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CENTRAL WEYL INVOLUTIONS ON FANO-MUKAI FOURFOLDS
OF GENUS 10

MIKHAIL ZAIDENBERG

Abstract. It is known that every Fano-Mukai fourfold X of genus 10 is acted upon by
an involution τ which comes from the center of the Weyl group of the simple algebraic
group of type G2, see [PZ18, PZ22]. This involution is uniquely defined up to conjugation
in the group Aut(X). In this note we describe the set of fixed points of τ and the surface
scroll swept out by the τ -invariant lines.
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Introduction

Let V be a Fano-Mukai fourfold of genus 10 over C. A classification of the automor-
phism groups of these fourfolds was started in [PZ18] and was completed in [PZ22, The-
orem A]. In particular, every V is acted upon by an involution τ ∈ Aut(V ) \Aut0(V ) de-
fined uniquely up to conjugation in Aut(V ). It interchanges any pair of disjoint Aut0(V )-
invariant cubic surface cones on V , see [PZ22, Proposition 2.11] and Corollary 1.7 below.

This note is devoted to the following problem, see [PZ18, Problem 15.4].

Given a Fano-Mukai fourfold V of genus 10, describe the involutions acting on V and
interchanging the pairs of Aut0(V )-invariant cubic cones.

1991 Mathematics Subject Classification. 14J45, 14J50.
Key words and phrases. Fano-Mukai fourfold, automorphism group.
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Let g be the Lie algebra of the simple algebraic group G of type G2. The adjoint
variety Ω of G is the unique closed orbit in the projectivized adjoint representation of G
on Pg ∼= P13. We have dim Ω = 5. Every Fano-Mukai fourfold V of genus 10 admits a
realization as a hyperplane section Ω ∩ P12, see [Muk89, Theorem 2]. Such a hyperplane
section is unique up to the G-action on Ω. Under this realization, Aut(V ) coincides with
the stabilizer of V in G and τ extends to an element of order 2 of G.

Let T be a maximal torus of G. The Weyl group W = NG(T )/T is isomorphic to the
dihedral group D6; there exists a splitting NG(T ) ∼= T o W [AH17, Theorem A]. Up to
a choice of such a splitting and up to conjugation in G, τ can be identified as the unique
element of order 2 from the center of W . This is why we call τ a central Weyl involution.

The main result of the present note is the following theorem.

Theorem 0.1. Let V be a Fano-Mukai fourfold of genus 10 half-anticanonically embedded
in P12, and let τ ∈ Aut(V ) \ Aut0(V ) be an involution. Then τ ∈ G is a central Weyl
involution. The fixed point set V τ is a union of two disjoint smooth rational sextic curves
E+ and E− such that

〈E+〉 = P5, NE+/P5 = OP1(8)⊕2 ⊕OP1(9)⊕2 and 〈E−〉 = P6, NE−/P6 = OP1(8)⊕5.

Furthermore, there is a surface scroll Π = Π(V, τ) in V verifying the following.

(i) Each ruling of Π is τ -invariant and each τ -invariant line on V is a ruling of Π.
(ii) Π has degree 12, is linearly nondegenerate in P12 and is isomorphic to P1 × P1

embedded in P12 by a linear system of type (1, 6).
(iii) An isomorphism Π ∼= P1 × P1 sends the curves E± into constant sections of the

natural projection pr : P1 × P1 → P1.

Due to (i) we call Π the scroll in τ -invariant lines. Notice that neither τ nor Π are
Aut0(V )-invariant.

Results of [PZ22] were extended in [BM22] to the automorphism groups of smooth
hyperplane sections of other generalized flag varieties G/P ; most of these hyperplane
sections also possess Weyl involutions. It is worth to obtain a geometric description
similar to that of Theorem 0.1 in this more general setting; see e.g. [DM22, Proposition 24]
for some results in this direction.

We end this Introduction with the following open question. Recall that the Fano-Mukai
fourfolds of genus 10 are rational.

Question. Is any central Weyl involution acting on a Fano-Mukai fourfold V of genus 10
linearizable, that is, conjugate to a linear involution of P4 via a birational map V 99K P4?

Acknowledgments. This paper is based on joint articles [PZ18, PZ20, PZ22] of Yuri
Prokhorov and the author. We are grateful to Yuri Prokhorov for useful discussions;
the ideas of several proofs are due to him. Our thanks also due to Ciro Ciliberto for his
kind assistence, and especially for producing several amazing examples of singular surface
scrolls.

