
HAL Id: hal-03848691
https://hal.science/hal-03848691

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International
License

Cross-Layer Inference Methodology for
Microarchitecture-aware Fault Models

Ihab Alshaer, Brice Colombier, Christophe Deleuze, Paolo Maistri, Vincent
Beroulle

To cite this version:
Ihab Alshaer, Brice Colombier, Christophe Deleuze, Paolo Maistri, Vincent Beroulle. Cross-Layer
Inference Methodology for Microarchitecture-aware Fault Models. Microelectronics Reliability, 2022,
139, �10.1016/j.microrel.2022.114841�. �hal-03848691�

https://hal.science/hal-03848691
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Cross-Layer Inference Methodology for Microarchitecture-aware Fault Models

Ihab Alshaera,b, Brice Colombierb, Christophe Deleuzea, Paolo Maistrib, Vincent Beroullea

aUniv. Grenoble Alpes, Grenoble INP1, LCIS, Valence 26000, France
bUniv. Grenoble Alpes, CNRS, Grenoble INP1, TIMA , Grenoble 38000, France

Abstract

Fault injection attacks are considered one of the major threats to cyber-physical systems. The increasing complexity
of embedded microprocessors involves complicated behaviours in presence of such attacks. Realistic fault models are
required to study code vulnerabilities and be able to protect digital systems from these attacks. However, inferring
fault models using only limited observations of faulty microprocessors is difficult. In this article, we present experiments
that show the difficulty of characterizing and modelling the fault injection effects. From there, we propose a complete
approach for fault analysis to build proper fault models at different abstraction levels, which will help in designing
suitable countermeasures at reasonable cost. We also present a suite of experiments that works as a proof of concept to
validate the proposed methodology.

Keywords:
hardware security, fault injection, microarchitecture, clock glitch fault injection, simulation, fault model.

1. Introduction

With the widespread use of embedded systems in dif-
ferent areas of life, protecting these systems against mali-
cious use becomes crucial. Digital systems contain sensi-
tive information that can be effectively protected through
cryptographic algorithms, often implemented in software
on an embedded microprocessor. Such implementations,
however, might be vulnerable to attacks that aim at ex-
tracting this sensitive information.

The protection task should even have a high priority, as
the attack techniques and equipment are always improv-
ing. Fault injection is one of these attack techniques. In
the context of hardware security, it belongs to the class
of active physical attacks, possibly non-invasive, where
the attacker has physical access to the device or its en-
vironment. The attacker will try to change the normal
behaviour of the device during a program execution by in-
jecting one or more faults, then observing the erroneous
behaviour. It became an attractive research topic since
the well-known Boneh et al. attack [1], where they were
able to break some cryptographic protocols by inducing
faults into the computations. The fault injection can be
performed in different ways [2]: exposing the device to
radiations [3], laser beam [4, 5], intense light [6] or an elec-
tromagnetic (EM) pulse [7, 8, 9, 10], inducing variations in
the power supply [11], injecting a glitch in the clock signal
[12], changing the environmental conditions such as the
temperature [13], etc. The resulting faults could reveal an
interesting behaviour that could be further exploited as a
vulnerability.

1Institute of Engineering Univ. Grenoble Alpes

Securing components, such as microprocessors and mi-
crocontrollers, against fault attacks requires a thorough
understanding of the faults: on the one hand, this means
characterizing, studying, and analyzing the faults that
could lead to exploitable code vulnerabilities. On the other
hand, it also requires designing countermeasures at differ-
ent levels, hardware and software, with an acceptable cost.

To build appropriate countermeasures, designers need
realistic fault models that provide proper characterization
of the fault effects. However, with the increasing complex-
ity of microprocessors, fault effect characterization based
on a single level of analysis, such as assembly level or
Register-Transfer Level (RTL), is difficult and limits the
understanding of the fault. As a consequence, fault model
inference becomes a complex task: the models are a high-
level approximation, sometimes unrealistic, and the de-
velopment and evaluation of the countermeasures are not
optimized.

For the sake of designing countermeasures, several re-
search studies have been conducted based only on a single
level of fault characterization, such as Instruction-Set Ar-
chitecture (ISA) level in [14, 15] or RTL [16]. However,
because of the incomplete fault model, this could lead to
either under-engineer or over-engineer the protections. In
the former case, a security threat may still be present and
hence exploitable; in the latter, this means unnecessarily
adding cost and possibly decreasing performance.

Other studies tried to propose analysis by performing
fault injection using more than one technique, in order to
have a better overview of the observed faulty behaviours.
Moro et al. [7], for example, carried out EM injection cam-
paigns on a microcontroller and compared the observed

Preprint submitted to Microelectronics Reliability October 19, 2022



behaviours with the results given by software simulation
based on software fault models. Dureuil et al. [9] tried
to generalize fault models as a result of performing laser
and EM injections on RAMs and Flash memories of smart
cards. Then, they simulated faults at the application level
in order to provide a so-called “vulnerability rate” for such
faults. A similar approach has been followed by Werner
et al. [5]: the authors carried out laser fault injection
along with software fault simulation. However, they fo-
cused mostly on performing multi-fault attacks rather than
proposing new or more thorough fault models. Addition-
ally, other works, for example [17, 18], described the faulty
behaviours that are resulting from physical injections as
random corruptions or random bit-flips. However, they
did not consider lower levels of abstraction, which could
help in providing a correct explanation for the observed
behaviours. In the previous works, the authors provide
fault characterization at the software level, i.e. ISA and/or
high level applications, benefiting from observed faulty be-
haviours produced by physical fault injections. Hence,
they did not provide complete details of analyzing the fault
at the microarchitectural level in order to show how the
fault occurred internally. Therefore, they could not assess
the realism of their fault models.

Finally, in [19], Laurent et al., suggested that fault
simulations using typical software fault models (such as
instruction-skip and test-inversion) are no longer enough
to characterize the observed faulty behaviours, in partic-
ular when targeting complex microprocessors that have a
large number of internal elements, i.e. registers and combi-
national logic. In their work, they provided a comprehen-
sive analysis to assess software fault models by performing
RTL fault simulation on a RISC-V microprocessor [20].
However, physical fault injections were not performed to
validate the realism of their proposed RTL fault models.
Moreover, different architectures should be taken into ac-
count in order to generalize the assumptions of their work.

In this article, which is an extended version of our work
in [21], we present additional experiments for different tar-
get boards. These experiments provide additional clues for
illustrating the difficulty of characterizing fault effects re-
sulting from physical injections. In particular, we show
that some of the both new and already obtained faulty
behaviours are strongly related to the microarchitecture
of the target and the target program used in an exper-
iment. Previous works usually focus on one single level
at a time, and model the faulty behaviours at just one
level. This work highlights the strong need of address-
ing several abstraction layers at the same time in order
to fully understand the fault occurrence mechanisms: this
is proved by the fact that minor differences in the code
have largely different faulty behaviours when executed on
different, though close, micro-architectures.

