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Abstract:

Owing to the benefits of using natural or artificial light sources as a stimulus, 

photo-induced reversible-deactivation radical polymerization (photoRDRP) 

techniques have been recognized to be a powerful “green” platform for the 

preparation of well-defined polymers. However, the development of highly efficient 

visible light-induced photoRDRP processes in aqueous dispersed media remains a 

challenge due to light scattering and refraction by monomer droplets or colloidal 

particles. In this work, an efficient green photocatalyst, carbon quantum dots (CQDs), 

was introduced to visible light-mediated miniemulsion atom transfer radical 

polymerization (ATRP), leading to highly efficient polymerizations with reaction 

rates (>80% monomer conversion within 1h) much higher than in previous studies. 

This heterogeneous photocatalytic system is presumed to involve three catalytic 

cycles in: i) the aqueous phase, ii) the oil-water interface and iii) the monomer 

droplets. The effect of different polymerization parameters on the polymerization 

reaction was investigated, including the amounts of surfactant and CQDs, CuBr2 

dosage and solid content. Excellent temporal control of the polymerization was 

illustrated by “ON/OFF” polymerizations, and natural sunlight was also used as an 

energy source. This novel CQDs-catalyzed miniemulsion photoATRP process may be 

easily extended to other aqueous dispersion RDRP systems. As an extension of our 

previous work (J. Am. Chem. Soc. 2022, 144, 22, 9817–9826) we also developed a 

“one-pot” method for the rapid preparation of heterogeneous hydrogels.
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Introduction

According to the principles of green polymerization, the ideal polymerization 

reaction is one that quantitatively converts monomers into well-defined polymers, 

with maximize economy and reduce waste.1,2 In this regard, photomediated 

reversible-deactivation radical polymerizations (photoRDRP), using in particular 

visible light as a “green” energy source, have attracted broad research interest.3,4 In 

addition, photoRDRP can be carried out in aqueous media, which is particularly 

relevant from an environmental perspective, offering better temperature control due to 

easy heat removal, and leading to high solids, low viscosity polymers.5,6 

Polymerizations in aqueous dispersed media encompass a variety of processes 

including miniemulsion, emulsion, suspension and dispersion polymerization, all of 

which are used extensively in many applications.5,7-9

PhotoRDRP techniques including atom transfer radical polymerization (ATRP) and 

reversible addition−fragmentation chain transfer (RAFT) have been widely developed 

in miniemulsion.10-12 In contrast to the high-energy UV irradiation which may lead to 

photodegradation of the photoinitiator or to undesirable side reactions, milder visible 

light is expected to remedy most of these drawbacks.13,14 The first reported technique 

for visible light-induced photoRDRP in miniemulsion was photo-induced electron 

transfer-RAFT (PET-RAFT).12,15,16 PET-RAFT was used to mediate the controlled 

polymerization of styrene in an oil-in-water (O/W) miniemulsion by using blue light 

(λ = 460 nm) as a stimulus and Ir(ppy)3 as photocatalyst. However, depletion of the 

photocatalyst from the oily monomer droplets during polymerization, led to low 
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reaction rates and limiting conversions. The same group then developed RAFT 

iniferter miniemulsion polymerization under green light irradiation (λ = 530 nm), 

based on light-induced photolysis of the RAFT agent.16 However, despite obvious 

progress in RAFT polymerization, UV light still remains the dominant source in the 

case of miniemulsion photoATRP.10,11 Matyjaszewski and coworkers reported the UV 

light-mediated photoATRP of (meth)acrylic monomers in miniemulsion, and 

demonstrated the efficient control of polymerization through the formation of an 

ion-pair catalyst by interaction of the Cu/ligand with sodium dodecyl sulfate (SDS).10 

This ion-pair photoATRP catalytic system was next successfully extended to more 

industrially relevant ab initio emulsion polymerization.11 However, accessing high 

reactivity under mild visible light irradiation in aqueous dispersed media remains a 

challenge in photoATRP. One main reason is the opacity of the aqueous dispersion 

system, and the light scattering and refraction contribute to radiation attenuation.17 In 

this respect, the use of highly efficient photocatalysts appears to be a promising 

approach to address this problem.

