(3.15) - M |ψ| 4 dV g 1 2 = -8 M |W + | 2 dV g 1 2 .
Therefore the equality (3.15) and the inequality (3.14) give,

(3.16) λ(g) ≤ -8 M |W + | 2 dV g 1 2 ,
The first Pontryagin number p 1 (M ) has a representation in terms of Weyl tensor, namely (3.17)

p 1 (M ) = 1 8π 2 M |W + | 2 -|W -| dV g . The signature σ(M ) of the manifold M is (3.18) σ(M ) = 1 3 p 1 (M ) = 1 24π 2 M |W + | 2 -|W -| dV g ,
but since the signature then σ(M ) ≥ 0. If the manifold is self-dual, that is W -= 0, then using (3.17), and (3.18) we get

(3.19) λ(M ) ≤ -8π 1 3 p 1 (M ) 1 2 = -8π σ(M ) 1 2 
.

Therefore we have the following theorem Theorem 3.2. For a self-dual manifold M admitting the gravitational monopole equations, the following relationship between the signature, first Pontryagin number, and Perelman's λ(g)-functional holds:

(3.20) λ(g) ≤ -8π 1 3 p 1 (M )

1 2 = -8π σ(M ) 1 2 
.

4. The future directions.

The future direction consists of studying the case of equality of theorem (3.20), that is to study spaces that give rise to the equality = -8π σ(M )

1 2
.

Property P It will be interesting to see how much the property P of (4.1) remains true under the Ricci flow. The same study can be conducted for the strict inequality in (3.20), that is one may see if the inequality (4.2) λ(g) < -8π 1 3 p 1 (M )

1 2 = -8π σ(M ) 1 2 
.

is preserved under the Ricci flow.

Definition 3 . 1 .

 31 The twisted Dirac operator associated to (E, ∇ E ) is the operator,(3.1)