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It is known that the identity component of the automorphism group of a projective algebraic variety is an algebraic group. This is not true in general for quasi-projective varieties. In this note we address the question: given an affine algebraic surface Y , as to when the identity component Aut • (Y ) of the automorphism group Aut(Y ) is an algebraic group? We show that this happens if and only if Y admits no effective action of the additive group. In the latter case, Aut • (Y ) is an algebraic torus of rank ≤ 2.

Introduction

Let K be an algebraically closed field of characteristic zero and let G a and G m be the additive and the multiplicative groups of K, respectively. If Y is an affine variety over K, then the automorphism group Aut(Y ) has a canonical structure of an ind-group endowed with its Zariski ind-topology, see e.g. [START_REF] Furter | On the geometry of automorphism groups of affine varieties[END_REF]. In this paper we concentrate on the identity component Aut • (Y ) of Aut(Y ) with respect to the Zariski topology. Notice that, similarly to the case of a projective variety, the group of components Aut(Y )/ Aut • (Y ) is at most countable, see [START_REF] Furter | On the geometry of automorphism groups of affine varieties[END_REF]Proposition 1.7.1]. We address the following conjecture. We say that Y is rigid if Y admits no effective G a -action or, in other words, Aut • (Y ) contains no G a -subgroup, that is, no nontrivial unipotent element.

Conjecture 1.0.1. If Y is a rigid affine algebraic variety over K, then the group Aut • (Y ) is an algebraic torus of rank ≤ dim Y .

If Conjecture 1.0.1 is true, then the following one is true as well 1 .

Conjecture 1.0.2. If an affine variety Y admits no effective G a -and G m -actions, then Aut(Y ) is a discrete group. Some partial results on these conjectures can be found e.g. in [1, Theorem 2.1], [START_REF] Iitaka | On logarithmic Kodaira dimension of algebraic varieties[END_REF]Proposition 5], [START_REF] Jelonek | On the group of automorphisms of a quasi-affine variety[END_REF][START_REF] Jelonek | Automorphisms of affine smooth varieties[END_REF], [START_REF] Kishimoto | Group actions on affine cones, Affine algebraic geometry[END_REF]Theorems 4.4 and 4.7], [START_REF] Kraft | Automorphism groups of affine varieties and a characterization of affine n-space[END_REF]Theorem 1.3 and Section 7], and [START_REF] Perepechko | When is the automorphism group of an affine variety nested?[END_REF][START_REF] Perepechko | Automorphism groups of affine varieties without non-algebraic elements[END_REF]. Conjecture 1.0.1 holds, for instance, for toric affine varieties, see [START_REF] Boldyrev | Automorphisms of nonnormal toric varieties[END_REF]Theorem 3]. In the present paper we establish Conjecture 1.0.1 in the case dim Y = 2.

Theorem 1.0.3. Let Y be a normal affine surface over K. Then the following hold.

(a) Aut See Definition 3.2.1 for birationally rigidity of a weighted graph. As a corollary, we establish the following effective combinatorial criterion of rigidity, cf. Corollary 4.3.5.

Corollary 1.0.4. In the setup of Theorem 1.0.3 the surface Y is rigid if and only if Γ(D) has no non-admissible extremal linear segment.

An extremal linear segment of a weighted graph Γ is a maximal linear subgraph with no branching point of Γ which contains a tip of Γ. It is admissible if all its weights are ≤ -2, see Definitions 2.7.1 and 3.1.2.

Using Corollary 1.0.4 we show that the affine surface Y = P 2 \ supp D, where D is a reduced effective divisor on P 2 with only nodes as singularities, is rigid if and only if deg(D) ≥ 3, see Example 4.3.6.

The first part of Theorem 1.0.3 was announced in [START_REF] Kishimoto | Group actions on affine cones, Affine algebraic geometry[END_REF]Proposition 4.7]. Our approach goes back to the work of Danilov and Gizatullin [START_REF] Danilov | Automorphisms of affine surfaces[END_REF]. Namely, the automorphism group Aut(Y ) can be realized as a group of birational transformations between the NC-completions of Y , i.e., the completions (X, D) with a normal projective surface X and a normal crossing boundary divisor D contained in a smooth part of X.

Our main instrument is the birational transformations of weighted graphs. Different aspects of this subject were developed e.g. in [START_REF] Daigle | Classification of weighted graphs up to blowing-up and blowing-down[END_REF][START_REF] Daigle | Classification of linear weighted graphs up to blowing-up and blowing-down[END_REF][START_REF] Danilov | Automorphisms of affine surfaces[END_REF][START_REF] Eisenbud | Three-dimensional link theory and invariants of plane curve singularities[END_REF][START_REF] Flenner | Birational transformations of weighted graphs[END_REF][START_REF] Flenner | Q-acyclic surfaces and their deformations, Classification of algebraic varieties[END_REF][START_REF] Fujita | On the topology of non-complete algebraic surfaces[END_REF][START_REF] Gizatullin | Invariants of incomplete algebraic surfaces obtained by means of completions[END_REF][START_REF] Hirzebruch | The topology of normal singularities of an algebraic surface (after D. Mumford)[END_REF][START_REF] Neumann | On bilinear forms represented by trees[END_REF][START_REF] Orevkov | Some estimates for plane cuspidal curves, in: Séminaire d'algèbre et géométrie, journées singulières et jacobiennes[END_REF][START_REF] Ramanujam | A topological characterization of the affine plane as an algebraic variety[END_REF][START_REF] Russell | Some formal aspects of the theorems of[END_REF], etc. We consider, more generally, weighted graphs with a distinguished subset of marked vertices called rational. In the case where our graph Γ is the dual graph of a finite collection of curves on a surface, the rational vertices of Γ correspond to rational curves.

Section 2 contains preliminaries on NC-completions, their dual graphs and birational transformations of weighted graphs. For the sake of completeness we provide thorough proofs of some known results.

In Section 3 we discuss birationally rigid weighted graphs. A weighted graph Γ is minimal if it has no rational vertex of degree ≤ 2 and of weight -1, and birationally rigid if it is minimal and any birational transformation Γ Γ where Γ is a minimal weighted graph is an isomorphism, see Definition 3.2.1.

The proof of Theorem 1.0.3 is done in Section 4, see Theorem 4.3.4. Let us indicate the main ingredients of the proof.

• It is well known that any birational transformation between smooth surfaces can be decomposed into a sequence of blowups and blowdowns. The theory of birational transformations of weighted graphs is parallel to that of birational transformations of NC-pairs. • Namely, to every birational transformation of an NC-pair (X, D) there corresponds a birational transformation of the dual graph Γ(D) and vice versa, see Proposition 2.7.8 and Lemma 2.7.11. These facts imply that Y is rigid if and only if the minimal graph Γ(D) is birational rigid. Now Corollary 1.0.4 follows immediately.

• A blowup of an NC-pair (X, D) is called inner if its center is a node of D. A blowdown is inner if so is the inverse blowup. A birational transformation is inner if it is composed of inner blowups, inner blowdowns and isomorphisms, see Definitions 2.2.1-2.2.2. • Let Bir(X, D) stand for the subgroup of Bir(X) of birational transformations biregular on Y = X \D. Then the inner birational transformations of (X, D) form a subgroup of Bir(X, D) denoted Inn(X, D). • Similar definitions can be applied for birational transformations of weighted graphs, see Definitions 2.3.4 and 2.3.7. To every inner birational transformation of an NC-pair (X, D) there corresponds a unique inner birational transformation of the dual graph Γ(D) and vice versa, see Proposition 2.7.8. • If a minimal weighted graph Γ is birationally rigid then any birational transformation of Γ can be replaced by an inner birational transformation, see Proposition 3.2. 

(Y ) = Aut • (X, D)
to be an algebraic torus.

These facts imply Theorem 1.0.3. As a side result we obtain that for a rigid normal affine surface Y the group Aut • (X, D) does not depend on the choice of a minimal NC-completion (X, D) of Y .

NC-pairs and dual graphs

We recall here the correspondence between compactifications of affine algebraic surfaces and weighted graphs following [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]. We use a slightly modified version of the terminology in [START_REF] Flenner | Birational transformations of weighted graphs[END_REF].

2.1. Birational transformations of NC-pairs. Definition 2.1.1. Let X be a normal projective surface over K and D be a reduced effective divisor on X. The pair (X, D) is called an N C-pair if D is a normal crossing divisor (i.e., the only singularities of D are nodes) contained in the smooth locus of X. An NC-pair (X, D) is called an SNC-pair if D is a simple normal crossing divisor, i.e., each component of D is smooth and any two components of D are disjoint or intersect at a single point.

Clearly, an NC-pair (X, D) is not an SNC-pair if and only if D has either a nodal component, or a pair of components with more than one point in common. As an example, one can consider the pair (P 2 , C), where C ⊂ P 2 is a nodal cubic curve. Any NC-pair is dominated by an SNC-pair. For instance, in the above example such a domination is obtained after blowing up P 2 in the node of C and one more blowing up in a node of the resulting curve, cf. Example 2.7.2. Definition 2.1.2. Let (X, D) and (X , D ) be NC-pairs. We denote by

(1) Bir((X, D), (X , D )) the group of birational transformations X X which restrict to biregular isomorphisms of the complements X \ supp D --→ X \ supp D ;

(2) Bir(X, D) the group Bir((X, D), (X, D));

(3) Aut(X, D) the group of biregular automorphisms of X that preserve D; Thus, the group Bir(X, D) Aut(Y ) does not depend on the completion (X, D) of Y = X \ supp D. However, the group Aut(X, D) generally depends on the chosen completion. For instance, for the completion of the affine plane A 2 → P 2 we have Aut(P 2 , P 1 ) Aff(A 2 ), whereas for the completion A 2 → P 1 × P 1 we have

Aut(P 1 × P 1 , P 1 × {∞} ∪ {∞} × P 1 ) Z 2 (Aff(A 1 )) 2 .

Inner transformations.

Definition 2.2.1. A blowup of an NC-pair (X, D) with center x ∈ D gives again an NC-pair. Such a blowup is called inner if x is a node of D and outer otherwise. A blowdown of a component of D is called inner (resp. outer ) if the inverse blowup is inner (resp. outer). Definition 2.2.2. A birational transformation (X, D) (X , D ) is called inner if it can be decomposed into a sequence of inner blowups, inner blowdowns and isomorphisms of NC-pairs. The subset of inner birational transformations Inn(X, D) ⊂ Bir(X, D) forms a subgroup. Lemma 2.2.3. We have

Aut • (X, D) ⊂ Aut (X, D) ⊂ Aut(X, D) ⊂ Inn(X, D) ⊂ Bir(X, D).
Proof. This is immediate from our definitions.

Lemma 2.2.4. Aut • (X, D) = (Aut (X, D)) • is a connected algebraic group.
Proof. It is well known that Aut • (X) is a connected algebraic group, see [START_REF] Matsumura | Representability of group functors, and automorphisms of algebraic schemes[END_REF][START_REF] Matsusaka | Polarized varieties, fields of moduli and generalized Kummer varieties of polarized abelian varieties[END_REF][START_REF] Ramanujam | A note on automorphism groups of algebraic varieties[END_REF], and so is its closed connected subgroup Aut • (X, D). Lemma 2.2.5. Every inner birational transformation φ : (X, D)

(X , D ) satis- fies the relation φ • Aut (X, D) = Aut (X , D ) • φ. In particular, Aut (X, D) is a normal subgroup of Inn(X, D).
Proof. It is enough to check the statement for an inner blowdown σ : (X 1 , D 1 ) → (X 2 , D 2 ). Indeed, σ induces an isomorphism

σ * : Aut (X 1 , D 1 ) -→ Aut (X 2 , D 2 ) where π * : α → σ • α • σ -1 .
Remark 2.2.6. The group Aut (X, D) is the kernel of the natural homomorphism Aut(X, D) → Aut(Γ(D)), where Γ(D) is the dual graph of D, see Definition 2.7.1. Proposition 2.2.7. The group Inn(X, D)/ Aut (X, D) is countable.