In this paper, a highly efficient visible light-induced miniemulsion ATRP system is 

developed for the first time by using pyridine nitrogen-doped carbon dot (CQDs) as 

photocatalyst. Higher than 80% monomer conversion could be achieved within 1h, 

with a good control of polymer molecular weights and low dispersities (Mw/Mn < 

1.20). Several parameters were explored, including the concentrations of surfactant, 

copper catalyst and CQDs as well as the solids content. In addition, the temporal 

control of polymerization was achieved by switching the blue light “ON” and “OFF”, 
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and polymerization could also be carried out with natural sunlight. As an extension of 

our previous work, 16 we also developed a “one-pot” method for the rapid preparation 

of heterogeneous hydrogels.

Results and discussion

Due to their low toxicity, easy preparation, sustainability of raw materials, stable 

optical properties and other advantages, CQDs have been recently reported to be ideal 

green photocatalysts for both photoATRP and PET-RAFT.18-21 Notably, our group 

developed an ultrafast visible light-induced ATRP system in aqueous media with 

100% pyridine nitrogen-doped CQDs as the catalyst, which can be further applied for 

digital light processing 3D printing.18,21 The ultrafast polymerization rate was 

attributed to the combination of excellent catalytic capacity, a high equilibrium 

constant, KATRP, for Cu-catalyzed ATRP and a high rate of electron transfer in 

aqueous media.22,23 Additionally, the abundant surface groups enabled CQDs to be 

well dispersed in aqueous media and the large surface area enhanced contact between 

CQDs and the CuIIX/L complex.24 According to this, we anticipate that N-doped 

CQDs may be a suitable heterogeneous photocatalyst for miniemulsion photoATRP. 

The photocatalyst is expected to work in synergy with the ATRP ion-pair catalyst, 

provoking a cascade of photocatalytic reactions taking place in the water phase, the 

oil-water interface and the monomer droplets, respectively. As described in Scheme 1, 

the formed monomer droplets after ultra-sonicating are stabilized by the anionic 

surfactant SDS. According to pioneer works,10,25 the CuIIX2/L complex can form 

ion-pair with the surfactant molecules at the oil-water interface. Upon visible light 
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irradiation, CQDs in the water phase can form electron−hole pairs and act as excellent 

electron donors.18,26 With the help of water, which can stabilize the charge separated 

species, electrons can quickly transfer from excited CD* to the CuIIX2/L complex 

resulting in the formation of CuIX/L complex. The resulting hydrophobic 

CuIX/L/SDS ion pair complex later can then enter the monomer droplets and undergo 

a catalytic ATRP cycle with the alkyl bromide as the initiator. The CQDs that lose 

electrons have a positive surface charge (CD•+), and can thus adsorb onto the 

negatively charged monomer droplets by electrostatic interaction. As an electron 

acceptor, the oxidized CD•+ can be involved in promoting dormancy of living polymer 

chains,20,21 and go back to the ground state, CD, which may escape to the water phase 

from the oil/water interface (Scheme 1).

Scheme 1. Proposed mechanism for CQDs-catalyzed visible light-induced 

miniemulsion ATRP.

Page 6 of 22

ACS Paragon Plus Environment

ACS Macro Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1. Experimental conditions and results of CQDs-catalyzed photoinduced miniemulsion ATRP reactions performed in this study.a

Entry [M]
0
:[RX]

0
:[Cu]

0
:[L]

0

SDS 
(wt%)

CQDs

（mg/mL)
Cu concentration 

(ppm)
Solids content 

(wt%)
Time (min)   M

n, th

b
M

n, SEC

c
Mw/Mn

 c Z
av.