On the basis of this evidence, we are now more confident
that the gap between previous studies can be addressed by
the proposed methodology [21]. This can be done by pro-
viding a cross-layer analysis of code and microarchitectural

vulnerabilities while performing fault injections and sim-
ulations at three distinct levels: hardware/physical, RTL,
and software levels. We aim at providing a full picture
of fault characterization at multiple description levels, by
taking into consideration microarchitectural specifications.
This will help in assessing the realism of already existing
fault models, eliminate unrealistic models, and possibly
propose new ones. Such methodology will also help in de-
signing countermeasures at an appropriate cost at both
levels: hardware and software. In addition to the extra
experiments we provide, we also present preliminary ex-
periments that validate the proposed methodology.

The rest of the article is organized as follows: Section
2 describes the setup of the performed experiments: the
results are presented in Section 3, while a detailed discus-
sion of the results is provided in Section 4. These results
highlight the large array of possible fault effects to charac-
terize, and the need for a methodology to solve such issues.
Section 5 explains the proposed methodology to deal with
the issues we observed with our experiments. Finally, the
article is concluded along with perspectives in Section 6.

2. Experimental Setup

Physical fault injection experiments have been per-
formed in order to see if the obtained faulty behaviours
can be easily characterized and if they are consistent when
making a modification to the target codes or other parts of
the program. In addition to that, these experiments have
been carried out to see if the observed behaviours will also
differ from one target board to another.

This section presents the fault injection technique we
used, the target boards, and the target programs. The
results of the experiments and the related discussion are
detailed in Sections 4 and 5, respectively.

2.1. Clock Glitch Fault Injection

Applying perturbations to the clock signal that is fed to
the microprocessor is an effective and a non-invasive phys-
ical fault injection technique. During a normal execution,
for example, in a 3-stage pipeline, at every rising edge of
the clock, an instruction is fetched by the microprocessor,
while another instruction (previously fetched) is being de-
coded or executed in another stage of the pipeline. Fig. 1
shows a normal behaviour when having a regular clock
signal.

clk
fetch instr2

decode instr1
exec instr0

fetch instr3
decode instr2

exec instr1

fetch instr4
decode instr3

exec instr2

fetch instr5
decode instr4

exec instr3

Figure 1: Normal behaviour of a 3-stage processor pipeline with a
regular clock signal [21].

2



When performing clock fault injection, a glitch is in-
jected just before or after the rising edge of the clock.
This glitch would appear as a new clock cycle for the mi-
croprocessor. Therefore, a new instruction is fetched and
the instruction previously decoded is executed. However,
as the glitch disrupts the regular behaviour of the clock
signal, a timing violation will possibly occur, leading to
various kinds of faulty behaviours. Also, since the glitch is
injected in the global clock, there is no particular knowl-
edge about which architectural element could be affected.

When performing fault injection by clock glitch, the fol-
lowing parameters must be tuned:

• Delay: the time between the rising edge of the trigger
signal used for synchronization and the rising edge of
the targeted clock cycle.

• Shift: the time between the rising edge of the glitch
and the rising edge of the targeted clock cycle.

• Width: the duration of the glitch itself.

Fig. 2 shows the glitch parameters with respect to a
clock signal. It is worth mentioning that shift and width
values should not be too large or too short. With too small
values, the glitch will not be detected by the microproces-
sor, and hence, no effect will be observed, while too large
values will allow the instructions to be executed normally
without a fault as the instruction will have enough time
to be fully executed.

width

shift

clk

trigger

delay

Figure 2: Clock glitch parameters.

2.2. Target Boards
The boards that are used for the experiments are the

ChipWhisperer [22] boards: CW1173 ChipWhisperer-Lite
and CW308 UFO baseboard with different targets. The
targets are 32-bit microcontrollers, each of them embeds
one of the following ARM cores: Cortex-M0 [23], Cortex-
M3 or Cortex-M4 [24]. These ChipWhisperer boards have
dedicated environment for side channel analysis, voltage
and clock glitch of the target ARM core. We will lever-
age the clock glitch capabilities of this setup in the exper-
iments. During an experiment, the ChipWhisperer-Lite
board is connected to a control PC through a USB cable.

The Cortex-M0 core supports the Thumb-1 instruction
set [25] and a small number of the Thumb-2 instruction set
[26] while Cortex-M3 and Cortex-M4 cores support both
sets entirely. These ARM cores include a pipeline with
three stages: fetch, decode and execute. Up to two 16-bit
instructions can be fetched at the same time. Additionally,
Cortex-M3 and Cortex-M4 have a hardware integer divide
and a prefetch unit with a maximum size of 128 bits [27].
Cortex-M4 has also additional components compared to
the others, for example, it has a floating point unit and a
digital signal processing unit.

2.3. Target Programs
The injection is performed directly into inline assembly

instructions within a C program in order to provide fault
effect characterization at ISA level. In order to better
analyze the process of the injection, the program is divided
into three parts as follows:

• Prologue: instructions for the initialization and the
recording of the state before the injection happens.

• Target: instructions targeted by the fault injection as
well as extra instructions that would allow observing
any propagation effect.

• Epilogue: instructions for reading registers’ state [R0-
R12] and APSR2 register (i.e., Negative (N), Zero
(Z), Carry (C) and Overflow (V) flags); the values are
transferred through serial communication commands
to the control PC.

Two series of NOP instruction are used to isolate the three
parts. This is done to ease the process of the injection by
limiting the search space of the injection parameters espe-
cially the delay. This also ensured that the prologue and
the epilogue are not affected by the injection. The NOPs
were not deleted after compilation as no optimization op-
tion is used for the compiler.

In the injection campaigns, two programs are targeted
as shown in Listing 1 and Listing 2 respectively. Specific
instructions in the target part of these programs are used
to allow observing faulty effects on the data- and/or the
control-flow of the program: any real-life application can
be described in terms of its data flow and/or its control
flow. The use of these instructions also allows observ-
ing other things. Firstly, it shows if the resulting faulty
behaviours are related to these instructions or not, and
hence, giving a better understanding of what triggers the
faulty behaviour. Secondly, to check if we will be able to
reproduce some faulty behaviours that are already men-
tioned in the literature. It also aims at obtaining the pos-
sible faulty behaviours based on the program flow, either
the control flow as in Listing 1 or the data flow as in List-
ing 2. Finally, it helps to understand if software character-
ization at the ISA level is sufficient to build realistic fault
models based on the observations.

2Application Program Status Register

3



Our goal is not to provide a complete characterization of
every possible instruction, but rather provide a simple and
efficient approach that will cover as much as possible the
target architecture, and emphasize diverging behaviours
due to fault occurrences. For this reason, we used instruc-
tions that explicitly have effects on different architectural
elements, such as the APSR flags and the arithmetic logic
unit. For the rest of this article, we will refer to the first
target program as Program 1 and to the second target
program as Program 2.