Proof. Since Aut(X, D)/ Aut (X, D) is a finite group, it suffices to show that Inn(X, D)/ Aut(X, D) is countable. We claim that any φ ∈ Inn(X, D) can be written as

(1) φ = ασ ±1 n • • • σ ±1 1 = σ ±1 n • • • σ ±1 1 β
where α, β ∈ Aut(X, D) and the σ i , σ i are inner blowdowns. Indeed, consider a commutative diagram

(X 1 , D 1 ) (X 1 , D 1 ) (X 2 , D 2 ) (X 2 , D 2 ) σ ±1 α 1 σ ±1 α 2
where σ and σ are inner blowdowns. Given a pair (σ , α 1 ) there exists a unique pair (σ, α 2 ) fitting in the diagram, and vice versa. Now the claim follows.

Therefore, any left coset in Inn(X, D)/ Aut(X, D) has the form ψ • Aut(X, D) for some

ψ = σ ±1 n • • • σ ±1 1 ∈ Inn(X, D).
These cosets form a countable set. 2.3. Weighted graphs. The birational geometry of NC-pairs has its combinatorial counterpart, namely, the birational geometry of weighted graphs, see the references in the Introduction.

Definition 2.3.1. Let Γ be a (nonempty) finite weighted graph with the set of vertices Vert(Γ) where vertices are weighted by integer numbers, and let Ratio(Γ) ⊆ Vert(Γ) be a distinguished subset of vertices which we call rational vertices. A rational vertex of weight -1 (resp. of weight 0) is called (-1)-vertex (resp. (0)vertex ). The graph Γ may be disconnected and may contain loops, cycles and multiple edges, that is, several edges joining the same pair of vertices. Definition 2.3.2.

• Given a weighted graph Γ, the degree deg Γ (v) of a vertex v ∈ Vert(Γ) is the number of incident edges of Γ at v, where a loop [v, v] is counted twice. We simply write deg(v) when the graph Γ has been fixed.

• A rational vertex v of Γ is called an end vertex if deg(v) = 1, linear if deg(v) = 2
and at most linear if deg(v) ≤ 2 and no loop of Γ is incident with v. We let End(Γ) be the set of end vertices of Γ.

• A vertex v is called branching if either v is non-rational or deg(v) ≥ 3.
We let Br(Γ) be the set of all branching vertices of Γ. Thus, Vert(Γ)\Ratio(Γ) ⊆ Br(Γ). • Given a vertex v ∈ Γ, the connected components of Γ \ {v} linked to v are the branches of Γ at v. A branch linked to v via exactly one edge is called simple.

Definition 2.3.3. Let Γ be a weighted graph with vertices v 1 , . . . , v n . The intersection form I(Γ) is a bilinear form on R n given by the symmetric square matrix A(Γ) = (a i,j ) where a i,i is the weight of v i and for j = i, a i,j equals the number of edges between v i and v j . The discriminant of Γ is the determinant det(-A(Γ)). We let i + (Γ), i -(Γ) and i 0 (Γ) be the inertia indices of the quadratic form I(Γ). 

4 if v 1 = v 2 (i.e. [v 1 , v 2 ] is a loop).
The outer blowup at a vertex v in Γ consists in introducing a new (-1)-vertex v along with a new edge [v, v ] and decreasing the weight of v by 1.

The modifications inverse to inner and outer blowups are called inner and outer blowdowns, respectively. Proof. Letting Vert(Γ) = {v 1 , . . . , v n } consider the R-vector space V = i Rv i with the dot product given by I(Γ). The symmetric matrix M n of I(Γ) is diagonal in a suitable orthogonal basis {e 1 , . . . , e n } of V .

A blowup δ : Γ Γ creating a vertex v n+1 induces a map δ * :

V → V = n+1 i=1 Rv i defined by δ * : v → v + I(Γ )(v, v n+1 )v n+1 .
The vector v n+1 is an eigenvector of the matrix M n+1 of I(Γ ) with eigenvalue -1. One can check that I(Γ ) restricted on δ * (V ) coincides with δ * I(Γ) and v n+1 is orthogonal to δ * (V ). The orthogonal basis in V of the eigenvectors δ * (e 1 ), . . . , δ * (e n ), v n+1 is diagonalizing for M n+1 , which proves the claim. Remark 2.3.6. In the case where Γ = Γ(D) is the dual graph of an NC-divisor D on a smooth surface X and δ : X → X is the blowup of a point on D, the homomorphism δ * sends any divisor N supported on supp D to its total transform δ * (N ) on X , and v n+1 represents the exceptional (-1)-curve of δ. The properties of δ * used in the proof follow in this case from the Projection Formula. Definition 2.3.7. A birational transformation of weighted graphs φ : Γ Γ is a finite sequence of blowups, blowdowns and isomorphisms. If all these blowups and blowdowns are inner, then φ is called inner. Two weighted graphs are called birationally equivalent if one can be transformed into the other by means of a birational transformation.

From Proposition 2.3.5 we deduce the following Corollary 2.3.8. The inertia indices i + (Γ) and i 0 (Γ) are birational invariants.

Remarks 2.3.9. 1. The definition of inner birational transformations of weighted graphs in [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]Definitions 2.3 and 2.8] has a broader meaning. Indeed, the inverse of an outer blowup is considered in loc.cit. to be inner. With our more restrictive definition the inverse of an inner transformation is inner, while the inverse to an outer blowup is not. Cf. also Remark 2.7.2 below.

2. Given a weighted graph Γ and a sequence φ of blowups, blowdowns and isomorphisms, the final graph Γ appears usually as the result of applying φ to Γ. If, besides isomorphisms, φ includes also blowups or blowdowns, then one can ignore the isomorphisms which participate in φ by simply renaming the created graphs, including the final one. If Γ = Γ, then one can reduce to a single isomorphism either before or after the sequence of blowups and blowdowns, see [START_REF] Arzhantsev | The automorphism group of a rigid affine variety[END_REF].

3. A birational transformation of weighted graphs φ : Γ Γ is not a mapping of graphs: in general, it is not well defined neither on the sets of vertices nor on the sets of edges. Nonetheless, given a second birational transformation φ : Γ Γ the composition φ • φ : Γ Γ is a well defined birational transformation of weighted graphs. The identical map and the inverse φ -1 : Γ Γ are well defined too. Definition 2.5.2. Given a blowup δ : Γ Γ we define the image of a vertex v ∈ Vert(Γ) as being the vertex δ(v) and the image of an edge e = [u, v] where u, v ∈ Vert(Γ) as being the edge [δ(u), δ(v)] except in the case where δ is the inner blowup at e; in the latter case δ(e) is the path of length 2 joining δ(u) and δ(v) which contains the vertex introduced by δ. We define the image δ(∆) of a subgraph ∆ ⊂ Γ as being the subgraph of Γ whose vertices and edges are images of the vertices and edges of ∆ including the blown-up vertices.

Given a blowdown σ : Γ → Γ and a subgraph ∆ ⊂ Γ we define the preimage σ -1 (∆) as being the image of ∆ under the blowup δ = σ -1 . We extend this notion inductively to any birational morphism φ :

Γ 1 → Γ 2 . Recall that a subgraph ∆ of Γ is induced if ∆ contains every edge of Γ that connects vertices of ∆. Lemma 2.5.3. Consider a birational morphism φ : Γ → Γ. (a) The preimage φ -1 (γ) of a simple path γ connecting vertices u, v ∈ Vert(Γ) is a simple path connecting φ -1 (u) and φ -1 (v). (b) The preimage φ -1 (∆) of a subgraph ∆ ⊂ Γ is a subgraph of Γ homeomorphic to ∆, i.e. the associated simplicial 1-complexes are homeomorphic as topological spaces. If ∆ ⊂ Γ is an induced subgraph then so is φ -1 (∆) ⊂ Γ .
Proof. These statements can be easily checked for a single blowdown. Therefore, they hold for an arbitrary φ.

Let us introduce the following notions.

Definition 2.5.4. Given a weighted graph Γ we say that two birational morphisms

p i : Γ → Γ i , i = 1, 2, are equivalent if there is a (uniquely defined) isomorphism of weighted graphs ι : Γ 1 → Γ 2 such that p -1 1 (∆) = p -1 2 (ι(∆)) for any subgraph ∆ ⊂ Γ 1 .
If this holds for Γ 1 = Γ 2 with ι = id then we say that p 1 and p 2 are equal and we write p 1 = p 2 . We say that a diagram of weighted graphs

Γ Γ 1 Γ 2 p 1 p 3 p 2
where the p i are birational morphisms of graphs, commutes if

p 3 • p 1 = p 2 . In the latter case the diagram Γ Γ 2 Γ 1 p 2 p -1 3 p 1
is also called commutative. Square commutative diagrams of birational morphisms and more complicated commutative diagrams are defined in a similar way.

Lemma 2.5.5.

(a) Given a birational morphism φ : Γ → Γ there is a contraction

p : Γ → Γ equiv- alent to φ. (b) Consider a composition Γ φ → Γ 1 σ → Γ 2 of
a birational morphism φ and a blowdown σ of a vertex v which is not adjacent in Γ to any vertex contracted by φ. Then there exists a birational morphism φ : Γ → Γ 2 equivalent to φ and starting with the blowdown of v. (c) Consider a birational morphism φ : Γ → Γ 1 and a (-1)-vertex v ∈ Vert(Γ) contracted by φ. Then there exists a birational morphism φ : Γ → Γ 2 equivalent to φ and starting with the blowdown σ v of v.

Proof. (a) We obtain the desired contraction by blowing down the vertices of Γ blown down by φ in the same order as this is done under φ.

(b) The weight of v is -1 both in Γ and Γ 1 , and the weight of any vertex contracted by φ is the same in Γ and after the blowdown of v in Γ. Thus, we obtain φ by contracting v first and then contracting all the vertices contracted by φ in the same order. The weights of the non-contracted vertices are the same under σ • φ and φ . Now the assertion follows.

(c) The vertex v does not change its weight under φ v , hence it is adjacent to no vertex contracted by φ v . The claim follows now from (b) applied to φ v and σ v . Proposition 2.5.6. Two birational morphisms φ i : Γ → Γ i , i = 1, 2 are equivalent if and only if the subsets of vertices of Γ contracted by φ 1 and φ 2 coincide.

Proof. The 'only if' part is clear. To show the 'if' part assume that each vertex contracted by φ 1 is contracted by φ 2 and vice versa. If there are no contracted vertices in Γ, then both φ 1 and φ 2 are isomorphisms and it suffices to set ι = φ 2 •φ -1 1 , see Definition 2.5.4. Let now v ∈ Vert(Γ) be a (-1)-vertex contracted by the φ i . By Lemma 2.5.5(c), up to equivalence we may suppose that both φ 1 and φ 2 start with the blowdown σ v of v. This reduces the assertion to the one for the birational morphisms φ i : σ v (Γ) → Γ i . Now the induction by the number of contracted vertices ends the proof. 

: (X 1 , D 1 ) (X 2 , D 2 ) fits in a commutative diagram (2) ( X, D) (X 1 , D 1 ) (X 2 , D 2 ) P 1 Φ P 2
where every P i is a composition of an isomorphism and blowdowns of smooth rational (-1)-components of boundary divisors and all the intermediate pairs are NC-pairs.