(nm)
 d

PDI

1 200:1:0.06:0.36 2.5 0.4 300 20 60 48 12500 12780 1.54 190 0.06

2 200:1:0.06:0.36 5.0 0.4 300 20 60 72 18600 15100 1.21 160 0.04

3 200:1:0.06:0.36 10.0 0.4 300 20 60 81 21000 21000 1.21 104 0.07

4 200:1:0.02:0.12 10.0 0.4 100 20 60 84 21700 19100 1.33 109 0.06

5 200:1:0.12:0.72 10.0 0.4 600 20 60 69 17960 15630 1.17 104 0.08

6 200:1:0.06:0.36 10.0 0.2 300 20 60 72 18700 17300 1.19 106 0.05

7 200:1:0.06:0.36 10.0 0.8 300 20 60 77 19980 20100 1.20 92 0.05

8 200:1:0.06:0.36 10.0 0.4 300 10 60 71 18300 16530 1.23 103 0.04

9 200:1:0.06:0.36 10.0 0.4 300 30 60 72 18580 15210 1.20 95 0.06

10
e 200:1:0.06:0.36 10.0 0.4 300 20 60 89 25500 22580 1.38 108 0.09

aReaction conditions: [M]/[RX]/[Cu]/[L] = [BA]/[EBiB]/[CuBr2]/[TPMA], 460 nm irradiation (6W) at room temperature. Vtot = 5 mL. Stirring rate = 500 rpm. 
bTheoretical molecular weight calculated according to: Mn,th. = [M]0/[RX]0 × MWM × α + MWRX, where [M]0, [RX]0, MWM, α, and MWRX correspond to 
initial monomer concentration, initial RX concentration, molar mass of monomer, conversion determined by gravimetric analysis, and molar mass of alkyl 
halide. cNumber average molecular weight and dispersity determined by SEC analysis (DMF as eluent) calibrated with polystyrene standard. dFinal average 
hydrodynamic particle diameter determined by DLS. eMonomer = BMA.
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The polymerization of n-butyl acrylate (BA) was initially investigated to test the 

efficiency of our visible light-mediated miniemulsion ATRP process, using blue light 

(λ = 460 nm, 2mW/cm2) as the irradiation. Pyridine nitrogen-doped CQDs were 

prepared as reported previously.18,21 In a typical reaction (Table S1), ethyl 

α-bromoisobutyrate (EBiB) was used as alkyl halide initiator together with ppm level 

of the CuBr2/tris(2-pyridylmethyl)amine (TPMA) complex ([CuBr2]:[TPMA] = 1:6). 

As listed in Table 1 (entries 1-3), the amount of SDS was varied from 2.5 to 10.0 wt% 

based on monomer, while the CQD and copper salt concentrations were held constant 

(0.4 mM and 300 ppm, respectively). Notably, the polymerization performed using 10 

wt% of SDS achieved 81% monomer conversion within 1h, which polymerization 

rate is significantly higher than in previous reports (see Table S2 in the Supporting 

Information). In addition, molecular weights were in very good agreement with the 

theoretical values while SEC analysis indicated a narrow molecular weight 

distribution (Ð = 1.21, entry 3 in Table 1) suggesting a good level of control. In 

contrast, lower amounts of SDS led to lower monomer conversions within the same 

reaction period, and to larger particles (Table 1 and Figure S1). Moreover, a relatively 

higher polydispersity (Ð = 1.54) was observed for the reaction performed using 2.5 

wt% of SDS. As increasing SDS concentration resulted in smaller (and therefore 

larger number concentration) monomer droplets, a higher polymerization rate was 

achieved in agreement with the so-called segregation effect (compartimentalization) 

that is well documented in the case of miniemulsion RDPR, leading to a reduction in 

the rate of bimolecular termination.27 Moreover, the decrease of SDS concentration 
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resulted in low concentration of CuⅡX2/L/SDS ion pair complex, and reduced the 

copper catalyst involved in ATRP. Together with the so-called confined space effect 

(compartimentalization), 27 the larger size of droplets (or particles) induced by much 

lower SDS concentration would result in the loss control of polydispersity.  

For all three SDS concentrations, the corresponding semi-logarithmic plot of 

Ln([M]0/[M]t) versus time indicates two distinct linear regimes (see Figure 1a). The 

first regime corresponds to a “fast” polymerization followed by a decrease in reaction 

rate. According to the interfacial “ion-pair catalysis” mechanism of Scheme 1, one 

possible explanation for this “two stages” kinetic behavior is the drastic change of the 

internal viscosity of the monomer droplets with time. The viscosity inside the 

monomer droplets or latex particles increases with increasing monomer conversion 

and molecular weights, which may limit the rotation and movement of the dormant 

chains (Pn-X) and propagating radicals (Pn·). According to the RDRP polymerization 

mechanism, most of the polymer chains should be in a dormant state to achieve the 

controlled growth of polymer chains. The contact between CuIX/L complex and Pn-X 

likely became difficult as diffusion was hindered due to the high viscosity for high 

monomer conversions, leading to a decrease in the concentration of propagating 

radicals (Figures 1b and 1c). A closer observation showed that Mn, SEC became slightly 