For Program 1, the glitch is injected at the beginning of
the target part. The remaining instructions aim at observ-
ing possible propagation effects. The registers R4 and R6
used in the experiment were initialized in the prologue to
different values. Therefore, in a golden run, the zero flag
remains clear, the branch is taken, and the instruction at
line three is not executed. We use the term ”golden” to
refer to the normal behaviour of a program execution (i.e.,
without any injection).

For Program 2, we distinguish two cases of execution:
in the first case, just as Program 1, the glitch is injected
while executing the beginning of the target part. On the
other hand, in the second case, a different delay value for
the glitch is used while executing the NOP series before
the target part, in order to affect the prefetch stage of the
targeted instructions.

1 CMP R4, R6 //r4-r6 then updates APSR
2 BNE labelx //if (Z!=1): jump to labelx
3 ADD R2, R4, R6 //r2 = r4 + r6
4 labelx:
5 ADD R5, R4, R6 //r5 = r4 + r6

Listing 1: Target part in Program 1 : target control flow.

1 ADD R1, R1, 0x6 //r1 = r1 + 0x6
2 ADD R3, R3, 0xA //r3 = r3 + 0xA
3 ADD R4, R4, 0xB //r4 = r4 + 0xB
4 ADD R5, R6, R3 //r5 = r6 + r3
5 ADD R3, R3, 0xF //r3 = r3 + 0xF

Listing 2: Target part in Program 2 : target data flow and
arithmetic operations.

2.4. Injection parameters
The injection campaigns consist in repeating the clock

glitch fault injection 10 000 times for the same shift, width
and delay parameters. A single glitch is injected during
each program execution. In the performed experiments,
the glitch parameters were tuned to maximize the number
of the observed faults for the instructions at the beginning
of the target part of each program. These values are given
here for reference, but it is important to emphasize that
they can change according to the target board and the
target program that are used in the experiment, or even
environmental conditions such as temperature.

Table 1 shows the shift and the width values that are
used for each target board. The values are expressed in

percentage of one clock period. The negative value of the
shift means that the glitch is injected before the rising
edge of the targeted clock cycle. With respect to the delay
parameter, different factors can affect its value: the start-
ing point of the trigger, the number of instructions in the
prologue, the number of NOPs between the prologue and
the target, and the position of the target instruction in the
target part.

Board
Parameter Width Shift

Cortex-M0 16 -14
Cortex-M3 10 -12
Cortex-M4 10 -12

Table 1: Glitch width and shift values that are used in the fault
injection campaigns experiments. Values in % of one clock period.

3. Results

This section presents the results of the performed experi-
ments, and it also describes the obtained faulty behaviours
for the different used target boards. Three cases can occur
as a result of the fault injection, regardless of the target
program, with respect to a golden (reference) behaviour
as follows:

• Crash: this class contains the cases when the fault
injection causes a crash, a reset, or a failure when
getting the final state of the target through the serial
channel.

• Silent: this corresponds to the case when the outcome
of the injection is identical to the golden state.

• Fault: this happens when the outcome state is differ-
ent from the golden one.

The rest of this section is organized as follows: the first
subsection presents the results for Program 1, while the
second presents the outcomes for Program 2. The detailed
analyses of the obtained results are discussed in Section 4.

3.1. Program 1 Results: Control flow Target

The results of the injection campaigns for the differ-
ent target boards with regards to the three categories
are shown in Table 2. Cortex-M4 board has the most
successful faults, while Cortex-M3 has the most silent
cases and Cortex-M0 has the most crashes. The obtained
faulty behaviours for the different boards are described in
Fig. 3. The x-axis presents the different observed faulty
behaviours, while the y-axis shows their percentages over
the successful faults i.e. without Crash and Silent cases.

4



Board
Case Silent Crash Fault

Cortex-M0 44.08 35.66 20.26
Cortex-M3 97.76 1.64 0.60
Cortex-M4 0.01 1.18 98.81

Table 2: Percentage of Silent, Crash and Fault cases when performing
clock glitch fault injection on each target board running Program 1.

Complex faulty behaviours appeared as a combination
of simpler models even if we only performed single fault
injections. For example, the result of a single fault could
be an instruction-skip and corruption of R0 at the same
time.

During these campaigns, the following faults have been
observed:

• Skip: it can be either a single or a double-skip. In
other words, either we skip only the CMP instruction
at line one in Listing 1, only the BNE instruction
at line two, or both. If APSR flags have not been
updated, then we assume that the CMP instruction
was skipped. If APSR flags have been updated cor-
rectly and the ADD instruction on line three is exe-
cuted, then we assume that the BNE instruction was
skipped. If APSR flags have not been updated and
the ADD instruction on line three is executed, then
we assume that both instructions were skipped.

• R0 corruption: the value of R0 is different from its
golden value. Among these corrupted values, we no-
ticed the following: 0 (i.e., the value of R0 becomes
0), right shift by 8, 16 or 24 bits.

• R1 Reset: R1 value becomes 0.

• R3 Reset: R3 value becomes 0.

• R4 corruption: either reset or right shift by 1 bit.

• R0-R5 Reset: all the values of R0 to R5 become 0.

• APSR corruption: one or more of APSR flags have
different values from the golden ones.

• Propagation effect on R2: it is caused by execut-
ing the ADD instruction on line three. The execu-
tion of this instruction can be explained as the conse-
quence of two events. The first explanation is that the
BNE instruction at line two in Listing 1 was skipped.
The second explanation is that the Zero flag was cor-
rupted. This leads to the branch not being taken as
in a normal case, where the Zero flag is 0. Instead,
as a result of the injection, the Zero flag was set to 1.
These two cases could not be discriminated as both
of them might even occur together. In this experi-
ment, this behaviour only appeared in Cortex-M0 and
Cortex-M3 but not Cortex-M4.

• Propagation effect on R5: as a result of the corrupted
value in R4, R5 has a wrong value at the end, since it
is the sum of R4 and R6.

A second experiment has been carried out with the same
fault injection parameters (i.e., shift, width and delay) and
initialization values but with a duplicated CMP instruc-
tion as shown in Listing 3. The second experiment has
been performed to see if the faulty behaviours were con-
sistent and to improve the understanding of the induced
errors. In particular, its objective was to gain insight about
the reason for the propagation effect on R2 as described
above.

Regarding the three cases, Table 3 shows their percent-
ages after this experiment. We can see that more faults
were observed for Cortex-M0 in the second experiment
while no crash cases were obtained. Regarding the Cortex-
M4, there was a significant increase in the crash category
and decrease in the successful faults. For Cortex-M3, both
experiments were comparable in terms of population.

1 CMP R4, R6
2 CMP R4, R6
3 BNE labelx
4 ADD R2, R4, R6
5 labelx:
6 ADD R5, R4, R6

Listing 3: Target part in Program 1 in the second experiment with
duplicated CMP.

Board
Case Silent Crash Fault

Cortex-M0 61.29 0.0 38.71
Cortex-M3 96.07 2.69 1.24
Cortex-M4 0.88 39.32 59.80

Table 3: Percentage of Silent, Crash and Fault cases when performing
clock glitch fault injection on each target board running Program 1
after the second experiment.