1. Preliminaries

1.1. Lines and cubic scrolls on Fano-Mukai fourfolds. We gather here various
results from [KR13], [PZ18] and [PZ22] that will be used in the sequel.

Fix a Fano-Mukai fourfold V of genus 10 together with an embedding V ↪→ P12 by
the half-anticanonical system. Let Σ = Σ(V ) be the Hilbert scheme of lines on V and
S = S (V ) be the Hilbert scheme of cubic surface scrolls on V . By a cubic cone
we mean the projective cone over a rational twisted cubic curve. We fix an involution
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τ ∈ Aut(V ) \ Aut0(V ) and we denote by the same letter the induced involutions acting
on Σ and on S . The geometry of a Fano-Mukai fourfold can be described as follows.

Proposition 1.1.

(i) Σ is a smooth hyperplane section of P2×P2 embedded in P7 via the Segre embedding.
Up to an automorphism of P2 × P2 one can choose this section in such a way that
the action of τ on Σ is induced by the involution on P2 × P2 interchanging the
factors.

(ii) There is the diagram

(1)
L (V )

ρ

ww
s

&&
Σ(V ) V

where L (V ) ⊂ Σ×V is the incidence relation between lines and points on V . The
P1-bundle ρ : L (V )→ Σ(V ) is the universal family of lines on V . The action of τ
on Σ× V leaves L (V ) invariant and respects the P1-bundle structure.

(iii) The map s : L (V )→ V in (1) is a generically finite morphism of degree 3. So, V
is covered by lines and through a general point of V pass precisely 3 lines.

(iv) Any cubic cone S on V is contained in the branching divisor B ⊂ V of s.
(v) Any line on V passing through the vertex of a cubic cone S is a rulings of S. If

a point v ∈ B is different from the vertices of cubic cones on V then the number
of lines passing through v equals either 1 or 2. Through any point on V \ B passes
exactly 3 distinct lines on V .

(vi) The Hilbert scheme S = S (V ) of cubic scrolls on V has exactly two irreducible
components Si

∼= P2, i = 1, 2. These components are disjoint and interchanged by
τ .

(vii) H4(V,Z) = Z[S1]⊕Z[S2], where Si ∈ Si satisfy the relations [S1]2 = [S2]2 = 1 and
[S1] · [S2] = 0.

(viii) Any cubic scroll S on V coincides with the singular locus of a unique hyperplane
section AS of V , where AS is the union of lines on V meeting S. Any line contained
in AS meets S. Through any point of AS \S passes a unique line on V which meets
S.

(ix) Two scrolls S1 ∈ S1 and S2 ∈ S2 from different components of the Hilbert scheme
S either are disjoint or contain a unique common ruling. Any line l on V is
the unique common ruling of exactly two cubic scrolls Si(l) ∈ Si, i = 1, 2. The
morphisms

pri : Σ→ Si = P2, l 7→ Si(l), i = 1, 2

coincide with the standard projections in (i):

pri : Σ ⊂ P2 × P2 → P2.

The fiber of pri over S ∈ Si is the line Λ(S) on Σ which is the Hilbert scheme of
the rulings of S.

(x) For a cubic scroll S on V the Hilbert scheme Σ(S) ⊂ Σ of lines on V meeting S is
the pull-back of a line in P2 = Sj under the second projection prj, j 6= i. One has
Σ(S) ∼= F1 and Λ(S) is the exceptional section of Σ(S).

(xi) The Hilbert scheme of cubic cones on V is either finite or one-dimensional. The
number of Aut0(V )-invariant cubic cones on V is finite and V contains a pair
(S1, S2) of disjoint Aut0(V )-invariant cubic cones.

(xii)
⋂
S∈S1

AS is the union of vertices of cubic cones in S1and
⋂
S∈S1∪S2

AS = ∅.
3



Proof. See

• [KR13, Proposition 2], [PZ18, Theorem 9.1(a), Lemma 9.5.1 and its proof] for (i),
• [PZ18, Proposition 8.2(d), (8.2.2)] for (ii),
• [PZ18, Proposition 8.2(d)] for (iii),
• [PZ18, Lemma 9.4] for (iv),
• [PZ18, Proposition 8.2(e)] for (v),
• [KR13, Proposition 1] [PZ18, Theorem 9.1(b)] for (vi),
• [PZ18, Proposition 9.6] for (vii),
• [PZ18, Lemma 9.2] for (viii),
• [PZ18, Corollaries 9.7.3, 9.7.4, and 9.10.1] for (ix),
• [PZ18, Theorem 9.1(a), Lemma 9.7.2] for (x),
• [PZ20, Lemma 1.8, Proposition 2.11] for (xi),
• [PZ20, Lemma 1.9] for (xii).