Proof. Any birational transformation of smooth projective surfaces Φ :

X 1 → X 2 fits in a commutative diagram X X 1 X 2 P 1 Φ P 2
where P i is a composition of an isomorphism and blowdowns of smooth rational (-1)-curves, see e.g. [START_REF] Mumford | Algebraic Geometry. I: Complex projective varieties[END_REF]Corollaries (8.10)- (8.11)] or [START_REF] Beauville | Complex algebraic surfaces[END_REF]Corollary II.12]. This can be applied as well in our setting after a simultaneous resolution of singularities of X 1 and X 2 . Indeed,

Φ| X 1 \supp D 1 : X 1 \ supp D 1 → X 2 \ supp D 2 is a biregular isomorphism and X i is smooth near D i . Notice that P -1 i
is either isomorphism or a composition of blowups with smooth centers. A blowup of an NC-pair (X, D) in a point of D yields an NC-pair. Hence all the intermediate pairs in the decomposition

P i : ( X, D) σ i,n i -→ (X i,n i -1 , D i,n i -1 ) -→ • • • -→ (X i,2 , D i,2 ) σ i,2 -→ (X i,1 , D i,1 ) = (X i , D i ) are NC-pairs.
To formulate an analog of this lemma for birational transformations of weighted graphs one needs to define the meaning of the corresponding commutative diagram. Definition 2.6.2. Consider a diagram of weighted graphs

(3) Γ Γ 1 Γ 2 p 1 p 2
where the p i are birational morphisms of graphs. Consider also a birational transformation φ : Γ 1 Γ 2 written as (4)

φ : Γ 1 = ∆ 1 ψ 1 ∆ 2 ψ 2 • • • ψ n-2 ∆ n-1 ψ n-1 ∆ n = Γ 2
where the ∆ i are weighted graphs and for n > 1 exactly one of the ψ i and ψ i+1 is a birational morphism and the other one is the inverse of a birational morphism. We say that φ fits in (3) and that (3) dominates φ if ( 4) is included in a sequence of commutative diagrams ( 5)

Γ ∆ i ∆ i+1 η i ψ i η i+1
where η 1 = p 1 and η n = p 2 ; see Definition 2.5.4. 

= p 2 • p -1 1 : Γ 1 Γ 2 .
Thus, starting with a diagram (3) we come to a birational transformation φ . In the next proposition we show that, conversely, given a birational transformation of weighted graphs one can construct a corresponding diagram (3). Proposition 2.6.4 (see [13, Remark A1(1)]). Let φ : Γ 1 Γ 2 be a birational transformation of weighted graphs. Then φ fits in a diagram (3) for some Γ, p 1 , p 2 .

Proof. The assertion is evidently true if φ is an isomorphism. Assuming this is not the case, up to an isomorphism of Γ 2 , we can write φ as in (4) with every ψ i being a product of blowdowns or the inverse of such a product, see Remark 2.3.9.2. For n = 1 our assertion is obvious.

Assume now that n = 2 and φ = σ -1 2 σ 1 where the σ i : Γ i → Γ 0 are blowdowns. If both σ -1 1 and σ -1 2 are inner blowups of the same edge of Γ 0 , then the graph Γ = Γ 1 = Γ 2 dominates both Γ 1 and Γ 2 via isomorphisms. Otherwise, applying simultaneously both of them one transforms Γ 0 into a graph Γ with two distinct vertices v 1 and v 2 such that Γ dominates Γ 1 (resp., Γ 2 ) via the contraction p 1 of v 2 (resp., p 2 of v 1 ). This produces a desired diagram [START_REF] Beauville | Complex algebraic surfaces[END_REF].

Γ 0,2,3 = Γ + Q Q Q Q Q s Γ 0,2,2 -Γ 0,1,3 + Q Q Q Q Q s + Q Q Q Q Q s Γ 0,2,1 -Γ 0,1,2 -Γ 2,3 = Γ 2 + Q Q Q Q Q s + Q Q Q Q Q s + σ 2,3 Γ 1,2 = Γ 1 -Γ 0,1,1 -Γ 2,2 Q Q Q Q Q σ 1,2 s + Q Q Q Q Q s + σ 2,2 Γ 1,1 -Γ 2,1 Q Q Q Q Q σ 1,1 s + σ 2,1 Γ 0 Figure 1. Construction of diagram (3) for m 1 = 2 and m 2 = 3.
Let further n = 2 and φ = ψ -1 2 ψ 1 , where this time the ψ i stand for birational morphisms. We can write

ψ i = σ i,1 • • • σ i,m i : Γ i = Γ i,m i → Γ 0 = Γ i,0
where σ i,j : Γ i,j → Γ i,j-1 is a blowdown, i = 1, 2. Applying the preceding case to the composition σ -1 2,1 σ 1,1 : Γ 1,1 Γ 2,1 we can find a weighted graph Γ 0,1,1 which dominates both Γ 1,1 and Γ 2,1 making the square diagram commutative, see Figure 1. The same procedure applied to the pairs {Γ 2,2 , Γ 0,1,1 } and {Γ 0,1,1 , Γ 1,2 } yields two new graphs Γ 0,1,2 and Γ 0,2,1 which dominate the corresponding pairs. Continuing in this way we fill in a commutative diagram in the form of a lattice parallelogram consisting of (m 1 + 1)(m 2 + 1) weighted graphs and their morphisms. This parallelogram has the pairs of opposite vertices {Γ 1 , Γ 2 } and {Γ 0 , , Γ}, where Γ = Γ 0,m 1 ,m 2 dominates both Γ 1 and Γ 2 via sequences of blowdowns inducing φ, see Figure 1 for m 1 = 2 and m 2 = 3. This yields the assertion for n = 2.

Proceeding by induction on n we assume that n ≥ 3 and we choose i ≥ 2 such that ψ -1 i and ψ i-1 in (4) are morphisms. By the preceding, the product ψ i ψ i-1 can be replaced by ρ i ρ i-1 where this time ρ i and ρ -1 i-1 are morphisms. Replacing now ψ i+1 ρ i by ψ i+1 provided i ≤ n -1 and ρ i-1 ψ i-2 by ψ i-2 provided i ≥ 3 we transform (4) into a shorter decomposition of the same type. This gives the inductive step.

The graph Γ in diagram (3) constructed in the proof dominates every pair of intermediate graphs obtained under our procedure. In particular, φ fits in this diagram, see Definition 2.6.2.

Remark 2.6.5. Given a birational map φ : Γ 1 Γ 2 fitting in (3), the graph Γ is not uniquely defined, in general; see Figure 2 for a simple example. In this example Γ 1 and Γ 2 are isomorphic linear graphs, the σ i are blowdowns of (-1)-vertices and φ = σ -1 2 • σ 1 : Γ 1 Γ 2 is a birational map. The morphisms p 1 and p 2 in the first diagram on Figure 2 are isomorphisms, while p 1 and p 2 in the second diagram are blowdowns of distinct (-1)-vertices of Γ . The vertical arrows in both diagrams correspond to the left arrow in diagram [START_REF] Cantat | On degrees of birational mappings[END_REF] According to the following lemma, for any pair of birationally equivalent minimal weighted graphs Γ 1 and Γ 2 there is a weighted graph Γ and birational morphisms p i : Γ → Γ i that form a relatively minimal diagram (3). Lemma 2.6.8 (cf. [13, Remark A1(1)]). Given a diagram (3) with minimal weighted graphs Γ 1 and Γ 2 there exist birational morphisms

with i = 2. Γ -1 1 Γ 1 -1 1 Γ 2 -1 1 Γ 0 2 Γ -1 -1 0 Γ 1 -1 1 Γ 2 -1 1 Γ 0 2 p 1 σ 1 σ 2 p 2 p 1 σ 1 σ 2 p 2 Figure 2.
Γ ψ -→ Γ p i -→ Γ i , i = 1, 2 such that p i is equivalent to p i • ψ for i = 1, 2 and Γ , p 1 , p 2 form a relatively minimal diagram (3).
Proof. Let v ∈ Vert(Γ) be a (-1)-vertex contracted by both p 1 and p 2 . Replacing the p i by equivalent birational morphisms Γ → Γ i as in Lemma 2.5.5(c) we may suppose that both p 1 and p 2 start with the same blowdown σ v : Γ → Γ v of v and there are the factorizations

p i : Γ σv -→ Γ v p v,i -→ Γ i
where Γ v , p v,1 and p v,2 form a diagram [START_REF] Beauville | Complex algebraic surfaces[END_REF]. Now the recursion on the number of vertices of Γ ends the proof.

Remark 2.6.9. Notice that under the assumptions of Lemma 2. The notions of inner and outer blowups of an NC-pair are consistent with the notions of inner and outer blowups of the dual graph Γ(D), respectively.

Example 2.7.2. Recall that any non-complete normal algebraic surface Y admits an SNC-completion (X, D), where Y = X \ supp D, and an NC-completion with a minimal dual graph.

For example, if X = P2 and D is a nodal cubic, then Γ(D) is minimal and consists of a single vertex of weight 9 and a loop. So the pair (P 2 , D) is an NC-completion of the affine surface Y = P 2 \D with a minimal dual graph. There exists a non-minimal SNC-completion (X, D 1 ) whose dual graph Γ(D 1 ) is a cycle with three rational vertices and a cyclically ordered sequence of weights ((-2, -1, 4)). Moreover, there exists a minimal such completion with a sequence of weights ((0, 0, -2, -2, -2, -2, -3)). Thus, two minimal cyclic graphs with rational vertices and the cyclically ordered sequences of weights ((9)) and ((0, 0, -2, -2, -2, -2, -3)), respectively, are birationally equivalent.

Similarly, one can show that for any a, b > 0 the minimal linear graphs with sequences of weights 

( X, D) (X , H red ) (X, D) π Φ π
where Φ is a birational map which extends id Y and ( X, D) is an NC-completion of Y . By the above argument the effective divisor

H = π * (H ) on X with supp H = supp D is nef. The effective divisor H = π * ( H) on X with supp H = supp D is nef too. Indeed, if C is a curve on X then, by the Projection Formula, H •C = H •π * (C) ≥ 0.
In more detail, first we resolve the singularities of Y in X and X simultaneously, then apply the Projection Formula, and finally contract the exceptional divisors, which does not affect the resulting inequalities. This proves statement (a). Since H 2 ≥ 0 and H = 0, the intersection form I(Γ(D)) cannot be negative definite. By Lemma 2.4.4 the graph Γ(D) is non-contractible, hence also D is, as stated in (b).

Assume now that D = C is irreducible. Then C 2 > 0, see [19, Lemma 2], and the linear system |C| is ample by the Nakai-Moishezon criterion. If C is smooth and rational then X is rational as well, see [START_REF] Gizatullin | On affine surfaces that can be completed by a smooth rational curve[END_REF]Remarks 2 and 3] or [START_REF] Barth | Compact complex surfaces[END_REF]Proposition V.4.3]. This shows (c).

Remark 2.7.6. The assumption of nefness in (a) is a necessary condition for Y to be affine, but not sufficient. Indeed, the complement Y to a rational (0)-curve C on a smooth rational surface X is not affine because Y contains complete curves which are members of the linear pencil |C|, see e.g. [START_REF] Gizatullin | On affine surfaces that can be completed by a smooth rational curve[END_REF]. Notice that C is a nef divisor on X.

Lemma 2.7.5 justifies the following convention. Proof. The first statement clearly holds for a single blowup and a single blowdown of Γ(D). By recursion, it holds in the general case. The uniqueness follows by recursion from the facts that to an inner blowup of Γ(D) there corresponds the blowup of X at a uniquely defined node of D, and to a blowdown of a (-1)-vertex of Γ(D) there corresponds the contraction of a uniquely defined (-1)-component of D. In the case where C is an end (0)-vertex of Γ(D) and the center of blowup on C is a smooth point of D we have an outer elementary transformation; see [START_REF] Daigle | Classification of linear weighted graphs up to blowing-up and blowing-down[END_REF] for an example.