The results are shown in Fig. 4. In addition to skip,
APSR corruption and propagation effect on R5, the fol-
lowing behaviours were observed:

• R0 Reset.

• R4 corruption: different faulty values appeared in R4:
0, left shift of R6 value by 10 or 14 bits, and another
faulty value that is equal to R7.

• R5 Corruption: either R5 has its initial value or the
value of R7. Having the initial value can be considered
as single-skip as well. This could happen due to a
fault while fetching this instruction and executing the
previous ones.

• R8 corruption: either set (i.e., every bit has 1) or the
value of R2.

5



Double skip Single skip

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g 

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

57.65

42.35

Cortex-M0

Do
ub

le
 sk

ip

Si
ng

le
 sk

ip

R1
 c

or
ru

pt
io

n
+ 

sin
gl

e 
sk

ip

R3
 c

or
ru

pt
io

n
+ 

do
ub

le
 sk

ip

R1
, R

4 
an

d
AP

SR
 c

or
ru

pt
io

n

R1
 a

nd
 R

4 
co

rru
pt

io
n

+ 
do

ub
le

 sk
ip

51.67

26.67

11.67
5 3.33 1.67

Cortex-M3

Si
ng

le
 sk

ip

R0
 a

nd
 A

PS
R

co
rru

pt
io

n

R0
 c

or
ru

pt
io

n
+ 

sin
gl

e 
sk

ip

R0
 to

 R
5 

re
se

t
+ 

sin
gl

e 
sk

ip

98.25

1.25 0.49 0.01

Cortex-M4

Figure 3: Observed faults for Program 1 for all target boards.

• Propagation effect on R2: since we target only the
beginning of the target instructions, this can not be
caused by a skip or other perturbation of the BNE
instruction. Therefore, this is necessarily caused by
corruption of the Zero flag. This time, this behaviour
only appeared in Cortex-M3.

3.2. Program 2 Results: Data flow and Arithmetic Opera-
tions Target

The results of the three categories for this experiment
are shown in Table 4. Again, almost all the injections
resulted in successful faults in the Cortex-M4 board, while
they were silent in the Cortex-M3 board. The obtained
faulty behaviours are presented in Fig. 5.

Board
Case Silent Crash Fault

Cortex-M0 75.51 17.28 7.21
Cortex-M3 97.93 1.2 0.87
Cortex-M4 0.0 1.16 98.84

Table 4: Percentage of Silent, Crash and Fault cases when performing
clock glitch fault injection on each target board running Program 2.

A wide range of faulty behaviours is observed after this
experiment as the following:

• Skip: it can only be skipping the first instruction,
only the second, only the third, both the first and the
third, both the second and the third, or the first 4
instructions (i.e. quad-skip).

• Repeat: repeat the first instruction. This behaviour
appeared as a combination with skipping the second
and the third instructions. In this experiment, it is
only observed for the Cortex-M0 target board.

• R0 corruption: different faulty values observed in R0:
set, reset, right shift of its original value by 4 or 20
bits, left shift of R2, etc.

• R1 corruption: Among the faulty values, there were:
reset, a value that is related to the program counter,
left shift of R2, the sum of R3 and 0x6 instead of R1
and 0x6, etc.

• R2 corruption: set only the most significant bit of the
32 bits. It only appeared for Cortex-M4 board.

• R3 corruption: faulty value related to the program
counter, left shift of the original value of R1, the sum
of the initial of R3, 0x6 and 0xF instead of R3, 0xA
and 0xF, and other faulty values with no obvious re-
lation.

• R4 corruption: between the faulty values that are
found: the sum of R0 and 0xB, R1 and oxB, R2 and
oxB or R3 and 0xB instead of R4 and 0xB.

• Propagation effect on R5: as a result of a faulty value
that is found either in R3 or R6.

• R6 corruption: reset, the most significant bit is only
set, the value of R0, left shift of R0 by 4 bits, left shift
of R2, etc.

• All registers reset: it is only observed for Cortex-M3
target board.

A second experiment has been carried out for Program
2, but with adding only a NOP instruction to the prologue
part. The main objective of this experiment was to investi-
gate the consequences of a simple modification in the pro-
logue to the target part of the program. Identical injection
parameters were used, except adding one to the additional
delay value that is used to target the prefetch stage. This
is done to take into consideration the instruction that is

6



Double skip R8 corruption
+ double skip

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g 

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

79.36

20.64

Cortex-M0

R4
 c

or
ru

pt
io

n
+ 

do
ub

le
 sk

ip

Do
ub

le
 sk

ip

R4
 a

nd
 A

PS
R

co
rru

pt
io

n

R5
 c

or
ru

pt
io

n

42.74 37.91

17.74

1.61

Cortex-M3

Do
ub

le
 sk

ip

R0
 a

nd
 A

PS
R

co
rru

pt
io

n

R0
, R

4 
an

d 
AP

SR
co

rru
pt

io
n

R0
 to

 R
5 

re
se

t a
nd

AP
SR

 c
or

ru
pt

io
n

59.7

36.07

3.86 0.37

Cortex-M4

Figure 4: Observed faults for Program 1 after the second experiment for all target boards.

Do
ub

le
 sk

ip
 a

nd
 re

pe
at

Do
ub

le
 sk

ip
 a

nd
 re

pe
at

+ 
R0

 c
or

ru
pt

io
n

R4
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+ 

R0
 c

or
ru

pt
io

nPe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g 

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

68.86

26.56

4.51 0.07

Cortex-M0

Si
ng

le
 sk

ip
+ 

R6
 c

or
ru

pt
io

n

Al
l r

eg
ist

er
s r

es
et

Qu
ad

ru
pl

e 
sk

ip

R3
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+ 

R1
 a

nd
 R

4 
co

rru
pt

io
n

R3
 a

nd
 R

4 
co

rru
pt

io
n

Si
ng

le
 sk

ip
30.63

17.92 15.03 12.14 12.14 8.67 3.47

Cortex-M3

Sk
ip

 1
st

 a
nd

 3
rd

+ 
R0

 a
nd

 R
3 

co
rru

pt
io

n

R6
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+ 

R0
 a

nd
 R

6 
co

rru
pt

io
n

R0
, R

1 
an

d 
R6

 c
or

ru
pt

io
n

Si
ng

le
 sk

ip
+ 

R0
, R

1 
an

d 
R3

 c
or

ru
pt

io
n

Si
ng

le
 sk

ip
+ 

R3
 a

nd
 R

6 
co

rru
pt

io
n

Si
ng

le
 sk

ip
+ 

R1
, R

2 
an

d 
R3

 c
or

ru
pt

io
n

R1
 a

nd
 R

6 
co

rru
pt

io
n

49.91 48.76

0.8 0.3 0.19 0.02 0.01 0.01

Cortex-M4

Figure 5: Observed faults for Program 2 for all target boards.

added to the prologue. Table 5 shows the percentages of
the obtained results classes. We can see a significant de-
crease in the successful faults for Cortex-M4 board, while
close proportions for other targets with respect to the first
experiment. The observed faulty behaviours are shown in
Fig. 6.