�

1.2. Mukai G2-presentation. Let Ω ⊂ P13 be the adjoint variety of the simple algebraic
group G of type G2, that is, the minimal nilpotent orbit Ω = G/P of the adjoint action
of G on Pg = P13, where g = Lie(G) and P ⊂ G is a parabolic subgroup of dimension 9.
Recall that Ω is a Fano-Mukai fivefold embedded in P13 by the linear system | − 1

3
KΩ|.

Using the duality given by the Killing form on g we identify Pg with its dual projective
space Pg∨. Abusing notation we let h⊥ denote the hyperplane in Pg orthogonal to a
vector h ∈ g \ {0}. Letting Ph stand for the vector line Ch ∈ Pg we let V (h) = h⊥ ∩ Ω
denote the corresponding hyperplane section of Ω. According to [Muk89, Theorem 2] any
Fano-Mukai fourfolds V of genus 10 admits a Mukai realization as a smooth hyperplane
section V = V (h) of Ω.

The dual variety D` = Ω∗ is a sextic hypersurface in P13 whose points Ph ∈ D`

correspond to the singular hyperplane sections V (h) of Ω. Thus, the smooth hyperplane
sections V (h) are parameterized by the affine variety P13 \ D`. The group G acts on
P13 via the projective adjoint representation. Each G-orbit in P13 \ D` corresponds to
a class of isomorphic smooth hyperplane sections of Ω, that is, to a class of isomorphic
Fano-Mukai fourfolds of genus 10. Indeed, according to the Mukai theorem [Muk89,
Theorem 0.9], any isomorphism between two smooth hyperplane sections of Ω extends
to an automorphism of Ω and the group Aut(Ω) coincides with G|Ω. For a smooth
hyperplane section V = V (h) of Ω one has (see [PZ22, Corollary 2.3.2])

(2) Aut(V ) = StabG(Ph).

Given a maximal torus T of G we let h = Lie(T ) be the corresponding Cartan subal-
gebra in g and ∆ ⊂ h∗ be the corresponding root system. For a root α ∈ ∆ we let gα be
the corresponding one-dimensional root subspace of g. The points Pgαi

∈ Pg, i = 1, . . . , 6
that correspond to the 6 long roots α1, . . . , α6 lie on Ω, while the points Pgαi

, i = 7, . . . , 12
that correspond to the 6 short roots α7, . . . , α12 lie on another nilpotent orbit Ωs of G.
The dual hypersurface Ds = (Ωs)

∗ of Ωs is also a sextic. Let (Dt)t∈P1 be the pencil of
sextic hypersurfaces in P13 = Pg generated by D` and Ds with base locus D` ∩Ds. Any
sextic hypersurface Dt is invariant under the adjoint G-action on Pg. Thus, any G-orbit
in Pg is contained in Dt for a suitable t ∈ P1. There is the following description of
G-orbits in Pg.

Theorem 1.2 ([KR13, Lemma 1], [PZ22, Proposition 1.4]).

(i) The base locus D` ∩Ds coincides with the projectivized nilpotent cone of g. Thus,
all the nilpotent G-orbits in Pg, including Ω and Ωs, are contained in D` ∩Ds.
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(ii) For any t /∈ {`, s} the complement Dt\D` coincides with the orbit of a point Ps ∈ Pg
where s ∈ g is a regular semisimple element.

(iii) Ds \ D` is the union of two G-orbits Ωa and Ωsr, where Ωa of dimension 12 is
open and dense in Ds \ D` and Ωsr of dimension 10 is closed in Ds \ D`. There
exists a pair of commuting elements s, n ∈ g, where s is subregular semisimple, n
is nilpotent and s+ n is regular such that Ωa is the G-orbit of P(s+ n) and Ωsr is
the G-orbit of Ps.