Let now D = C be a smooth rational curve and so Γ(D) consists of a single isolated vertex C of weight a = C 2 with no loop. Take two distinct points P 1 and P 2 of C. Blowing up P i produces an NC-pair (X i , D i ) whose dual graph Γ(D i ) has sequence of weights [[-1, a-1]]. Let σ i : X i → X be the blowdown of the exceptional curve. The pairs (X 1 , D 1 ) and (X 2 , D 2 ) are not isomorphic, in general, while the dual graphs Γ(D 1 ) and Γ(D 2 ) are. The corresponding birational transformation

Φ = σ -1 2 σ 1 : (X 1 , D 1 ) (X 2 , D 2 )
is not an isomorphism of pairs. It restricts to the identity on Y = X \ supp D. On the level of dual graphs, the birational map φ = σ -1 2 σ 1 : Γ(D 1 ) Γ(D 2 ) in the induced representation of Φ fits in the commutative diagram

Γ(D) -1 a -1 -1 a -1 Γ(D 1 ) a Γ(D 2 ) a -2 -1 Γ -1 φ σ 1 σ 2 p 1 p 2
where Γ is the dual graph of the pair ( X, D) obtained from (X, D) by blowing up the points P 1 and P 2 on X. Varying the positions of P 1 and P 2 on C yields nontrivial deformations of the participating pairs. Thus, Φ cannot be reconstructed in general from its representation φ = p 2 • p -1 1 once outer blowups are involved. We have the following geometric analog of Lemma 2.6.8. Proof. Starting with an arbitrary commutative diagram (2) we repeat the procedure in the proof of Lemma 2.6.8 on the geometric level. Namely, to each at most linear (-1)-vertex of Γ( D) there corresponds a (-1)-component C of D which meets transversally in at most two points the union of other components. If C is contracted under the both P i : X → X i , i = 1, 2 then there are factorizations

P i : X σ C -→ X P i -→ X i ,
where σ C stands for the contraction of C in X, see [START_REF] Beauville | Complex algebraic surfaces[END_REF]Proposition II.8]. This produces a new NC-pair ( X , D ) which still dominates the both (X i , D i ) fitting in a new diagram (2) with the same Φ : (X 1 , D 1 ) (X 2 , D 2 ). A simultaneous resolution of singularities of X 1 , X 2 and X does not affect our procedure. Hence we may assume that all these surfaces are smooth. We have ρ( X ) = ρ( X) -1 where ρ stands for the Picard rank, see e.g. [START_REF] Beauville | Complex algebraic surfaces[END_REF]Proposition II.3]. The induction on the Picard rank shows that this procedure ends with a relatively minimal diagram. Finally we contract simultaneously the exceptional divisors and arrive at the same conclusion for the original surfaces.

The Graph Lemma and birational rigidity of weighted graphs

In this section we elaborate a criterion as to when Bir(X, D) = Inn(X, D), see Theorem 3.2.5.

3.1. The Graph Lemma. The Graph Lemma 3.1.4 plays an important role when dealing with birational transformations of weighted graphs. It provides a criterion as to when every birational transformation corresponding to a relatively minimal diagram between two given weighted graphs is inner. We use the following terminology. Definition 3.1.1. For a proper subset V of Vert(Γ) we let Γ V be the subgraph of Γ obtained by deleting V and all its incident edges. The connected components of Γ Br(Γ) are called segments. We also call a segment a connected graph without branching vertices; such a graph coincides with its only segment.

A segment can be either linear or circular. A circular segment is a cycle in Γ which passes through no branching vertex; it is a connected component of Γ. Definition 3.1.2. Let Γ be a minimal weighted graph. A circular segment C of Γ is called admissible if either the weights of its vertices are ≤ -2, or it consists of a single vertex of weight ≤ 2 and a loop. A linear segment L of Γ is called admissible if the weights of its vertices are ≤ -2. It is called [START_REF] Arzhantsev | The automorphism group of a rigid affine variety[END_REF] extremal if L contains one or two end vertices of Γ;

(2) inner if L contains no end vertices of Γ. So the end vertices of L are linked to branching vertices of Γ.

The following Graph Lemma is based on [13, Proposition A1] and [11, Lemma 2.4(b)]. For the reader's convenience we provide a proof. In the proof we use the following notion. Definition 3.1.3. Let p : Γ → Γ be a a contraction. Recall that for a vertex v ∈ Vert(Γ) we denote by p v the maximal subsequence of blowdowns in p preserving v. We say that v is p-rigid if p v = p and the degree of v does not change under p v . Graph Lemma 3.1.4. Any relatively minimal diagram (3) with minimal weighted graphs Γ 1 and Γ 2 satisfies the following.

(a) For the branching sets we have

Br(Γ 1 ) = Br(Γ) ∩ Vert(Γ 1 ) = Br(Γ) ∩ Vert(Γ 2 ) = Br(Γ 2 ),
where Vert(Γ i ) is considered to be a subset of Vert(Γ), that is, we identify every vertex of Γ i with its preimage under p i in Γ. Furthermore, the degrees of the vertices in B := Br(Γ 1 ) = Br(Γ 2 ) do not change under the contractions p 1 and p 2 . (b) The image under p i of any connected component of Γ \ B is a segment of Γ i , i = 1, 2. This provides a one-to-one correspondence between the sets of circular, inner linear and extremal linear segments of Γ 1 and Γ 2 , respectively.

(c) If Br(Γ) = B, then both Γ 1 and Γ 2 contain non-admissible extremal linear segments. More precisely, for every v ∈ Br(Γ) \ B there are two simple branches W 1 and W 2 of Γ at v such that p 1 contracts W 1 and v and sends W 2 into a non-admissible extremal linear segment of Γ 1 , and symmetrically for p 2 . Moreover, deg Γ (v) = 3, there are exactly 3 branches of Γ at v and all of them are simple.

Proof of Graph Lemma 3.1.4. (a) Given a branching vertex v in Γ, there are the following implications:

v is contracted in Γ 1 v is contracted in Γ 2 v is not p 1 -rigid v is not p 2 -rigid (α) ( γ ) (β) ( δ )
Indeed, implications (α) and (β) follow from Definition 3.1.3. By symmetry, it suffices to show (γ). Assuming that v ∈ Br(Γ) is not p 1 -rigid there is a simple branch W 1 of Γ at v contracted by p v 1 . The latter follows from Lemma 2.5.1 if p 1 contracts v and from Definition 3.1.3 if p 1 = p v 1 contracts a branch W 1 at v and changes the degree of v. Indeed, assuming on the contrary that W 1 is not simple, the contraction of W 1 creates some loops at v without changing the degree of v, a contradiction.

Let v 1 be at most linear (-1)-vertex of W 1 contracted the first by p v 1 . Due to the relative minimality assumption, v 1 is not contracted by p 2 . On the other hand, p 2 (W 1 ) ⊂ Γ 2 contains no at most linear (-1)-vertex due to the minimality of Γ 2 . Since both W 1 and p 2 (W 1 ) are contractible, see Lemma 2.4.4(c), the latter is possible only if v is contracted by p 2 , and so (γ) follows.

It follows from the above diagram that Br(Γ) splits into two disjoint subsets, namely, the set B of vertices which are simultaneously p 1 -and p 2 -rigid and the set Br(Γ) \ B of vertices contracted by both p 1 and p 2 . This implies (a).

(b) By (a), any connected component of Γ\B is contracted by p i into a segment of Γ i , i = 1, 2. This provides a bijective correspondence between the sets of segments of Γ 1 and Γ 2 . It is easily seen that this correspondence has desired properties.

(c) Clearly, every non-rational vertex of Γ belongs to B. Given a vertex v ∈ Br(Γ)\B, v is rational and there are simple branches W 1 and W 2 of Γ at v contracted by p v 1 and p v 2 , respectively. Due to the relative minimality assumption, these branches are distinct. In fact, there are exactly 3 distinct branches W 1 , W 2 and W 3 of Γ at v, since p v 1 contracts W 1 , does not contract W 2 and p 1 contracts v. By the same reason deg Γ (v) = 3, that is, all the three branches of Γ at v are simple. Since W 1 is contracted in Γ 1 , it contains no vertex of B = Br(Γ 1 ) = Br(Γ 2 ); the latter also holds for W 2 . Hence p i (W j ) ∩ Br(Γ j ) = ∅ for i = j, i, j ∈ {1, 2}, that is, W i is a tree whose image under p j contains no branching point of Γ j . It follows that p i (W j ) is contained in a segment, say, S i of Γ i . We claim that the S i are linear, extremal and non-admissible.

Assume on the contrary that, say, S 1 is a circular segment of Γ 1 . Then p -1 1 (S 1 ) is a connected component of Γ which contains v and all three branches W 1 , W 2 and W 3 of Γ at v, where W 1 and W 2 are simple branches and trees and W 3 contains a cycle. Then p 1 (W 3 ) = S 1 ⊃ p 1 (W 2 ) = ∅, which is impossible. Thus, S 1 is linear and by symmetry also S 2 is. Clearly, both of these segments are extremal.

The contractible tree W i contains an at most linear (-1)-vertex, say, v i contracted in Γ i , i = 1, 2. Since Γ is relatively minimal, v i is not contracted by p j (j = i). Its weight can only increase under the contraction p j , and it must increase indeed as Γ j is minimal. Thus the extremal linear segment S j has a vertex p j (v i ) of non-negative weight, hence is non-admissible, which proves (c).

Example 3.1.5. We present on Figure 3 a graph Γ which dominates two minimal linear graphs Γ 1 and Γ 2 . The birational morphism p 1 contracts the branch W 1 of Γ and the vertex v, while p 2 contracts the branch W 2 and v. 3) is an isomorphism. We say that Γ 1 is admissible if all its segments are admissible.

Γ : a 0 v -3 v 1 -1 b 1 -2 v 2 -1 b 2 -2 W 1 W 2 Γ 1 : a 1 v 2 0 b 2 -2 Γ 2 : a 1 v 1 0 b 1 -2 p 1 p 2 Figure 
) ⊂ Vert(Γ) is contracted in Γ 2 . In particular, p 2 • p -1 1 in (
We have the following criterion of birational rigidity; cf. [START_REF] Flenner | Q-acyclic surfaces and their deformations, Classification of algebraic varieties[END_REF]Corollaries A.3 and A.4]. Notice that our birationally rigid graphs correspond to absolutely minimal graphs of [START_REF] Flenner | Q-acyclic surfaces and their deformations, Classification of algebraic varieties[END_REF].

Proposition 3.2.2. A minimal weighted graph Γ 1 is birationally rigid if and only if it is admissible.

Proof. Assume that all the segments of Γ 1 are admissible and, on the contrary, Γ 1 is not birationally rigid. Consider a relatively minimal diagram (3) with a minimal graph Γ 2 . Let v ∈ Vert(Γ) be the (-1)-vertex blown down the first under the morphism

p 2 : Γ → Γ 2 . Due to relative minimality of diagram (3), v is not contracted under p 1 : Γ → Γ 1 , that is, v ∈ Vert(Γ 1 ) ⊂ Vert(Γ).
According to Graph Lemma 3.1.4(a), v / ∈ B := Br(Γ 1 ) = Br(Γ 2 ), hence v lies on a segment S 1 of Γ 1 . Let w 1 (v) be the weight of v in Γ 1 and w(v) be its weight in Γ. Clearly, w(v) ≤ w 1 (v). If the admissible segment S 1 is is either linear or circular and contains at least two vertices, then we have -1 = w(v) ≤ -2, which is impossible. Let now S 1 be circular with a single vertex v of weight w 1 (v) ≤ 2, and let S be the preimage of S 1 in Γ. If S has at least two vertices, that is, the loop of S was blown up, then again -1 = w(v) ≤ -2 hold, a contradiction. If S contains a single vertex v, then v is incident to a loop in Γ, hence cannot be contracted in Γ 2 , which once again gives a contradiction.