Board
Case Silent Crash Fault

Cortex-M0 75.07 12.78 12.15
Cortex-M3 98.55 0.99 0.46
Cortex-M4 49.85 0.24 49.91

Table 5: Percentage of Silent, Crash and Fault cases when performing
clock glitch fault injection on each target board running Program 2
after the second experiment.

In addition to the propagation effect on R5, the follow-
ing faults have been observed:

• Skip: single-skip only appeared for the second instruc-
tion, while double-skip only occurred for the first and
the second instruction.

• Repeat: again the first instruction is repeated. This
time, it is obtained as a combination with skipping
only the second instruction. This behaviour only ap-
peared for the Cortex-M3 board.

• R0 corruption: only the following cases are observed
this time: set, reset, only the most significant bit is
set.

• R1 corruption: reset, a value related to the program
counter, the sum of R0 and 0x6 and other faulty values
without an obvious relation.

• R2 corruption: set, reset and other large values. This
behaviour only appeared for the Cortex-M0 board.

• R3 Corruption: R3 has a seemingly random value. It
only appeared for the Cortex-M3 board.

7



Do
ub

le
 sk

ip

Do
ub

le
 sk

ip
+ 

R2
 c

or
ru

pt
io

n

Do
ub

le
 sk

ip
+ 

R0
 c

or
ru

pt
io

n

Si
ng

le
 sk

ipPe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
am

on
g 

fa
ul

ty
 b

eh
av

io
ur

s [
%

]

49.03

22.81 19.72
8.44

Cortex-M0

Sin
gle

 sk
ip

an
d r

ep
ea

t

Sin
gle

 sk
ip

+ R1 c
orr

up
tio

n

R3 c
orr

up
tio

n

41.3 35.87
22.83

Cortex-M3

Do
ub

le
 sk

ip

Do
ub

le
 sk

ip
+ 

R0
 c

or
ru

pt
io

n

Si
ng

le
 sk

ip
+ 

R0
 a

nd
 R

1 
co

rru
pt

io
n

Do
ub

le
 sk

ip
+ 

R0
 a

nd
 R

4 
co

rru
pt

io
n

90.47

8.5
0.79 0.24

Cortex-M4

Figure 6: Observed faults for Program 2 for all target boards after the second experiment.

• R4 corruption: the sum of 0xB and setting the most
significant bit. It is only observed for the Cortex-M4
board.

4. Discussion

The aforementioned experimental results led to various
conclusions, observations and questions. The following
subsections discuss the results in details with respect to
different aspects.

4.1. Target Board Dependency
For the same target program, different faulty behaviours

can be observed depending on the target board that is
used in the experiment. For example, in Program 1 ex-
periments, R8 Corruption is only observed for the Cortex-
M0 board, while R0 to R5 reset is only observed for the
Cortex-M4 board. Another example, in Program 2 experi-
ments, all registers reset behaviour is obtained only for the
Cortex-M3 board, while skip and repeat faulty behaviour
is observed for the Cortex-M0 and the Cortex-M3 but not
for the Cortex-M4. In addition to that, Cortex-M4 target
board has the most successful faults among the injections
compared to the other boards. This could be explained
with the fact that this board has more features and mi-
croarchitectural elements. Faulty behaviours as well may
appear with different percentages. However, we have found
that the occurrence probability of a specific behaviour can
be increased or decreased by fine adjustments of the glitch
parameters. Tuning the glitch parameters, in particular
the delay, for the different boards in order to target dif-
ferent locations of the program could make some faulty
behaviours appear or disappear.

4.2. Target Program Dependency
With respect to the target programs, small changes in

the target code have large consequences on the observed

faults as noticed for Program 1 experiments: some faulty
behaviours disappeared such as R1 and R3 reset. New
faults appeared such as R8 corruption. Also, different cor-
rupted values are observed, for instance, R0 had right shift
by 8, 16 or 24 bits in the first experiment, but in the sec-
ond, it had only reset. In addition to that, in [21], similar
target program was used for the same target board but
with different registers, and some of the obtained faults
were different. For example, the propagation effect on the
ADD instruction of line three in Listing 1 was obvious, but
this time, it is not observed for the Cortex-M4 board. In
addition, targeting the same sequence of instructions (i.e.
the same target part) with two different prologues, even
with a simple modification like adding a single NOP, could
lead to various faulty behaviours as observed in Program 2
experiments. For example, quad-skip occurred only in the
first experiment, while skipping the first and the second is
only observed in the second experiment.

4.3. On the Difficulty of Analyzing the Program Flow
Faults

For the second experiment of Program 1, one might
think that duplicating CMP will work as a countermeasure
for APSR corruption since instruction duplication could
work as a software countermeasure as described in [7, 28].
However, it did not as the injection affects two instructions
in most cases, which might be related to the microarchitec-
tural possibility to fetch two instructions at the same time.
Hence, the corruption of APSR might still occur as a re-
sult of either corruption in the second CMP or corruption
in the first and skipping the second. However, we cannot
ensure that a single-skip in one of the CMP instructions
has occurred as executing one of them, either properly or
improperly, will mask the single-skip effect. Thus, at this
step we can only say that either double-skip or APSR cor-
ruption have occurred. The corruption of APSR flags can
be due to several causes: a change in the registers values

8



while executing CMP, an error while decoding the regis-
ter numbers, an error that occurred when updating the
APSR flags, a fault in the ALU while executing the sub-
traction between the registers, or a fault in a control signal
related to the APSR flags. All these hypotheses cannot be
validated or discarded without a better knowledge of the
microarchitecture, which will help in having a suited fault
model at the end.

For all injection campaigns on the two target programs,
different forms of instruction-skip are obtained, for in-
stance, single, double and quad. This can again refer to
the possibility to fetch two instructions at the same time
and to the prefetch unit that has a maximum size of 128
bits. More investigation and experiments are needed to
uncover the origin of such faults at the microarchitectural
level.

4.4. Registers Corruption
In terms of the injection effects on the registers, some

registers that are not used in the program end up being
corrupted as well: R0, R1, R3 and R8 for Program 1 ;
R0 and R2 for Program 2. A question arises about what
would be the proper fault model to account for this ef-
fect. In particular, such errors may have several causes:
it might be related to the instruction opcode (i.e., a fault
during the instruction fetch) or to the execution stage of
the pipeline. And most importantly, there is no explana-
tion at this level for some corrupted values found in the
registers, either used or not in the target part of the pro-
grams: 0, shift, values related to the program counter, or
seemingly random values. We believe that some of these
values are related to the microarchitecture, which will af-
fect how a corrupted instruction will be executed. How-
ever, some observed faulty values can be explained as a
source operand replacement. For example in Program 2
experiments, some corrupted values in R4 were the result
of the sum of R0 and 0xB or the sum of R3 and 0xB in-
stead of R4 and 0xB. The former case can occur due to
a fault in the decode stage (R0 instead of R4); while the
latter can occur due to a fault of not updating one of the
inputs to the arithmetic logic unit in the execute stage
(R3 was just used in the previous instruction as shown in
Listing 2). This explanation cannot be confirmed without
further investigations.