lower than the theoretical value for high monomer conversion with less SDS 

concentrations (Figure 1b). Although the overall concentration of propagating radicals 

was decreased for high viscosity, the activation period of propagating radicals may  

increase in limited region, due to the limitation of dormancy and termination which 
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also controlled by diffusion. Degradation reaction may occur in such limited region, 

resulting in a slightly lower molecular weight of the polymer than the theoretical 

value. In view of the confined space effect, the system with higher SDS content and 

small particle size may reduce the occur probability of degradation reaction.27 

Nonetheless, all SEC traces were unimodal and shifted toward higher molecular 

weights with increasing monomer conversion, indicating reasonably good control 

over the polymerization up to high conversions (Figure S2). 

Figure 1. Influence of the SDS concentration on the CQDs-catalyzed miniemulsion photoATRP of 

BA. a) Kinetic plot of ln([M]0/[M]t) versus exposure time, b) evolution of Mn and Mw/Mn with 

conversion and c) proposed reaction mechanism. Reaction conditions: BA = 1 mL (20 vol %), 

[BA]/[EBiB]/[CuBr2]/[TPMA] = 200/1/0.06/0.36, [HD] = 10 wt% relative to BA, [SDS] = 2.5–

10.0 wt % relative to BA, CQDs = 0.4 mg/mL, blue LED irradiation (6 W, λmax = 460 nm, 2 mW 

cm−2), room temperature.

As shown in Figures 2a and 2b, the polymerization rate decreased with increasing 
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CuBr2/TPMA catalyst loading (entries 4, 3 and 5 in Table 1) due to the increased 

number of dormant active species. The quality of the control was therefore improved, 

as attested by the decrease of the molecular weight distributions. By comparison, the 

other parameters had a relatively minor effect on the polymerization rate as shown in 

Table 1 and Figure 2c-f. Indeed the droplet or particle sizes were only little influenced 

by the amount of CQDs or solids content (Table 1, Figure S4 and S6).28,29 

Figure 2. Effects of copper, CD and solids contents on CQDs-catalyzed miniemulsion photoATRP 
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of BA under blue LED irradiation (6 W, λmax = 460 nm, 2 mW cm−2) at room temperature. BA = 

1 mL (20 vol %), [BA]/[EBiB] = 200/1, [HD] = 10 wt % relative to BA, [SDS] = 10.0 wt % 

relative to BA. (a, c, e) Kinetic plot of ln([M]0/[M]t) versus exposure time and (b, d, f) Evolutions 

of Mn and Mw/Mn with monomer conversion.

Subsequently, the experimental conditions of entry 1 in Table 1 were used to assess 

the temporal control of CQDs-catalyzed miniemulsion photoATRP under blue LED 

irradiation, by switching the light source “ON” and “OFF” with 15 min intervals 

(Figure 3a). As expected, the polymerization stopped quickly when the light was 

turned “OFF”, and recovered rapidly after switching it “ON”. The molar mass (Mn. 

SEC) did not change much during the “OFF” period, and increased after the light has 

been switched “ON” to reach a value in good agreement with the theoretical 

molecular weight (Mn.th). The total exposure time was 45 min and a final PBA 

polymer with a molar mass of 19900 g mol-1 and a low dispersity (Mw/Mn = 1.19) 

could be succesfully obtained. A purified PBA macroinitiator (Mn = 8500, Mw/Mn = 

1.22) obtained through miniemulsion photoATRP was applied in another 

miniemulsion photoATRP to confirm the chain-end fidelity. The PBA macroinitiator 

was chain extended after well dissolved in BA monomer. As shown in Figure 3c, 

well-defined PBA-b-PBA (Mn = 22500, Mw/Mn = 1.19) was achieved, evidenced by a 

clear shift of the monomodal GPC traces toward higher molecular weights. The 

polymerization was also carried on under natural sunlight as shown in Figure 3d. 

After 1.5h, the monomer conversion reached 92% leading to stable PBA latex 
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particles with a molar mass of 18700 g mol-1 and again a narrow molecular weight 

distribution (Mw/Mn = 1.20). Therefore, it can be concluded that the CQDs-catalyzed 

miniemulsion photoATRP maintains high polymerization efficiency, polymerization 

stability and good controllability even under natural sunlight source. BMA was also 

tested as another monomer in the same conditions (entry 10 in Table 1, Figure S7) 

leading to high monomer conversion (~89%) within 1h, and reasonably good control 

illustrating the robustness and versatility of the process.