1.3. Automorphism groups and involutions of Fano-Mukai fourfolds. According
to (2) the classification of the automorphism groups of Fano-Mukai fourfolds of genus 10
is ultimately related to the classification of non-nilpotent G-orbits in Pg. Indeed, due to
the existence of the Mukai presentation, the latter groups are stabilizers of the G-orbits
in Pg \ D`. These orbits are Dt \ D`, t ∈ P1 \ {`, s}, Ωa and Ωsr, see Theorem 1.2.
Accordingly, we have the following description.

Theorem 1.3 ([PZ18, Theorem 1.3], [PZ22, Proposition 1.5]). Let V = V (h) be a Fano-
Mukai fourfold of genus 10 under a Mukai realization, where Ph ∈ Pg \ D`. Then the
identity component Aut0(V ) is as follows:

Aut0(V (h)) = StabG(Ph) ∼=


GL(2,C), Ph ∈ Ωsr

Ga ×Gm, Ph ∈ Ωa

G2
m, Ph ∈ Pg \ (D` ∪Ds) =

⋃
t6=s,`(Dt \D`)

Consequently, there is a unique up to isomorphism Fano-Mukai fourfold V of genus 10
with Aut0(V ) ∼= GL(2,C) (resp. Aut0(V ) ∼= Ga ×Gm), while the isomorphism classes of
Fano-Mukai fourfolds with Aut0(V ) ∼= G2

m form a one-parameter family.

The geometry of a Fano-Mukai fourfold V and its automorphism group are also ulti-
mately related.

Proposition 1.4 ([PZ18, ]). A Fano-Mukai fourfold V carries

• exactly 6 cubic cones if Aut0(V ) ∼= G2
m,

• exactly 4 cubic cones if Aut0(V ) ∼= Ga ×Gm,
• a one-parameter family of cubic cones if Aut0(V ) ∼= GL(2,C).

In the first two cases every cubic cone on V is Aut0(V )-invariant. In the last case there
are exactly two Aut0(V )-invariant cubic cones on V , they are disjoint and belong to
different connected components S1 and S2 of S .

Concerning the discrete part of the automorphism group Aut(V ) and its action on V
we have the following results.

Theorem 1.5 ([PZ22, Theorem A, Proposition 3.11]).

(i) If Aut0(V ) is one of the groups GL(2,C) and Ga ×Gm then Aut(V ) = Aut0(V ) o
Z/2Z. The same holds in the case Aut0(V ) ∼= G2

m except for Vr = V (hr) with
Phr ∈ Dr = 3Q where Q ⊂ Pg is the quadric defined by the Killing form. In the
latter case Aut(Vr) ∼= G2

m o Z/6Z.
(ii) Let τ be the generator of the factor Z/2Z in the former cases and the unique order

2 element τ = ζ3 in the latter case, where ζ is a generator of the factor Z/6Z. Then
τ is an involution on V which interchanges any pair of disjoint Aut0(V )-invariant
cubic cones on V . There is precisely one such pair of cubic cones in the cases where
Aut0(V ) is one of the groups GL(2,C) and Ga×Gm, and precisely 3 such pairs in
the general case where Aut0(V ) ∼= G2

m.
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(iii) If Aut0(V ) ∼= G2
m then the 6 cubic cones on V are naturally arranged in a cycle

σ = (S1, . . . , S6) such that Si and Sj are neighbors if and only if they share a
common ruling. For V = Vr any element of the factor Z/6Z of Aut(Vr) acts on σ
via a cyclic shift.

(iv) The involution τ ∈ Aut(V ) \Aut0(V ) can be chosen in such a way that the action
of τ by conjugation on Aut0(V ) is the inversion g 7→ g−1 if Aut0(V ) is one of the
groups G2

m and Ga × Gm and the Cartan involution c : g 7→ (gt)−1 if Aut0(V ) =
GL(2,C), where g 7→ gt stands for the matrix transposition.

We need in the sequel the following elementary facts.

Proposition 1.6.

(i) Any involution τ ∈ Aut(GL(2,C)) \ Inn(GL(2,C)) is conjugate in Aut(GL(2,C))
to the Cartan involution c.

(ii) Let H be a group admitting square roots, that is, for any h ∈ H there exists g ∈ H
such that h = g2. Consider the semidirect product H̃ = H o Z/2Z where the
generator c of the factor Z/2Z acts on H via inversion. Then for any h ∈ H the
element ch ∈ H̃ \H has order 2 and is conjugate to c.