To show the converse assume that Γ 1 has a non-admissible segment S 1 . Both Γ 1 and S 1 are minimal, so they are not contractible. Being non-admissible S 1 has a vertex v of weight a, where a ≥ 0 if S 1 is different from a circular segment with a single vertex and a ≥ 3 otherwise. Blowing up Γ 1 successively we reduce the weight of v to -1 while keeping it at most linear. In more detail, first we blowup at an edge [u, v] incident to v in Γ 1 unless Γ 1 consists of a single isolated vertex v; in the latter case we start with an outer blowup at v. Let e 1 be the (-1)-vertex created in the first step. In the second step, we blowup the edge [e 1 , v] creating a new vertex e 2 , etc. In the ith step we blowup the edge [e i-1 , v] by adding a new vertex e i . After k > 0 successive blowups, where k = a + 1 if S 1 is different from a circular segment with a single vertex and k = a -2 otherwise, we obtain a weighted graph Γ with the vertices e 1 , . . . , e k appearing in that order under our procedure. For i = 1, . . . , k -1 the weight of e i in Γ equals -2 while e k and v are at most linear (-1)-vertices of Γ. Notice that e k is the unique (-1)-vertex of Γ blown down under the contraction p 1 : Γ → Γ 1 of e k , . . . , e 1 in this order.

Starting with the blowdown of v in Γ we continue to blowdown the new appearing (-1)-vertices until we reach a minimal graph Γ 2 ; this yields a birational morphism

p 2 : Γ → Γ 2 .
By Lemma 2.4.4(c) the contractibility is a birational invariant. Hence Γ 2 is not empty. The graphs Γ, Γ 1 and Γ 2 along with the birational morphisms p i : Γ → Γ i form a diagram [START_REF] Beauville | Complex algebraic surfaces[END_REF].

After the blowdown of v under p 2 the weight of e k becomes 0 and remains ≥ 0 under the successive blowdowns which form p 2 . Thus, the only (-1)-vertex e k of Γ blown down under p 1 is not blown down under p 2 . This shows that the resulting diagram (3) is relatively minimal. Since the vertex v of Γ 1 is contracted in Γ 2 , the graph Γ 1 is not birationally rigid, see Definition 3.2.1.

Summarizing we get the following proposition. 1. The birational map φ := p 2 • p -1 1 : Γ 1 Γ 2 induces (a) a bijection between the sets of branching vertices Br(Γ 1 ) Br(Γ 2 ); (b) a bijection between the sets of segments that sends admissible (extremal, respectively) linear segments of Γ 1 to admissible (extremal, respectively) linear segments of Γ 2 and circular segments to circular ones; (c) isomorphisms between every pair of corresponding admissible linear (resp., admissible circular) segments; (d) an inner birational transformation between every pair of corresponding non-admissible non-extremal linear segments; (e) a birational transformation between every pair of corresponding nonadmissible extremal linear segments. 2. If the Γ i are circular graphs, then Γ in diagram (3) is also circular and the birational morphisms p i are inner. 3. If all extremal linear segments in either Γ 1 or Γ 2 are admissible, then the birational transformation φ = p 2 • p -1 1 : Γ 1 Γ 2 is inner and induces a bijection between the sets of end vertices End(Γ 1 ) End(Γ 2 ). 4. If φ is inner and the Γ i are linear graphs, then also Γ is a linear graph. 5. If φ is inner and the Γ i are linear graphs with two vertices, then φ : Γ 1 -→ Γ 2 is an isomorphism of weighted graphs.

Proof. Statement 1(a) follows from Graph Lemma 3.1.4(a). By Graph Lemma 3.1.4(b) we may restrict φ to any segment of Γ 1 extended by its incident edges and adjacent branching vertices. Such a restriction includes all the blowups and blowdowns in φ that happen on this segment, its incident edges and their successive images. It yields again a relatively minimal diagram (3) with minimal dominated graphs. Thus, 1(b) and 1(c) follow from Graph Lemma 3.1.4(b) and Proposition 3.2.2, respectively.

To prove 1(d) we have to show that a relatively minimal transformation between non-admissible non-extremal linear segments is inner with respect to the graphs Γ i and their successive images. Assuming the contrary, the connected component of Γ\ B corresponding to these segments contains a branching vertex v ∈ Br(Γ) \ B. Then by Graph Lemma 3.1.4(c) these segments are extremal, contrary to our assumption.

See [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]Lemma 2.7] for statement 2. Statement 3 is immediate from 1(c), 1(d) and statement 2. To show statement 4 it suffices to observe that an inner blowup cannot create a new branching point.

To show statement 5 suppose that the linear segment Γ in diagram (3) contains more than 2 vertices. Clearly, p i sends the end vertices of Γ to the end vertices of Γ i , cf. statement 3. Therefore, Γ contains a (-1)-vertex contracted in both Γ 1 and Γ 2 , which is impossible since our diagram (3) is relatively minimal. Hence Γ contains just 2 vertices, and so the p i are isomorphisms. Proof. By Lemma 2.7.11 any Φ ∈ Bir(X, D) fits in a relatively minimal commutative diagram [START_REF] Barth | Compact complex surfaces[END_REF]. Hence Φ = P 2 • P -1 1 , where P i : ( X, D) → (X, D) for i = 1, 2 is a birational morphism of NC-pairs composed of a sequence of blowups of X in points of D and infinitesimally near points and an isomorphism. Let p i : Γ( D) → Γ(D) be the birational morphism of dual graphs induced by P i , i = 1, 2. Then the induced birational transformation of dual graphs φ = p 2 •p -1 1 : Γ(D) Γ(D) (see Definition 2.7.1) fits in a relatively minimal diagram (3). According to Proposition 3.2.3 φ is an inner birational transformation of weighted graphs. Hence Φ is an inner birational transformation of NC-pairs, i.e. Φ ∈ Inn(X, D).

G a -actions and rulings by affine lines

In this section we show that Bir(X, D) = Inn(X, D) if and only if the surface Y = X \ supp D admits no G a -action. We deduce that in the latter case the identity component Aut • (X) is an algebraic torus, see Theorem 4.3.4.

G a -actions.

Recall that an A 1 -fibration, or an affine ruling, on a normal affine surface Y is a morphism Y → B to a smooth curve with a general fiber isomorphic to the affine line A 1 . The following lemma is well known, see e.g. [12, Lemma 1.6]; cf. the proof of Proposition 4.1.2. Lemma 4.1.1. Let Y be a normal affine surface. Given an A 1 -fibration π : Y → B over a smooth affine curve B there exists an SNC-completion (X, D) with the following properties:

• π extends to a P 1 -fibration π : X → B over the smooth completion B of B;

• there is a unique component S of D with S 2 = 0 which is a section of π;

• all the other components of D are smooth rational curves contained in fibers of π; • the dual graph Γ(D) is a minimal tree;

• the (0)-vertices of Γ(D) different from S belong to End(Γ(D)); these correspond to the components of D that are full fibers of π.

For the following facts see e.g. [ (ii) Y admits an A 1 -fibration over a smooth affine curve;

(iii) the dual graph Γ(D) has a non-admissible extremal linear segment.

For the convenience of the reader we provide a proof.

Proof. Assuming (iii) Γ(D) is birationally equivalent to a graph Γ with a (0)-vertex v of degree 1, see e.g. [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]Examples 2.11]. By Proposition 2.7.9 we can replace the original NC-completion (X, D) by a new one (X , D ) with Γ(D ) = Γ . The vertex v corresponds to a smooth rational component, say, C of D with C 2 = 0. Resolving singularities of X we obtain a smooth projective surface X with exceptional divisor E and a (0)-curve C. Indeed, the singular points of X being points of Y = X \ Supp D the resolution does not affect the divisor D . Such a curve C on X is a reduced member of a linear pencil with no base point, see e. In this subsection we prove the following result. We start with some preliminaries. is contained in a finite union of left cosets h i • Aut (X, D), i = 1, . . . , n. The latter union is closed in Bir(X, D), and also Bir(X, D) ≤d is. Hence their intersection Inn(X, D) ≤d is a closed algebraic subvariety of Bir(X, D) ≤d . Now the claim follows.

Proof of Proposition 4.2.3. We have Inn • (X, D) = lim -→ A i , where the A i ⊂ Inn(X, D) are closed irreducible algebraic subsets of the ind-group Inn(X, D) containing the identity, see [START_REF] Furter | On the geometry of automorphism groups of affine varieties[END_REF]Proposition 1.6.3]. By Lemma 4.2.6 for each i the image of A i in the quotient group Inn(X, D)/ Aut (X, D) is the identity, i.e. A i ⊂ Aut (X, D) and moreover, A i ⊂ (Aut (X, D)) • = Aut • (X, D), see Lemma 2.2.4. Then also Inn • (X, D) ⊂ Aut • (X, D). For the converse inclusion see Lemma 2.2.3. This proves the first assertion. The second follows from Lemma 4.2.6.

4.3.

Proof of the main theorem. The following lemma is well known. The third alternative approach 4 , is as follows. Suppose Y admits an effective G a -action. Consider an SNC-completion( X, D) of Y constructed in the proof of Proposition 4.1.2. Since X is rational the dual graph Γ( D) is a tree with only rational vertices, see Remark 4.1.3. The latter properties of Γ( D) are preserved under birational transformations. Hence Γ(D) is also a tree with only rational vertices. By the Bezout theorem this implies as before that deg(D) ≤ 2.

Appendix: Minimal models of weighted graphs

In this section we classify the weighted graphs with a unique up to isomorphism minimal model, and show that any other weighted graph has an infinite number of non-isomorphic minimal models, see Proposition 5.0.8. We use the following notation from [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]. We let [[w 1 , . . . , w n ]] stand for the linear segment with a sequence of weights of its vertices w 1 , . . . , w n . Similarly, we let ((w 1 , . . . , w n )) be the circular graph with a cyclically ordered sequence of weights w 1 , . . . , w n . We abbreviate by a k the sequence a, . . . , a k .

The following corollary of Propositions 3.2.2 and 3.2.3.1(a)-(c) is immediate.

Corollary 5.0.1. Let Γ be a birationally rigid minimal weighted graph. Then up to isomorphism Γ is a unique minimal graph in its class of birational equivalence.

However, the sufficient condition of birational rigidity in Corollary 5.0.1 is not a necessary one. In the following proposition we provide examples of non-birationally rigid minimal weighted graphs with a unique minimal model. We use the following definitions.

Definition 5.0.2 (Triangulation of a circular graph). Recall that a simplicial 2complex C is homeomorphic to a disc if and only if the incidence graph of triangles in C is a tree. Assume that all vertices of C lie on the boundary of the disc ∂C = B. Then the 1-complex B represents a circular graph; we assume that all its vertices are rational. To a vertex of degree k we prescribe the weight -k + 1. Under this setting we call C a triangulation of the weighted graph B, and we say that B is triangulable.

Definition 5.0.3. We say that an inner segment S of a weighted graph Γ is a charm earring if S consists of a single linear (0)-vertex adjacent to a branching vertex via two edges. We say that a minimal graph Γ is admissible modulo charm earrings if every non-admissible segment of Γ is a charm earring. Proposition 5.0.4. Let Γ 1 be either one of the graphs [[0]], ((3)), ((4)), ((0, m)) with m ≤ -2 and ((0, 0)), or a graph admissible modulo charm earrings. Then up to isomorphism Γ 1 is a unique minimal graph in its birational equivalence class.