Figure 3. Temporal control of miniemulsion photoATRP. (a) Kinetic plot of ln([M]0/[M]t) versus 

exposure time during “ON” and “OFF” periods and (b) Mn and Mw/Mn plots versus conversion 

during “ON” and “OFF” periods. (c) Chain extension of PBA macroinitiator with BA in 

miniemulsion. (d) Photo of sunlight-induced miniemulsion ATRP and SEC chromatrogram of the 

final polymer. Reaction conditions: BA 1 mL (20 vol %), [BA]/[EBiB]/[CuBr2]/[TPMA] = 

200/1/0.06/0.36, [HD] = 10 wt% relative to BA, [SDS] = 10 wt% relative to BA, CQDs = 0.4 
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mg/mL, blue LED irradiation (6 W, λmax = 460 nm, 2 mW cm−2), room temperature.

We also developed a “one-pot” method for rapid preparation of heterogeneous 

hydrogels. The application of RDRP in preparation of polymer networks can not only 

bring more homogenous network, but also enable the production of “living” materials 

containing dormant reactivatable species which can be used for post 

functionlization.30 The miniemulsion was prepared as described above using BA as 

hydrophobic monomer. After ultrasonic treatment, an hydrophilic monomer (HEA), a 

crosslinker polyethylene glycol diacrylate (PEGDA) and HEBiB initiator were added 

to the miniemulsion, followed by the addition of CuBr2/TPMA and CQDs. 

PhotoATRP was performed simultaneously in the aqueous phase and within the 

hydrophobic monomer droplets under blue LED irradiation leading to an 

heterogeneous hydrogel composed of polymer particles embedded in a crosslinked 

water-swollen polymer network (Figure 4a). A digital image of the resulting 

heterogeneous hydrogel is depicted in Figure 4b (right) and compared to that of an 

homogeneous gel (left side of the Figure) obtained in similar conditions, using pure 

water as reaction medium instead of the miniemulsion. As expected, the 

heterogeneous hydrogel was less transparent due to light scattering by the PBA latex 

particles. In addition, the CQDs-containing hydrogel was endowed with 

photoluminescence characteristics. 
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Figure 4. (a) Scheme for the preparation of heterogeneous hydrogels through CQDs-catalyzed 

photoATRP. (b) Digital photographs of homogeneous and heterogeneous hydrogels exposed to 

natural and UV light irradiations, respectively. Reaction conditions: BA 1 mL (20 vol %), 

[BA]/[EBiB]/[CuBr2]/[TPMA] = 200/1/0.06/0.36, [HD] = 10 wt % relative to BA, [SDS] = 10 

wt % relative to BA, CQDs = 0.4 mg/mL,  

[HEA]/[PEGDA]/[HEBiB]/[CuBr2]/[TPMA]=90/10/1/0.03/0.18, blue LED irradiation (6 W, λmax 

= 460 nm, 2 mW cm−2), room temperature.

Conclusions

In summary, we have shown that pyridine N-doped CQDs are excellent photocatalysts 

for visible light-induced miniemulsion ATRP, and are able to address the low 

efficiency problem of photoATRP in aqueous dispersed systems. The experimental 

results presented here suggest a heterogeneous interfacial photocatalytic mechanism 

involving three catalytic cycles in the water phase, the oil-water interface and the 

monomer droplets. In addition to the good control of polymerization, this novel 

CQDs-catalyzed miniemulsion photoATRP process allowed to reach very high 
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monomer conversions (>80%) within 1h, which represents a significant advance in 

the field. Excellent temporal control of the polymerization was illustrated by 

“ON/OFF” polymerization, and natural sunlight was also exploited as harmful power 

source. Moreover, photoATRP was successfully carried out simultaneously in an 

aqueous phase and hydrophobic monomer droplets to prepare a heterogeneous 

hydrogel in “one-pot”. Such hydrogels may find great potential as drug delivery 

systems for biomedical applications. Owing to it efficiency and robustness, this new 

CQDs-based photocatalytic platform should be suitable for other photoRDRP systems 

opening the route to the synthesis of new particles and/or materials with obvious 

economic and environmental benefits.
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