(iii) Let H̃ = H o Z/2Z where H = Ga × Gm and the generator c of the factor Z/2Z
acts on H via inversion. Then any element τ ∈ H̃ \H of order 2 is conjugate to c.

(iv) Let T̃ = T o Z/2Z where T = G2
m and the generator c of the factor Z/2Z acts on

T via inversion. Then any element τ ∈ T̃ \ T of order 2 is conjugate to c.
(v) There exist exactly two different (conjugated) subgroups H± of GL(2,C) such that

(a) H± ∼= Ga ×Gm;
(b) H± is invariant under the Cartan involution c;
(c) c|H± is the inversion g 7→ g−1.

Proof. (i) Let us first show the assertion of (i) for the derived subgroup SL(2,C) of
GL(2,C). This group is invariant under the Aut(GL(2,C))-action and any automorphism
of SL(2,C) extends to an automorphism of GL(2,C).

It is known that Aut(SL(2,C)) ∼= Inn(SL(2,C))oZ/2Z, see [Pro06, Theorem 10.6.10].
Since c|SL(2,C) ∈ Aut(SL(2,C)) \ Inn(SL(2,C)) we may suppose that the factor Z/2Z is
generated by c. Then τ = Ad(a) · c for some a ∈ SL(2,C) where Ad(a) : f 7→ afa−1

for f ∈ SL(2,C). Suppose that τ is a conjugate of c in Aut(SL(2,C)). Then for some
b ∈ SL(2,C) we have

τ = Ad(b) · c · Ad(b−1) = Ad(bbt) · c.
Now, from τ 2 = 1 and τ = Ad(a) · c we deduce that a = at, that is, a is a symmetric

matrix. Then a can be written as a = bbt for some b ∈ SL(2,C). It follows by the
preceding formula that τ = Ad(Ad(b))(c), that is, τ is conjugate to c in Aut(SL(2,C)),
as stated.

Any automorphism α ∈ Aut(GL(2,C)) is a composition of an inner automorphism
and the multiplication by a character detk of GL(2,C) for some k ∈ Z [Die55, Ch. 4,
§ 1]. However, if α has a finite order then k = 0. Now the preceding argument applied
mutatis mutandis shows that any element α ∈ Aut(GL(2,C)) \ Inn(GL(2,C)) of order 2
is conjugate to the Cartan involution c in Aut(GL(2,C)).

(ii) For h ∈ H the element ch ∈ H̃ \ H satisfies ch = h−1c. Therefore, for g, h ∈ H
the equality ch = gcg−1 holds if and only if g2 = h−1. Since H admits square roots it
follows that for any h ∈ H there exists g ∈ H such that ch = gcg−1 in H̃, that is, ch is a
conjugate of c in H̃.

Now (iii)–(iv) follow since the both groups H in (iii) and T in (iv) admit square roots.
6



(v) Let H be a subgroup of GL(2,C) isomorphic to Ga×Gm. Then H is contained in a
Borel subgroup B of GL(2,C). The unipotent Ga-factor of H coincides with the unipotent
radical U of B and the Gm-factor of H coincides with the center z(B) = z(GL(2,C)).
Hence B = NormGL(2,C)(U) is the unique Borel subgroup containing H.

The induced action of the outer automorphism c of GL(2,C) by an involution on the
flag variety GL(2,C)/B = P1 is effective and has exactly two fixed points, say B±. It
follows by the preceding observations that there are exactly two c-invariant subgroups
H± ⊂ B± with desired properties. Let us find these subgroups explicitly.

The c-action on the Lie algebra gl(2,C) is given by h 7→ −ht. Up to proportionality,
there are exactly two nonzero elements of gl(2,C) satisfying n2 = 0 and c(n) = −nt = λn,
namely,

n± =

(
1 ±i
±i 1

)
where in fact λ = −1. Therefore, the unipotent radicals of the subgroups H± are,
respectively,

Ru(H
±) = {exp(tn±), t ∈ C} =

{(
1 + t ±it
±it 1− t

)
, t ∈ C

}
and their Gm-factors coincide with the center of GL(2,C). �

Due to the next corollary the choice of a concrete involution τ ∈ Aut(V ) \Aut0(V ) in
Theorem 0.1 is irrelevant. Let Π(τ) be the scroll swept out by the τ -invariant lines on V ,
cf. Proposition 2.1 below.