Proof. Assume that Γ 2 is a minimal graph birationally equivalent to Γ 1 . By Lemma 2.6.8 there exists a relatively minimal diagram (3) with Γ that dominates Γ 1 and Γ 2 via birational morphisms p 1 resp. p 2 . We may suppose that p 1 is composed of n ≥ 1 blowdowns and p 2 also is composed of blowdowns. Let p -1 1 add vertices v 1 , . . . , v n in this order. By the relative minimality assumption p 2 cannot contract any (-1)-vertex of Γ among v 1 , . . . , v n . Since n ≥ 1 such a (-1)-vertex of Γ does exist.

Case 1:

Γ 1 = [[0]]. Let Vert(Γ 1 ) = {v 0 }.
We prove by induction that for every k = 1, . . . , n the following hold.

(i k ) The first k blowups in p -1 1 are outer and yield the graph [[-1, -2 k-1 , -1]], with vertices v 0 , . . . , v k appearing in this order; (ii k ) the further blowups in p -1 1 do not change the weights of v 0 , . . . , v k-1 ; (iii k ) the first k blowdowns in p 2 contract the vertices v 0 , . . . , v k-1 of Γ in this order.

Since p 2 contracts no (-1)-vertex of Γ different from v 0 and Γ {v 0 } is not minimal, (i 1 )-(iii 1 ) hold. Assume by induction that for some k ∈ {1, n -1}, (i k )-(iii k ) hold. By (ii k ), the (k + 1)st blowup in p -1

1 must be the outer blowup at v k , hence (i k+1 ) holds. Denote by Γ 2,k the image of Γ under the first k blowdowns in p 2 . By (iii k ), Γ 2,k {v k } coincides with Γ\{v 0 , . . . , v k } and contains the at most linear (-1)-vertex v n . Hence this graph is not minimal and no of its (-1)-vertices is contracted by p 2 . Thus, v k is the only vertex of Γ 2,k that can be contracted by the next blowdown. Its weight is -1 in Γ 2,k and -2 in Γ. Now (ii k+1 ) and (iii k+1 ) follow. By recursion (i n ) holds, i.e. Γ = [[-1, -2 n-1 , -1]]. So Γ 2 = [[0]] due to the minimality of Γ 2 .

Case 2: Γ 1 = ((m, 0)) with m ≤ -2. Since Γ 1 is circular, Γ is also circular, and p 1 , p 2 consist of inner blowdowns, see Proposition 3.2.3 [START_REF] Barth | Compact complex surfaces[END_REF]. Let Vert(Γ 1 ) = {u, v 0 }, where v 0 is the (0)-vertex. The same recursion as in Case 1 shows that for k = 1, . . . , n we have: (i k ) the first k blowups in p -1 1 yield the graph ((m-k, -1, -2 k-1 , -1)) with vertices u, v 0 , . . . , v k in this order; (ii k ) the further blowups in p -1 1 do not change the weights of v 0 , . . . , v k-1 ; (iii k ) the first k blowdowns in p 2 contract vertices v 0 , . . . , v k-1 .

The only additional observation that we need is the following: the weight of u in Γ 2,k-1 is at most m -k + (k -1) ≤ -3, so u cannot be contracted on the next step. Thus, we conclude as before that Γ 2 ∼ = ((m, 0)).

Case 3: Γ 1 = ((3)). After the first blowup we get Γ 1 = ((-1, -1)) with vertices v 0 and v 1 where v 1 is contracted in Γ 1 . The second blowup would change the weight of v 0 to -2, which is not possible since v 0 must be contracted under p 2 . So Γ 2 ∼ = ((3)).

Case 4: Γ 1 = ((4)). After the first blowup we get Γ 1 = ((-1, 0)). Letting now m = -1, the argument from Case 2 can be applied mutatis mutandis to Γ 1 instead of Γ 1 .

Case 5: Γ 1 is admissible modulo charm earrings. By Proposition 3.2.3, p 2 • p -1 1 : Γ 1 Γ 2 induces a bijection between Br(Γ 1 ) and Br(Γ 2 ), an isomorphism between the corresponding admissible segments of Γ 1 and Γ 2 and a birational transformation between every charm earring S of Γ 1 and the corresponding segment of Γ 2 . Let v 0 be the (0)-vertex of S adjacent to a vertex u ∈ Br(Γ 1 ). Since u cannot be contracted by p 2 , the argument of Case 2 can be applied to the circular subgraph of Γ 1 with vertices u and v 0 . This shows that p 2 • p -1 1 sends every charm earring of Γ 1 isomorphically onto a charm earring of Γ 2 and induces an isomorphism Γ 1 ∼ = Γ 2 .

Case 6: Γ 1 = ((0, 0)). We claim that the circular graph B which appears at any step of the birational transformation φ = p 2 • p -1 1 , except for the initial graph Γ 1 = ((0, 0)), is triangulable, see Definition 5.0.2. Indeed, the first blowup in p -1 1 yields the circular graph ((-1, -1, -1)) which has a triangulation with a single triangle. Assume a circular graph B is equipped with a triangulation C. Then the blowup of B at the edge [v i , v i+1 ] with a new vertex u results in gluing along the side [v i , v i+1 ] a new triangle to C with vertex u; this adds a new leaf to the incidence tree of triangles. Conversely, a blowdown of a (-1)-vertex v of B is expressed in removing the unique triangle in C with vertex v. This is always possible, except for B = ((-1, -1, -1)).

So Γ 2 is either ((0, 0)) or triangulable. In the latter case Γ 2 is not minimal. Indeed, the incidence tree of triangles associated with the triangulation C of Γ 2 contains a leaf that corresponds to a triangle with a vertex of weight -1.

Remark 5.0.5. An alternative approach is based on the following observation. Suppose we are in one of the first 4 cases or in case 6. We claim that Γ in the relatively minimal diagram (3) contains exactly two (-1)-vertices unless Γ = ((-1, -1, -1)). Indeed, let a graph Γ 1 be as in Proposition 5.0.4 but not an admissible graph modulo charm earrings. It is easily seen that for the inertia indices of Γ 1 we have i 0 (Γ 1 ) + i + (Γ 1 ) = 1. Let v be a (-1)-vertex of Γ that belongs to the image of Vert(Γ 1 ). We may suppose that Γ is not isomorphic to Γ 1 and is different from ((-1, -1, -1)). Then v is the unique (-1)-vertex of Γ contracted under p 2 . Assume on the contrary that Γ contains two distinct (-1)-vertices u 1 and u 2 different from v. They are not adjacent, see Corollary 2.4.5(b), are not contained among the vertices of Γ 1 and are not contracted under p 2 . Since Γ 2 is minimal, the weights of u 1 and u 2 in Γ 2 are non-negative. One can show that u 1 and u 2 in Γ 2 cannot be adjacent. Then the intersection form I(Γ 2 ) is semipositive definite on the vector subspace spanned by the mutually orthogonal vectors u 1 and u 2 . However, this contradicts the fact that i 0 (Γ 2 ) + i + (Γ 2 ) = i 0 (Γ 1 ) + i + (Γ 1 ) = 1, see Corollary 2.3.8. where k, n ≥ 0 and w i ≤ -2 ∀i. Similarly, a circular segment is called standard if it is one of the following:

((0 2k , w 1 , . . . , w n )), ((0 l , w)) and ((0 2k , -1, -1))

where k, l ≥ 0, n > 0, w ≤ 0 and w i ≤ -2 ∀i, see [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]Definition 2.13]. Notice that for w = 0 the second circular graph above becomes ((0 l+1 )). Any minimal segment is birationally equivalent to a standard one, see [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]Theorem 2.15(b)]. Moreover, for a minimal linear segment L its birational equivalence class contains at most two standard graphs related by a reversion For a minimal circular segment C, the standard graph is unique in the birational equivalence class up to a cyclic permutation of its nonzero weights and reversion, see [START_REF] Flenner | Birational transformations of weighted graphs[END_REF]Corrigendum,Corollary 3.33].

For instance, the circular graphs with sequences ((-1, -1)) and ((0, -1)), respectively, are the unique standard graphs in the respective birational equivalence classes of ((3)) and ((4)), while [[0]] is the unique standard graph in its birational equivalence class. Lemma 5.0.7. Let Γ be a (not necessarily minimal) non-contractible connected weighted graph. Assume that Γ has a (0)-vertex v which is either of degree 1 or of degree 2 with no incident loop and multiple edges. Then Γ admits an infinite number of non-isomorphic minimal models.

3 .

 3 • Let (X, D) be a minimal NC-completion of a rigid affine surface Y . Then the ind-group Aut • (Y ) =: Bir 0 (X, D) coincides with its closed ind-subgroup Inn • (X, D) of inner automorphisms, see Definitions 2.2.1, 2.2.2 and Theorem 3.2.5. • In turn, the identity component Inn • (X, D) coincides with the affine algebraic subgroup Aut • (X, D), see Proposition 4.2.3. • The absence of nontrivial unipotent subgroups forces Aut •

( 4 )

 4 Aut (X, D) the subgroup of Aut(X, D) of automorphisms preserving each component and each node of D; (5) Aut • (X, D) the identity component of Aut(X, D).

Remark 2 . 1 . 3 .

 213 The group Bir(X, D) is naturally isomorphic to the automorphism group of the complement Y = X \ supp D. Indeed, for g ∈ Bir(X, D) the restriction g| Y is an automorphism of Y , and any f ∈ Aut(Y ) extends to a unique birational transformation of X.

Proposition 2 . 3 . 5

 235 (cf. [34, Proposition 1.1], [40, [Proposition 1.14], [11, Lemma 4.6]). A blowup of a weighted graph Γ adds 1 to i -(Γ) while i + (Γ) and i 0 (Γ) remain unchanged.

2. 6 .

 6 Relatively minimal graphs. Recall the following well known fact. Lemma 2.6.1. Any birational transformation of NC-pairs Φ

Remark 2 . 6 . 3 .

 263 The graphs Γ 1 and Γ 2 in diagram (3) are birationally equivalent via the birational transformation φ

  6.8 the resulting relatively minimal diagram (3) is not unique, in general, see Example 3.1.5 and [11, Example 2.6]. For the both examples, in the corresponding relatively minimal diagram (3) we have Γ 1 = Γ 2 Γ. So in both cases there is a second relatively minimal diagram (3) with Γ = Γ 1 = Γ 2 . 2.7. Dual graphs. Let us recall the correspondence between NC-pairs and weighted graphs. Definition 2.7.1. Given an NC-pair (X, D) the dual graph Γ(D) is a weighted graph whose vertices are in bijection with the irreducible components of D and edges are in bijection with the nodes of D. The loops of Γ(D) at a vertex C are in bijection with the self-intersection points of the component C of D, and the edges joining two different vertices C 1 and C 2 of Γ(D) are in bijection with the points of C 1 ∩ C 2 . The weight of C in Γ(D) is the self-intersection index C 2 of the component C in X. The rational vertices in Ratio(Γ(D)) correspond to the rational components of D. An NC-pair (X, D) is an SNC-pair if and only if Γ(D) contains no loops and multiple edges. Clearly, any NC-pair is dominated by an SNC-pair. An NC-pair (X, D) is called minimal if the dual graph Γ(D) is minimal.

[ 1 ,

 1 [a]], [[-2, -2, . . . , -2, 0, 0 a+1 ]] and [[-2, . . . , -2, -3 a--2, . . . , -2, 0, 1 b+1 ]] are birationally equivalent, cf. Proposition 5.0.8. The following criterion of affiness is a particular case of the Goodman criterion [21, Theorem 1]. Lemma 2.7.3. Let (X, D) is an NC-pair. The open surface Y = X \ supp D is affine if and only if there is a sequence of blowups φ : X → X in the points of supp D and infinitesimally near points such that supp φ * (D) coincides with the support of an effective ample divisor on X. Remark 2.7.4. In particular, if supp D coincides with the support of an effective ample divisor then Y is affine. Anyway, if Y is affine then supp D is connected and cannot be contractible, see the next Lemma 2.7.5. The assumption that the surface Y = X \ supp D is affine imposes severe restrictions on the dual graph Γ(D). Lemma 2.7.5. Let (X, D) be an NC-pair such that the surface Y = X \ supp D is affine. Then the following hold. (a) supp D is connected and supports a nef 2 divisor. (b) The dual graph Γ(D) is connected, the intersection form I(Γ(D)) is not negative definite, and D and Γ(D) are not contractible. (c) If D = C is a curve, then C 2 > 0 and the linear system

2. 7 . 7 .