4.5. State-of-the-art Fault Models Reproducibility
A very interesting point is also observed: using clock

glitch fault injection, we were able to observe faulty be-
haviours which were obtained in the literature using other
fault injection techniques. For example, quad-skip, which
can also be described as 128-bit skip, was obtained in [8]
using EM and in [5] using laser. Also, single-skip and
source operand substitution were observed in [10] using
EM as well, although in their experiments, they used
super-scalar microarchitecture: Cortex-A9 [29]. Such a
result could help researchers to study the effects of costly

fault injections using low cost equipment and techniques
such as clock glitch.

4.6. Summary
Finally, the aforementioned faults could be exploited as

vulnerabilities in a security application. For example, an
APSR corruption can lead to test-inversion where tests are
considered very important in the control flow of critical
applications.

To sum up, we saw how fault characterization is dif-
ficult based on a single level of analysis. These results
show the difficulty of building consistent fault models that
allow designers to predict the fault injection effects and
design efficient and cost-effective countermeasures. Thus,
additional research is necessary. In the next section, we
propose a methodology that takes into consideration mul-
tiple levels of analysis by including software and RTL fault
simulations as well as physical fault injections. This will
help in explaining the observed points and answering the
above-mentioned questions.

5. Proposed Methodology

This section provides a full description of the proposed
methodology to infer fault models that will help in design-
ing hardware and software countermeasures at an optimal
cost. It deals with three different levels of understanding
in order to provide a cross-layer fault analysis.

Fig. 7 depicts the proposed methodology. It is centered
around a comparison between the obtained results that are
stored in three databases (hardware, RTL and software
databases) in order to make decisions about the consis-
tency and applicability of RTL and software fault models.
In other words, starting from the observations obtained
at the lowest level of abstraction (i.e., hardware level), it
will be possible to optimize fault models at the RTL level,
for example, by removing RTL faults that do no corre-
spond to observable faulty outputs. Then, by using these
RTL models, the models at software level will be opti-
mized in a similar way, by adjusting them to not include
behaviours that cannot be observed at RTL or hardware
level. This will help in not over-engineering the counter-
measures. Also, if a faulty behaviour obtained from the
hardware injection does not belong to any faulty output
from the RTL simulation, a new RTL fault model must
be proposed, and hence, a new software fault model must
be inferred. Hence, this will help in not under-engineering
the countermeasures. The first three subsections explain
each of the three parts in more details, while the last sub-
section provides a preliminary analysis to validate the pro-
posed methodology. The numbers in Fig. 7 represent the
sequential order in following the proposed methodology.

5.1. Hardware Fault Injection
At this stage, corresponding to step 1 in Fig. 7, the goal

is to perform physical fault injections using a variety of

9



Software
fault models

Software
fault simulation

4

Software
faults

database

RTL
fault models

RTL
fault simulation

2

RTL
faults

database

Fault injection
parameters

Physical
fault injection

1

Hardware
faults

database

Software
contexts

Hardware
contexts

Low level
of abstraction

High level
of abstraction

5 3

Figure 7: Proposed methodology.

injection techniques. Among these methods: EM fault in-
jection, voltage and clock glitch injections using dedicated
printed circuit boards and suitable generators. In each
injection campaign, the following procedure is applied:

• Define different software contexts as target programs
for the injection process. Faults are going to be
injected while executing these programs on one of
the hardware targets, for instance, microcontrollers,
ASICs and FPGAs. A target part (or parts) within
each software has also to be defined where faults
should be injected.

• Define the set of injection parameters. For example,
in the case of clock glitch attacks, the range of values
for the shift and the width of the glitch, as well as
the delay, as described and explained in the previous
sections. These parameters as well as the target board
layout must be taken into account when describing the
fault model.

• Get a snapshot of the state of the target: for exam-
ple, the registers and memory states will be read at
the beginning and at the end of the program exe-
cution (using a serial communication link with the
host PC or a debugger for example). The richer the
information that can be accessed, the more precise
the model will be: for instance, hidden performance
counters could be used to get a more detailed view of
the internal state, in particular when advanced micro-
architectural features are implemented. Then, the
snapshot will be compared with the configuration of
a golden run. The faulty behaviours will be stored in
a database (Hardware faults database in Fig. 7). This
step will allow us to observe the relation between the
observed faulty behaviours and the instructions in the
target part. In other words, the aim is to assess if
there is a direct relation (i.e., the effect corresponds
to the target instructions), an indirect relation (i.e.,
the effect is a result of a propagation effect), or no
relation at all, which may require further analysis.

Thanks to the analysis of the observed faulty behaviours,
a fault model inference process will be followed by gener-
alizing the obtained faulty behaviours.

5.2. RTL Fault Simulation
In order to understand what is exactly happening inter-

nally at the microarchitectural level and be able to know
the origin of a fault, fault simulation campaigns are going
to be performed on the RTL description of the micropro-
cessor; this is step 2 in Fig. 7. This will help in charac-
terizing further the hardware faulty behaviours by giving
more observability and controllability.

With RTL fault simulation, it is possible to inject faults
in a very precise manner into the microarchitecture. For
instance, inter-stage pipeline registers, multiplexers and
different arithmetic units that are involved in executing
an instruction in the pipeline stages can be targeted. The
injection will consist in forcing the corresponding signals
according to fault models such as single or multiple bit-
flips, bit-sets and bit-resets.

As in the previous step, the resulting faulty behaviours
will be stored in a dedicated database and then be com-
pared with those obtained from the physical injections. To
ease the comparison and the fault characterization at the
RTL level, a divide-and-conquer approach is used to reduce
the complexity: the fault simulation is applied into specific
RTL module or specific microarchitectural component at
once. This comparison will help in two aspects, as shown
visually in Fig. 8. On the one hand, this aims at explain-
ing at the hardware level the faulty behaviours obtained
from physical injections, and hence, making the fault ef-
fect characterization easier. The explanation is done by
revealing the origin of the fault at the RTL level and de-
termining the responsible microarchitectural component,
the register, or even the single flip flop behind obtaining
the faulty behaviour resulting from injecting the fault(s)
(step 3 in Fig. 7). On the other hand, it also helps in
validating and assessing the realism of the used RTL fault
models. Hence, it provides a full overview to the hardware
designer to build the required countermeasures.

Hardware faulty
behaviour

RTL fault
model

validates

explains

Figure 8: Relation between hardware faulty behaviour and RTL fault
model.