Corollary 1.7. Let V be a Fano-Mukai fourfold V of genus 10. Then any two involutions
τ1, τ2 ∈ Aut(V ) \Aut0(V ) are conjugate in the group Aut(V ) via an element of Aut0(V )
which sends the fixed point set V τ1 and the scroll in invariant lines Π(τ1) to V τ2 and
Π(τ2), respectively. Every involution τ ∈ Aut(V ) \ Aut0(V ) interchanges any pair of
disjoint Aut0(V )-invariant cubic cones on V .

Proof. According to Theorem 1.5(i) Aut(V ) = Aut0(V )oZ/2Z except for V = V (h) with
Ph ∈ Dt = 3Q. In the latter case Aut(V ) ∼= G2

m o Z/6Z and the factor Z/6Z contains a
unique element c = ζ3 of order 2. Due to Theorem 1.5 (iv) one can choose the generator
c of the factor Z/2Z and the order 2 element c ∈ Z/6Z in the exceptional case so that
the conjugation with c acts via the inversion on Aut0(V ) if Aut0(V ) is an abelian group
and acts on Aut0(V ) via the Cartan involution if Aut0(V ) ∼= GL(2,C). Furthermore, c
interchanges any pair of disjoint Aut0(V )-invariant cubic cones on V , see Theorem 1.5(ii).
However, by Proposition 1.6(i), (iii) and (iv) every involution τ ∈ Aut(V ) \ Aut0(V ) is
conjugate to c. Now the assertion follows. �

2. Scroll Π in τ-invariant lines

2.1. The first properties. We fix as before a Fano-Mukai fourfold V of genus 10 and
an involution τ ∈ Aut(V ) \ Aut0(V ). Many objects considered in this section, including
the scroll Π in τ -invariant lines, depend on the choice of τ . To simplify the notation we
don’t mention this dependence explicitly.

Let Σ = Σ(V ) stand as before for the Hilbert scheme of lines on V ⊂ P12 regarded
as a subscheme of the Grassmannian of lines G(1, 12). Then the fixed point subscheme
C = Στ parameterizes the τ -invariant lines on V . Let L ⊂ Σ × V be the line-point
incidence relation on V , and let ρ : L → Σ be the natural projection, see (1); it comes
from the projection of the universal P1-bundle over G(1, 12) restricted to Σ. Letting

7



Π̃ = ρ−1(C) ⊂ L , the projection ρ|Π̃ : Π̃ → C defines a τ -invariant ruling on Π̃ over C.

The image Π = Π(V, τ) := s(Π̃) under the second projection s : L → V is the union of
all the τ -invariant lines on V .

Proposition 2.1. Let Σ ⊂ P2×P2 be equipped with the polarization induced by the Segre
embedding P2 × P2 ↪→ P8. Then the following hold.

(i) C is a smooth rational quartic curve on Σ;
(ii) Π̃ is a smooth rational ruled surface;

(iii) Π is a rational surface scroll of degree 12 on V ;
(iv) each τ -invariant line on V is a rulings of Π, and vice versa.

Proof. (i) The threefold Σ admits a realization as the projectivization of the variety of
square matrices of order 3 and of rank 1 with zero trace [PZ18, 11.2.2]. Such a matrix A
can be written as the tensor product a⊗ b of two nonzero 3-vectors a = (x1, x2, x3) and
b = (y1, y2, y3) with zero trace

tr(A) = x1y1 + x2y2 + x3y3 = 0.

The involution τ interchanges each pair of disjoint Aut0(V )-invariant cubic cones on V .
Hence, τ also interchanges the connected components S1 and S2 of the Hilbert scheme
S of cubic scrolls on V , that is, the factors of P2 × P2 = S1 ×S2, and so, each pair of
disjoint cubic cones, see Proposition 1.1(ix). Up to a choice of coordinates, the induced
action of τ on Σ results in the twist a↔ b. The fixed point set C = Στ is the intersection
Σ ∩∆ where ∆ ⊂ P2 × P2 is the diagonal. The image of A = a⊗ b in Σ is fixed by τ if
and only if a and b are proportional. The condition tr(A) = 0 leads in the latter case to
the relations

x2
1 + x2

2 + x2
3 = 0 and y2

1 + y2
2 + y2

3 = 0.

It follows that C = Στ is a smooth rational curve on P2 × P2 = S1 × S2 of bidegree
(2, 2) which projects isomorphically onto a smooth conic Ci ⊂ Si. Thus, C is a conic in
∆ ∼= P2 and a quartic curve in P2 × P2.