 77 Convention. We consider in the sequel only weighted graphs Γ with no contractible connected component. Definition 2.7.8. Every decomposition of Φ ∈ Bir((X 1 , D 1 ), (X 2 , D 2 )) into a sequence of isomorphisms, blowups and blowdowns induces a birational transformation of dual graphs φ : Γ(D 1 ) Γ(D 2 ) called a representation of Φ.Concerning the inverse correspondence, one has the following result.Proposition 2.7.9 (cf.[START_REF] Flenner | Birational transformations of weighted graphs[END_REF] Proposition 3.34]). Given an NC-pair (X, D) and a birational transformation of the dual graph φ : Γ(D) Γ consisting of a sequence of blowups and blowdowns one can find a new NC-pair (X , D ) and a birational transformation of NC-pairs Φ : (X, D) (X , D ) such that Φ| X\supp D : X \ supp D → X \ supp D is an isomorphism and Φ is represented by φ; in particular, Γ(D ) = Γ . If φ contains no outer blowups then Φ is uniquely defined up to isomorphism of NCpairs.

Remark 2 . 7 . 10 .

 2710 Let (X, D) be an NC-pair, and let C be a smooth component of D which corresponds to a non-isolated at most linear (0)-vertex of Γ(D). Blowing up a node of D on C and contracting the proper transform of C yields a birational transformation Φ of (X, D) called an inner elementary transformation. The corresponding birational transformation φ of Γ(D) is also called elementary; it affects the weights of the neighbors of C in Γ(D).

Lemma 2 . 7 . 11 .

 2711 Any birational transformation of NC-pairs Φ : (X 1 , D 1 ) (X 2 , D 2 ) fits in a commutative diagram (2) such that a representation φ of Φ fits into the corresponding relatively minimal diagram (3) of dual graphs.

Proposition 3 . 2 . 3 .

 323 Assume we are given a relatively minimal diagram (3) with minimal weighted graphs Γ 1 and Γ 2 dominated by a graph Γ. Then the following hold.

Remark 3 . 2 . 4 .

 324 Given a relatively minimal diagram (3), where Γ 1 and Γ 2 are minimal non-admissible extremal linear segments, the morphisms p i do not need to be inner, in general, see Example 3.1.5 and [11, Examples 2.6 and 3.30]. Proposition 3.2.3 leads to the following theorem. Theorem 3.2.5. Let (X, D) be an NC-pair with minimal dual graph Γ(D) such that all extremal linear segments of Γ(D) are admissible. Then Bir(X, D) = Inn(X, D).

g. [ 2 ,

 2 Proposition V.4.3]. This pencil defines a P 1 -fibration π : X → B over a smooth projective curve B such that C is a reduced fiber of π. Since E • C = 0, each connected component of E is properly contained in a fiber of π. The contraction of E yields a P 1 -fibration π : X → B with a reduced fiber C.The surface Y = X \ supp D being affine, supp D is connected (see Lemma 2.7.5(a)) and Y contains no complete curve, in particular, no entire fiber of π. It follows that supp D = C. Since deg(v) = 1, C meets transversally just one other component S of D . Since C • S = 1, S is a section of π. Hence π| Y : Y → B is an A 1 -fibration over an affine curve B ⊂ B \ {π(C)}. This proves the implication (iii)⇒(ii). Assume now that (ii) holds. By Lemma 4.1.1 the A 1 -fibration π : Y → B over a smooth affine curve B admits an extension π : X → B to an SNC-completion ( X, D) of Y , where B is a smooth completion of B. Places at infinity in general A 1 -fibers of π lie on a section, say, S of π. If P ∈ B \ B, then π-1 (P ) ⊂ D. Contracting subsequently (-1)-curves in the fiber π-1 (P ) yields an NC-completion ( X , D ) of Y along with a P 1 -fibration π : X → B with a reduced irreducible fiber C = (π ) -1 (P ). The component C of D corresponds to a (0)-vertex v of the dual graph Γ( D ). We have C •( D -C) = C •S = 1. It follows that v is an end vertex of a non-admissible extremal linear segment of Γ( D ). The latter segment corresponds to a non-admissible extremal linear segment of Γ(D), see Proposition 3.2.3.1(b). This yields the equivalence (iii) ⇔ (ii). Assume that (i) holds, that is, Y admits an effective G a -action. Let δ be the nonzero locally nilpotent derivation on O(Y ) generating the given G a -action. The algebra of G a -invariants ker δ is finitely generated, see [10, Lemma 1.1]. The embedding ker δ → O(Y ) yields an A 1 -fibration Y → B along the orbits of the G a -action, where B = Spec(ker δ) is a smooth affine curve. Thus, (ii) holds. Conversely, given an A 1 -fibration π : Y → B over a smooth affine curve B as in (ii) there exists as before an SNC-completion (X, D) of Y and an extension π : X → B to a P 1 -fibration on X with a section S ⊂ D. Shrinking the base B suitably we obtain a principal Zariski open cylinder U Z ×A 1 on Y with an affine base Z ⊂ B, where U = π-1 (Z) \ S. By [27, Proposition 3.1.5] there is an effective G a -action on Y . This shows the equivalence (i) ⇔ (ii).

Remark 4 . 1 . 3 . 4 . 2 .

 41342 Under the assumptions of Proposition 4.1.2 assume that Γ(D) has a non-admissible extremal linear segment, and let (X , D ), S and C be as in the proof of the proposition. Then Γ(D ) is a tree with at most one non-rational vertex S, a root of Γ(D ). Indeed, Γ(D ) is connected and every component C of D except the section S is a component of a fiber of π, because C • C = 0. Since the fibers of π are trees of rational curves, our claim follows. Since Γ(D) and Γ(D ) are birationally equivalent, Γ(D) also is a tree. Degree function. Let (X, D) be an NC-pair with an affine open subset Y = X \ supp D. By Lemma 2.7.3, up to passing to a suitable new NC-pair which dominates (X, D) we may consider that there exists an ample divisor H ⊂ X such that supp H = supp D. Replacing H by its suitable high multiple we also may consider that X ⊂ P n and H ⊂ X is a hyperplane section. Then Y = X \ supp H → A n = P n \ supp H is a proper embedding. Definition 4.2.1 (cf. e.g. [5, (1.1)]). For Φ ∈ Bir(X, D) we define its degree as deg Φ = H • Φ * (H). For Φ ∈ Aut(Y ) we understand deg Φ as the degree of the extension Φ ∈ Bir(X, D). Remarks 4.2.2. 1. The above degree function coincides with the usual degree of an automorphism of an affine subset Y ⊂ A n . Indeed, let Φ be written in homogeneous coordinates of P n as Φ = (p 0 : . . . : p n )| X where the p i are homogeneous polynomials in n + 1 variables of the same degree d which do not belong simultaneously to the homogeneous ideal of X. Then deg Φ = min{d} where the minimum is taken over all such representations. 2. We have Bir(X, D) = lim -→ Bir(X, D) ≤d where Bir(X, D) ≤d = Φ ∈ Bir(X, D) | max{deg Φ, deg Φ -1 } ≤ d is an affine algebraic variety and Bir(X, D) ≤d ⊂ Bir(X, D) ≤d+1 is a closed embedding. This yields an affine ind-structure on Bir(X, D). It is easily seen that this structure coincides with the usual ind-structure on Aut(Y ) defined by the closed embedding Y ⊂ A n , see e.g. [18, Section 5.1] or [27, Section 2.1]. By definition of the Zariski ind-topology, a subgroup G ⊂ Bir(X, D) is connected if any element g ∈ G belongs to a connected algebraic subset of G which contains the identity. The identity component G • of a subgroup G ⊂ Bir(X, D) is the maximal connected subgroup of G.

Proposition 4 . 2 . 3 .

 423 Inn • (X, D) = Aut • (X, D) and any connected algebraic subgroup G ⊂ Inn(X, D) is contained in Aut • (X, D).

Lemma 4 . 2 . 4 .Lemma 4 . 2 . 5 .

 424425 Let X be a normal projective surface and H be an ample divisor on X. Then for any n ∈ N the number of effective divisor classes C in the Néron-Severi group N S(X) with H • C ≤ n is finite. Proof. This follows from [30, Example 1.4.31]. For any d ≥ 0 there exists N = N (d) ∈ N such that each Φ ∈ Bir(X, D) ≤d admits a representation with at most N blowups and N blowdowns. Proof. By Lemma 4.2.4 the Cartier divisors Φ * (H) with deg(Φ) = H • Φ * (H) ≤ d fall in a finite number of classes in the Néron-Severi group N S(X). Clearly, the latter holds as well for Φ running over Bir(X, D) ≤d . Thus, the quantity N (d) := max{(Φ * H) 2 | Φ ∈ Bir(X, D) ≤d } is finite. It follows by [3, Theorem II.7]

Lemma 4 .

 4 3.1 ([14, Corollary 1.2]). If an affine variety Y of dimension ≥ 2 admits a nontrivial G a -action, then Aut(Y ) contains a connected infinite-dimensional commutative unipotent ind-subgroup.Proof. Indeed, let H ⊂ Aut • (Y ) be the one-parameter unipotent subgroup which corresponds to the given G a -action. Then H can be written as H = exp(K∂), where ∂ is a nonzero locally nilpotent derivation of the algebra O(Y ), see[START_REF] Freudenburg | Algebraic theory of locally nilpotent derivations[END_REF]. The ring of invariants ker ∂ = O(Y ) H is an infinite dimensional vector space, and exp((ker ∂)∂) is a desired subgroup of Aut • (Y ).

Remark 4 . 3 . 2 .

 432 The assumption that Y is affine is important in Lemma 4.3.1. For instance, the open surface Y = P 1 × A 1 does admit a nontrivial G a -action. However, Aut(Y ) is an algebraic group; see[START_REF] Lamy | Sur la structure du groupe d'automorphismes de certaines surfaces affines[END_REF] for a description of Aut(Y ).

Lemma 4 .

 4 3.3 ([15, Lemma 3.1]). Let Y be an affine variety over an algebraically closed field K of characteristic zero. Assume that Y admits no G a -action. Then any two G m -actions on Y commute.For the reader's convenience we provide an argument. conics L on P 2 which includes D (resp. 2D in the former case) and has a unique base point. The restriction L| Y yields an A 1 -fibration over A 1 . Thus, Y admits an effective G a -action and so is not rigid, see Corollary 4.3.5(i)-(ii). Suppose further that deg(D) ≥ 3. Using the Bezout theorem and analyzing separately the cases where D has 1, 2 and at least 3 components, one can easily conclude that any component C of D corresponds either to a branching vertex of Γ(D), or to a vertex sitting on a cycle. Therefore, Γ(D) has no non-admissible extremal linear segment. By Corollary 4.3.5 this implies the rigidity. As an alternative proof in the case deg(D) ≥ 3 one can use the fact that k(Y ) = -∞ provided Y admits an effective G a -action, where k stands for the logarithmic Kodaira dimension. Since D is nodal one has K P 2 + D = (deg(D) -3)H, where H ∈ Pic(P 2 ) is the class of a line. Therefore, k(Y ) = -∞ if and only if deg(D) ≤ 2.

Remark 5 .