5.3. Software Fault Simulation
Software faults will be injected into different target pro-

grams. This can be done by performing modification, dele-
tion or addition of instructions in the original program.
This represents step 4 in Fig. 7. The software faults may
correspond to a large variety of faulty behaviours mod-
eled at the ISA level. In other words, typical fault models

10



such as instruction skip, instruction replacement, instruc-
tion corruption, register value corruption, test-inversion,
or a combination between these models, will be injected
into the programs by modifying the instructions. In ad-
dition to that, other faulty behaviours must be generated
using more complex fault models which take into consid-
eration the modern design of some hardware blocks. This
includes, for instance, forwarding and speculative execu-
tion. In this case, dedicated techniques shall be employed
to model the advanced architectural characteristics and
the related faults at the ISA level. This can be achieved
by modifying the source code before the compilation or
mutating the compiled code itself after applying different
combinations of compiler optimization levels.

The expected faulty outputs will again be stored in a
corresponding database. Then, a comparison process sim-
ilar to the one mentioned earlier will take place between
the RTL and the software faulty results. In step 5, an
RTL model validates the consistency of a software model,
whereas a software model will be usable to describe the
occurrence and explain an RTL model at the application
level, which makes the fault effect characterization at this
level easier.

5.4. Preliminary Validation
To validate our approach, a preliminary analysis study

has been conducted by performing RTL fault simulation
experiments on the same target part of Program 2 shown
in Listing 2. The RTL description is for the ARM Cortex-
M3, in particular, the DesignStart evaluation version [30].

Using typical RTL fault models, we were able to observe
various faulty behaviours. For example, by a single bit-set
or a single bit-reset to specific signals that are located
in the path of the instructions fetch between the Flash
memory and the core as shown in Fig. 9, in particular in
the interface, we were able to observe the following faults:

• Quad-skip or 128-bit skip.

• Double-skip of the second and the third instructions.

• Skip the second and repeat the first.

• 128-bit skip and repeat the previous 128-bit. This
model is described in [8].

Flash
memory Interface

E
AHB3

mux Core/
128-bit

/
32-bit

/
32-bit

Figure 9: Instructions datapath from the Flash memory to the pro-
cessor core.

3Advanced High-performance Bus.

With these simulation experiments, we were able to vali-
date the realism of some RTL fault models, such as single-
bit manipulation for specific signals in a particular mi-
croarchitectural component, and the relevant inferred soft-
ware fault models that were obtained either by our exper-
iments, for instance, double-skip and single-skip and re-
peat, or in the literature such as 128-bit skip and repeat.
And not only that, we were also able to determine the
origin of such faults. However, we cannot exclude that
faulting other signals in other microarchitectural compo-
nents could lead to similar behaviours. These experiments
represent the start of the implementation of the proposed
methodology at the RTL level.

To include the software fault simulation in this prelimi-
nary study, applying mutations to the same target part of
Program 2 shown in Listing 2 allows obtaining the same
aforementioned faults, which validates the realism of the
inferred fault models at the software level. For example,
replacing the second instruction by a copy of the first in-
struction lead to skip the second instruction and repeat
the first as shown in Listing 4.

1 ADD R1, R1, 0x6 //r1 = r1 + 0x6
2 ADD R1, R1, 0x6 //r1 = r1 + 0x6
3 ADD R4, R4, 0xB //r4 = r4 + 0xB
4 ADD R5, R6, R3 //r5 = r6 + r3
5 ADD R3, R3, 0xF //r3 = r3 + 0xF

Listing 4: Mutating Listing 2 to obtain skip the second and repeat
the first fault.

5.5. Discussion
Once the links between the three levels are established

and formalized, a software developer can design the most
suitable countermeasures for a given context. For sure,
countermeasures will be studied carefully at both levels:
hardware and software. Therefore, the proper ones will be
applied by taking into account their cost and their effect on
the performance. Thus, if a countermeasure can be imple-
mented at both hardware and software levels with compa-
rable efficiency, only the software option may be considered
since software countermeasures are usually less expensive
to implement. Therefore, the “cross-layer” aspect can be
extended later on to the design of countermeasures.

Getting a complete and detailed analysis of the full de-
sign might not be achievable, for complexity issues. Large
designs have millions of gates, and addressing every single
one is not reasonable. As already suggested, the designer
can focus on critical components, or adopt a divide-and-
conquer approach to reduce the overall complexity. Other
techniques exist: in [5], the authors aim at optimizing the
number of experimental injections in the case of multiple
faults, but they limit their analysis at one level at a time
(e.g., software simulation) to port the results at other lev-
els (e.g., set of injection parameters). Unlike them, our
approach uses layer crossing in order to explain the fault
origin. In the future, more advanced techniques could be

11



used to infer relations among models: this, however, is cur-
rently out of the scope of this work, and will be addressed
in the future.

It is important to highlight that while the full method-
ology greatly benefits from the full availability of all levels.
In our scenarios, we chose embedded microcontrollers that
are widely used in the IoT domain, and represent thus a
significant test case. It is worth mentioning that an autho-
rized access to the architectures used in this work is pro-
vided under the ARM Academic Access (AAA) agreement.
This allows us to apply the RTL fault simulation to the
three architectures: Cortex-M0, Cortex-M3 and Cortex-
M4. In section 5.4, a suite of RTL fault simulation experi-
ments has been performed on a Cortex-M3 version, which
works as a test case for the described methodology.

On the other hand, we can observe that its application
can be limited to a subset of levels (e.g., ISA to a higher
software level) once the models (and their respective rela-
tion) have been defined. For example, if the manufacturer
makes the model description available, this information
could be exploited to guide the developers in implementing
more robust algorithms without having access to the hard-
ware descriptions. Additionally, building the fault models
at physical level needs to be done only once for a spe-
cific implementation, and data can be reused afterwards
for different software contexts. Our methodology does not
take into account any architecture-specific feature, and we
consider it to be architecture-independent.

6. Conclusion and Perspectives

In this article, we presented the existing problems
in analyzing and understanding fault attacks in com-
plex microarchitectures. We highlighted this by provid-
ing experimental evidence of intrisically microarchitec-
tural faults, using clock glitch as the fault injection tech-
nique. The experimental results showed that the faulty
behaviours can be target-dependent, prologue-dependent
and architecture-dependent. After that, we proposed a
new methodology to provide a cross-layer analysis for char-
acterizing faulty behaviours, along with preliminary exper-
iments to validate it. Such methodology can be used to
build realistic fault models at different levels such as RTL
and software. It can also provide explanation for the origin
of some faults. Hence, this gives the possibility to design
suited countermeasures at the most appropriate cost at
hardware and software levels.

In terms of perspectives, performing larger campaigns
of RTL fault simulation into different microarchitectural
components and different RTL descriptions will be taken
into account. Also, automating the analysis of the faulty
behaviours and the comparison among the three different
databases obtained at the different layers is necessary to
move forward in this research direction.

Acknowledgment

This work has been supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) and the
French National Research Agency in the framework of the
“Investissements d’avenir” program (ANR-15-IDEX-02).

References

[1] D. Boneh, R. A. Demillo, R. J. Lipton, On the importance
of checking cryptographic protocols for faults, Springer-Verlag,
1997, pp. 37–51.