(ii) The smooth morphism ρ : L → Σ is the projection of a P1-bundle. Hence (ii)
follows.

(iii) By virtue of (ii), Π is an irreducible surface scroll on V whose rulings are param-
eterized by C. The scroll Π being τ -invariant, one has [Π] = α([S1] + [S2]) in H4(V,Z),
see Proposition 1.1(vii). Therefore, deg(Π) = 6α, where α = Π · Si, i = 1, 2. For a
general cubic scroll S on V the associated divisor Σ(S) on Σ (see Proposition 1.1(x)) is
the pull-back of a general line in one of the factors P2 under the corresponding projection.
It follows that C meets Σ(S) transversally in two distinct points. The latter means that
among the rulings of Π exactly two meet S. Each of them meets S transversally in a
single point, see Proposition 1.1(viii). Consequently, α = Π ·S = 2, and so, deg(Π) = 12.

(iv) By construction, each ruling of Π is τ -invariant and each τ -invariant line on V is
a ruling of Π. �

Lemma 2.2. The fixed point set V τ is contained in Π. No point of V τ is a vertex of a
cubic cone on V .

Proof. Assume on the contrary that v ∈ V τ is a vertex of a cubic cone S on V . Then
τ(S) is a cubic cone with the same vertex as S, hence τ(S) = S by virtue of Proposi-
tion 1.1(iv). However, this contradicts Proposition 1.1(vi) which says that S and τ(S)
belong to different components Si of the Hilbert scheme S of cubic scrolls on V .

Thus, any v ∈ V τ is different from the vertices of the cubic cones on V . By Proposi-
tion 1.1(v) there is at least one and at most three lines on V passing through v. At least
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one of these lines is invariant under τ . Indeed, this is clear in the case where the number
of lines passing through v is odd. Recall that V is a hyperplane section of the adjoint
fivefold variety Ω, and the lines on Ω passing through P form a cubic cone SP on Ω. If
there are exactly two lines, say l and l′ on V passing through v, then exactly one of these
lines, say l is multiple, meaning that V = h⊥ ∩Ω is tangent along l to SP . So l and l′ are
τ -invariant, and hence v ∈ l ⊂ Π. �

Lemma 2.3. No line on V is contained in V τ .

Proof. Suppose a line l on V is pointwise fixed by τ . By Proposition 2.1(iv) l is a ruling
of Π. Then any ruling of Π is pointwise fixed by τ because of the rigidity of the τ -action,
and so τ |Π = idΠ.

By Propositions 1.1(xi) and Theorem 1.5(ii) there exists on V a pair (S0, τ(S0)) of
disjoint Aut0-invariant cubic cones. Then a general cubic scroll S ∈ S1 and its τ -dual
scroll τ(S) ∈ S2 are disjoint as well. Each of them intersects Π, see the last paragraph
in the proof of Proposition 2.1. Since τ |Π = idΠ any point x ∈ S ∩Π is fixed by τ , hence
it is a common point of S and τ(S). The latter contradicts the fact that S and τ(S) are
disjoint. �

Corollary 2.4. s|Π̃ : Π̃→ Π is a birational morphism.

Proof. We have to show that s|Π̃ : Π̃→ Π has degree 1. Notice that two distinct points of

the curve C ⊂ Σ correspond to distinct lines on V . Hence, two distinct rulings of Π̃ project
under s into two distinct rulings of Π. Assume on the contrary that deg(s|Π̃) = m ≥ 2,
that is, through a general point P of Π pass m ≥ 2 distinct rulings of Π. Then P is fixed
by τ and therefore, τ |Π = idΠ. The latter contradicts Lemma 2.3. �

Lemma 2.5. The Euler characteristic e(V τ ) equals 4.

Proof. Given a smooth compact manifold M and a periodic diffeomorphism f of M , due
to a version of the Lefschetz index theorem, see e.g. [tD79, Proposition 5.3.11], the Euler
characteristic of the fixed point set M f equals the Lefschetz number L(f,M). Since
H2(V,Z) = Pic(V ) = Z and the trace of τ∗ acting on H4(V,Z) = Z[S]⊕Z[τ(S)] vanishes
we have e(V τ ) = L(τ, V ) = 4. �

The next proposition is the main result of this subsection.

Proposition 2.6.