 5 0.6. A linear segment is called standard if it is one of the following:[[0 2k , w 1 , . . . , w n ]] and [[0 2k+1 ]]

[[ 0

 0 2k , w 1 , . . . , w n ]] → [[0 2k , w n , . . . , w 1 ]].

  • (Y ) is an algebraic group if and only if Y admits no effective G a -action, if and only if Aut • (Y ) is an algebraic torus of rank ≤ 2. (b) Let (X, D) be a minimal completion of Y by a normal crossing divisor. Then Aut

• (Y ) is an algebraic group if and only if the dual graph Γ(D) is birationally rigid.

  • The group Aut(Y ) of automorphisms of a normal affine surface Y contains a G a -subgroup if and only if Y admits a minimal NC-completion (X, D) whose dual graph Γ(D) has an extremal linear segment with a tip of weight zero, see Proposition 4.1.2 and its proof. • A minimal linear weighted graph is non-admissible if and only if it is birationally equivalent to a linear graph with a tip of weight zero, see e.g. [11, Examples 2.11]. • A minimal weighted graph is birationally rigid if and only if it contains no non-admissible extremal linear segment, see Proposition 3.2.2.

  Definition 2.3.4. Let [v 1 , v 2 ] (where possibly v 1 = v 2 ) be an edge of Γ. The inner blowup in [v 1 , v 2 ] consists in adding a new (-1)-vertex v, replacing the edge [v 1 , v 2 ] by two new edges [v 1 , v] and [v, v 2 ]and decreasing the weights of v 1 and v 2 by 1 if v 1 = v 2 and by

  Contraction of a subgraph. More generally, we have the following facts. Given a birational morphism φ : Γ → Γ and a vertex v of Γ we let φ v be the maximal subsequence of blowdowns and isomorphisms in φ preserving v. Thus, φ v = φ if and only if v is not contracted by φ. Consider the contraction p v : Γ → Γ v and let σ v : Γ v → Γ be the blowdown of v. Observe that p v (v) is at most linear (-1)-vertex of Γ v blown down by σ v . By Lemma 2.4.4(a) the maximal subgraph E of Γ contracted by the subsequence σ v • p v of p is a forest. In particular, the connected component of E which contains v is a tree. Thus all branches of Γ at v contracted by p v are trees, are simple, there are at least deg(v) -2 branches, and v is rational.

	(d) If Γ contains at least two vertices, then every (-1)-vertex of Γ is contracted in
	any process of contraction of Γ to a graph which consists of a single isolated
	(-1)-vertex.
	2.5. Lemma 2.5.1 (see [11, Lemma 2.4(a)]). If a branching vertex v ∈ Br(Γ) is blown
	down under a contraction p : Γ → Γ , then v is rational and has no incident loop.
	Moreover, at least deg(v) -2 branches of Γ at v are simple and contracted by p v .
	Proof.
	2.4. Contractible graphs.
	Definition 2.4.1. A birational transformation φ is a birational morphism (or dom-
	ination) if no blowup participates in φ. In this case we write φ : Γ → Γ . Notice
	that a birational morphism of graphs is surjective. If, moreover, φ is composed only
	of blowdowns then we say that φ is a contraction. The contractions form a proper
	subset of the set of birational morphisms.
	Remark 2.4.2. The composition of birational morphisms (resp., contractions) of
	weighted graphs is a birational morphism (resp., a contraction).
	Definition 2.4.3. A connected weighted graph Γ is said to be contractible if either
	Γ consists of a single (-1)-vertex with no loop, or there exists a contraction of Γ to
	a graph consisting of a single (-1)-vertex with no loop.
	The following lemma is well known.
	Lemma 2.4.4. Let Γ be a weighted graph.
	(a) If Γ is contractible, then Γ is a tree with only rational vertices. Furthermore,
	the intersection form I(Γ) is negative definite of discriminant 1.
	(b) Conversely, if Γ is a tree with only rational vertices and negative definite
	intersection form I(Γ) of discriminant 1, then Γ is contractible.
	(c) Contracting at most linear (-1)-vertex of a contractible graph with at least
	two vertices yields a contractible graph and so does a blowup of a contractible
	graph. Thus, the contractibility is a birational invariant.
	Proof. To show the first assertion in (a) it suffices to look at the reconstruction
	process of blowups starting from the graph which consists of a single isolated (-1)-
	vertex. The second assertion follows from [23, Section 3, Proposition]. We address
	[40, Proposition 1.20] and [11, Remark 4.8, formula (17)] for statement (b). State-
	ment (c) follows e.g. from (b) due to [11, Remark 4.8, formula (17)]; cf. also [23,
	Section 3, Proposition].
	The next corollary is immediate.
	Corollary 2.4.5. For a contractible weighted graph Γ the following hold.
	(a) The weight of every vertex v of Γ is negative.
	(b) No two (-1)-vertices of Γ are neighbors.
	(c) Every (-1)-vertex v of Γ is at most linear.

  Two different dominations of the same weighted graphs. Example 2.7.2. Indeed, recall that an at most linear (-1)vertex has no incident loop, see Definition 2.3.2. Definition 2.6.7. A diagram (3) with two minimal weighted graphs Γ 1 and Γ 2 is called relatively minimal if no (-1)-vertex of Γ is contracted in both Γ 1 and Γ 2 .

Definition 2.6.6. A weighted graph Γ is called minimal if any birational morphism Γ → Γ is in fact an isomorphism. A graph Γ is minimal if and only if it has no at most linear (-1)-vertex. Clearly, any weighted graph Γ dominates a minimal one called a minimal model of Γ.

A simple example of a minimal weighted graph is a graph consisting of a single vertex v and a loop, cf.

  |C| is ample. If, moreover, C is smooth and rational then X is rational. Proof. It is well known that supp D is connected if Y is affine, see e.g. [21, p. 166, Corollary] or [22, Corollary II.6.2]. Hence Γ(D) is connected. Consider a proper embedding Y → A n and the closure Y of Y in P n ⊃ A n . The hyperplane at infinity in P n cuts out an ample effective divisor H on Y with supp H = Y \ Y . Let π : (X , H red ) → (Y , H red ) be a partial embedded resolution of singularities such that (X , H red ) is an SNC-completion of Y and H = (π ) * (H) is an effective divisor on X with supp H = X \Y . By the Projection Formula, H is nef, see [30, Example 1.4.4]. According to Lemma 2.6.1 there exists a commutative diagram

  3. A weighted graph Γ with branches W 1 and W 2 at vertex v which dominates Γ 1 and Γ 2 via non-inner contractions p 1 and p 2 .

3.2. Birationally rigid graphs. Definition 3.2.1. A minimal weighted graph Γ 1 is said to be birationally rigid if in any relatively minimal diagram (3) with a minimal graph Γ 2 no vertex of Vert(Γ 1

  Proposition 4.1.2. Let Y be a normal affine surface and let (X, D) be a minimal NC-completion of Y . The following conditions are equivalent:(i) Y admits an effective G a -action;

14, Lemma 1.6] or [12, Remark 1.7].

  3 that each Φ ∈ Bir(X, D) ≤d fits in a commutative diagram[START_REF] Barth | Compact complex surfaces[END_REF] where X 1 = X 2 = X and the morphism P 1 is composed of at most N (d) blowdowns. Since every blowdown decreases the Picard rank by 1, P 1 and P 2 contain the same number of blowdowns. Lemma 4.2.6. Any irreducible algebraic subset A of Inn(X, D) is contained in a left coset h • Aut (X, D) for some h ∈ Inn(X, D).Proof. Let d ∈ N be such that A ⊂ Bir(X, D) ≤d . By Lemma 4.2.5 there exists a natural number N = N (d) such that each Φ ∈ A admits a representation with at most N blowups and N blowdowns. Since A ⊂ Inn(X, D), these blowups and blowdowns are inner, and there are in total a finite number of them when Φ runs over A. Recall that Aut (X, D) is a normal algebraic subgroup of Inn(X, D) closed in Bir(X, D), see Lemma 2.2.3. Therefore, Inn(X, D) is the union of the closed algebraic subvarieties h • Aut (X, D) of Bir(X, D) with h ∈ Inn(X, D). By the preceding, A is covered by a finite number of these cosets. Since the ground field K is infinite and A is irreducible, it is covered by one of them. Corollary 4.2.7. Inn(X, D) is a closed ind-subgroup of Bir(X, D).

Proof. By Lemma 4.2.6 and its proof, for any d ∈ N Inn(X, D) ≤d = Inn(X, D) ∩ Bir(X, D) ≤d

We thank Hanspeter Kraft who suggested the second conjecture.

I.e. numerically effective.

In[START_REF] Beauville | Complex algebraic surfaces[END_REF] Theorem II.7] the surface X is supposed to be smooth. However, since all the indeterminacy points of Φ are situated in the smooth part of X, the proof goes without changes in our setting as well.

We thank Shulim Kaliman for suggesting this approach.
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Proof. Suppose there are two non-commuting G m -actions on Y . Let δ 1 and δ 2 be corresponding non-zero locally finite (semi-simple) derivations on O(Y ). Consider the grading on O(Y ) which corresponds to δ 1 , and a decomposition [START_REF] Daigle | Classification of weighted graphs up to blowing-up and blowing-down[END_REF] δ 2 = l i=k δ (i) 2

into homogeneous derivations with respect to this grading, where the extremal components δ First of all, consider the case deg(D) ≤ 2, that is, supp D is either a projective line, or a pair of lines, or a smooth conic. In all three cases there exists a pencil of Proof. By our assumption Γ contains an edge [v, u] isomorphic to [[0, c]] for some c ∈ Z. Applying iteratively elementary transformations at v, [START_REF] Daigle | Classification of linear weighted graphs up to blowing-up and blowing-down[END_REF] [

which is inner if deg(v) = 2 and outer otherwise, see Remark 2.7.10, we obtain an infinite number of graphs {Γ n } from the birational equivalence class of Γ with the same number of vertices, where Γ n has a vertex of weight n. Every Γ n dominates a minimal graph Γ n . We claim that among the Γ n there is an infinite number of nonisomorphic minimal graphs. Indeed, the contraction Γ n → Γ n consists of at most N = card(Vert(Γ)) blowdowns. Hence it drops the maximal weight of vertices in Γ at most by 4N . Therefore, the range of maximal weights of all the Γ n is unbounded, which proves our claim.

Proposition 5.0.8. Let Γ be a connected minimal weighted graph. Then the birational equivalence class of Γ contains an infinite number of non-isomorphic minimal models if and only if Γ is not admissible modulo charm earrings and is different from the graphs

), ((4)), ((0, m)) with m ≤ 0. In the opposite case, up to isomorphism Γ is a unique minimal graph in its birational equivalence class.

Proof. The second assertion follows immediately from Proposition 5.0.4. To show the first assertion we start with a non-admissible circular segment Γ with N vertices.

If N ≥ 3, then there is a linear vertex v of a non-negative weight a with two distinct neighbors. Performing a inner blowups near v we drop the weight of v to 0, and then Lemma 5.0.7 gives the result. Let now N = 2. If Γ has a vertex of positive weight, then after an inner blowup we are reduced to the previous case. Otherwise, Γ = ((0, m)) with m ≤ 0, which is excluded by our assumption. Finally, if N = 1 and Γ = ((m)) where m ≥ 5 by our assumption, then an inner blowup yields the 2-cycle ((m -4, -1)) with a positive weight and returns us to a previous case.

Let now Γ be non-circular. Since by assumption Γ is not admissible with charm earrings, Γ Br(Γ) contains a non-admissible linear segment with a vertex v of weight a ≥ 0 where a > 0 if either Γ = [[a]] or v has two incident edges [v, u] with the same branching vertex u ∈ Br(Γ). Performing a blowups near v we reduce the setup to the one of Lemma 5.0.7, which implies the assertion.