[2] A. Barenghi, L. Breveglieri, I. Koren, D. Naccache, Fault injec-
tion attacks on cryptographic devices: Theory, practice, and
countermeasures, Proceedings of the IEEE 100 (11) (2012)
3056–3076.

[3] R. Baumann, Radiation-induced soft errors in advanced semi-
conductor technologies, IEEE Transactions on Device and Ma-
terials Reliability 5 (3) (2005) 305–316.

[4] B. Colombier, A. Menu, J.-M. Dutertre, P.-A. Moëllic, J.-B.
Rigaud, J.-L. Danger, Laser-induced Single-bit Faults in Flash
Memory: Instructions Corruption on a 32-bit Microcontroller,
in: 2019 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), IEEE, McLean, United States,
2019, pp. 1–10.

[5] V. Werner, L. Maingault, M. Potet, An end-to-end approach for
multi-fault attack vulnerability assessment, in: Workshop on
Fault Detection and Tolerance in Cryptography, IEEE, Milan,
Italy, 2020, pp. 10–17.

[6] S. P. Skorobogatov, R. J. Anderson, Optical fault induction
attacks, in: B. S. Kaliski, ç. K. Koç, C. Paar (Eds.), Cryp-
tographic Hardware and Embedded Systems - CHES 2002,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 2–12.

[7] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, E. En-
crenaz, Electromagnetic fault injection: Towards a fault model
on a 32-bit microcontroller, in: W. Fischer, J. Schmidt (Eds.),
Workshop on Fault Diagnosis and Tolerance in Cryptography3,
IEEE Computer Society, Los Alamitos, CA, USA, 2013, pp.
77–88.

[8] L. Rivière, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer,
L. Sauvage, High precision fault injections on the instruction
cache of armv7-m architectures, in: 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST),
2015, pp. 62–67.

[9] L. Dureuil, M. Potet, P. de Choudens, C. Dumas, J. Clédière,
From code review to fault injection attacks: Filling the gap us-
ing fault model inference, in: N. Homma, M. Medwed (Eds.), In-
ternational Conference on Smart Card Research and Advanced
Applications, Vol. 9514 of Lecture Notes in Computer Science,
Springer, Bochum, Germany, 2015, pp. 107–124.

[10] J. Proy, K. Heydemann, A. Berzati, F. Majéric, A. Cohen, A
first isa-level characterization of EM pulse effects on superscalar
microarchitectures: A secure software perspective, in: Proceed-
ings of the 14th International Conference on Availability, Relia-
bility and Security, ARES 2019, Canterbury, UK, August 26-29,
2019, ACM, 2019, pp. 7:1–7:10.

[11] N. Timmers, A. Spruyt, M. Witteman, Controlling pc on arm
using fault injection, in: 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2016, pp. 25–35.

[12] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick,
P. Schaumont, Software fault resistance is futile: Effective
single-glitch attacks, in: 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2016, pp. 47–58.

[13] S. Skorobogatov, Local heating attacks on flash memory devices,
in: 2009 IEEE International Workshop on Hardware-Oriented
Security and Trust, 2009, pp. 1–6.

[14] N. Theißing, D. Merli, M. Smola, F. Stumpf, G. Sigl, Com-
prehensive analysis of software countermeasures against fault
attacks, in: E. Macii (Ed.), Design, Automation and Test in
Europe, Grenoble, France, 2013, pp. 404–409.

12



[15] A. Höller, A. Krieg, T. Rauter, J. Iber, C. Kreiner, Qemu-based
fault injection for a system-level analysis of software counter-
measures against fault attacks, in: Euromicro Conference on
Digital System Design, IEEE Computer Society, Madeira, Por-
tugal, 2015, pp. 530–533.

[16] S. Bergaoui, P. Vanhauwaert, R. Leveugle:, A new critical vari-
able analysis in processor-based systems, IEEE Transactions on
Nuclear Science 57 (4) (2010) 1992–1999.

[17] C. Spensky, A. Machiry, N. Burow, H. Okhravi, R. Housley,
Z. Gu, H. Jamjoom, C. Kruegel, G. Vigna, Glitching demys-
tified: analyzing control-flow-based glitching attacks and de-
fenses, in: 2021 51st Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), IEEE, 2021,
pp. 400–412.

[18] T. Trouchkine, G. Bouffard, J. Clédière, Em fault model char-
acterization on socs: From different architectures to the same
fault model, in: 2021 Workshop on Fault Detection and Toler-
ance in Cryptography (FDTC), IEEE, 2021, pp. 31–38.

[19] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, A. Pa-
padimitriou, Cross-layer analysis of software fault models and
countermeasures against hardware fault attacks in a RISC-V
processor, Microprocessors and Microsystems 71 (2019).

[20] RISC-V Foundation, The RISC-V instruction set manual,
https://riscv.org/technical/specifications/, [Accessed: May 4,
2021].

[21] I. Alshaer, B. Colombier, C. Deleuze, V. Beroulle, P. Maistri,
Microarchitecture-aware fault models: Experimental evidence
and cross-layer inference methodology, in: 2021 16th Interna-
tional Conference on Design Technology of Integrated Systems
in Nanoscale Era (DTIS), 2021, pp. 1–6.

[22] C. O’Flynn, Z. D. Chen, Chipwhisperer: An open-source plat-
form for hardware embedded security research, in: E. Prouff
(Ed.), International Workshop on Constructive Side-Channel
Analysis and Secure Design, Vol. 8622 of Lecture Notes in Com-
puter Science, Springer, Paris, France, 2014, pp. 243–260.

[23] J. Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-
M0+ Processors, Newnes, 2015.

[24] J. Yiu, The Definitive Guide to ARM Cortex-M3 and Cortex-
M4 Processors, Newnes, 2013.

[25] ARM Limited, Armv6-m architecture reference manual,
https://developer.arm.com/documentation/ddi0419/c?lang=en,
[Accessed: November 22, 2021].

[26] ARM Limited, ARM architecture ref-
erence manual Thumb-2 supplement,
https://developer.arm.com/documentation/ddi0308/d, [Ac-
cessed: May 4, 2021].

[27] ARM Limited, Arm cortex-m programming guide to
memory barrier instructions, https://documentation-
service.arm.com/static/5efefb97dbdee951c1cd5aaf?token=,
[Accessed: November 28, 2021].

[28] N. Theißing, D. Merli, M. Smola, F. Stumpf, G. Sigl,
Comprehensive analysis of software countermeasures against
fault attacks, in: 2013 Design, Automation Test in Eu-
rope Conference Exhibition (DATE), 2013, pp. 404–409.
doi:10.7873/DATE.2013.092.

[29] ARM Limited, Cortex-a9 technical reference manual,
https://developer.arm.com/ip-products/processors/cortex-
a/cortex-a9, [Accessed: November 29, 2021].

[30] ARM Limited, Arm cortex-m3 designstart
eval rtl and testbench user guide r0p0,
https://developer.arm.com/documentation/100894/0000/
introduction/ about-cortex-m3-designstart-eval, [Accessed:
November 29, 2021].

13