(i) The fixed point set V τ = Πτ is the union of two disjoint smooth rational curves
E1, E2 on Π. Each of them meets any ruling of Π in a unique point. Through any
point of Π \ (E1 ∪ E2) passes a unique ruling of Π.

(ii) The morphism s|Π̃ : Π̃→ Π is bijective over Π \ (E1 ∪ E2).

Proof. (i) Recall that ρ|Π̃ : Π̃ → C is the projection of a smooth rational surface scroll.

By Lemma 2.3 any ruling r̃ of Π̃ is τ -invariant and τ |r̃ is not identical. Hence τ |r̃ has
exactly two fixed points. So, the projection Π̃τ → C ∼= P1 is two-sheeted and unramified.
It follows that Π̃τ is a disjoint union of two sections, say Ẽ1 and Ẽ2 of the projection
ρ|Π̃ : Π̃→ C, where Ẽ1 and Ẽ2 are smooth rational curves.

We have V τ = Πτ = s(Π̃τ ) = E1 ∪ E2 where Ei = s(Ẽi), see Lemma 2.2. The fixed
point set of a reductive group action on a smooth variety is smooth, so V τ = E1 ∪ E2

is. By Lemma 2.5 e(Πτ ) = 4 = e(Π̃τ ), hence E1 6= E2, E1 ∩ E2 = ∅ and Ei is a smooth
rational curve for i = 1, 2. Since s maps any ruling in Π̃ isomorphically to a ruling in Π

9



and maps the section Ẽi of Π̃→ C onto Ei for i = 1, 2 then Ei intersects any ruling of Π
at a single point.

Suppose that through a point p ∈ Π \ (E1 ∪E2) = Π \Πτ pass two rulings of Π. These
rulings are τ -invariant, and so, they also pass through the point τ(p) 6= p, a contradiction.
Thus, any multi-branched point of Π is contained in E1 ∪ E2. This proves (i).

(ii) Since s|Π̃ : Π̃→ Π restricted to any ruling of Π̃ is bijective and by (i) no two rulings

of Π intersect outside E1 ∪ E2, s|Π̃ : Π̃→ Π is bijective over Π \ (E1 ∪ E2). �

2.2. Winding families of scrolls. Any line l on V is a common ruling of a unique
pair of cubic scrolls, see Proposition 1.1(ix). For a ruling l of Π the corresponding pair
has the form (Sl, τ(Sl)) where Sl ∈ S1 and τ(Sl) ∈ S2. The cubic scrolls (Sl)l∈C roll
around Π and (τ(Sl))l∈C is a second such family. There is also a two-parameter family
of τ -invariant sextic scrolls (DS)S∈S1\C2 wrapping around Π; we’ll use this one to show
that Π is smooth.

By Proposition 1.1(xi) there exists on V a pair (S, τ(S)) of disjoint Aut0-invariant
cubic cones. To every such pair there corresponds a unique Aut0-invariant rational sextic
scroll, see [PZ20, Lemma 2.2]. More generally, we have the following facts.

Proposition 2.7. Assume that a cubic scroll S on V contains no ruling of Π 1. Then
the following hold.

(i) S and τ(S) are disjoint.
(ii) Let AS be as in Proposition 1.1(viii). Then ΓS := S ∩ τ(AS) is a rational twisted

cubic curve on S.
(iii) The twisted cubic curves ΓS and τ(ΓS) are disjoint sections of a unique smooth

rational sextic scroll DS on V . Any line on V meeting both ΓS and τ(ΓS) is a
ruling of DS, and vice versa. The scroll DS is the image of P1 × P1 embedded in
P12 by a linear system of bidegree (1, 3).

(iv) The scroll DS is τ -invariant and carries exactly 2 distinct τ -invariant rulings r1, r2

and exactly 4 fixed points of τ . Namely, the intersection

V τ ∩DS = Πτ ∩DS = (E1 ∪ E2) ∩ (r1 ∪ r2)

consists of the τ -fixed points pi,j = Ei · rj, i, j = 1, 2.
(v) Every line on AS ∩ τ(AS) is a ruling of DS.

Proof. (i) Suppose S ∩ τ(S) 6= ∅. Since S and τ(S) belong to different components of
the Hilbert scheme S they share a unique common ruling r, see Proposition 1.1(ix).
Being unique, r is τ -invariant, hence r is a common ruling of Π and S contrary to our
assumption. Thus, S ∩ τ(S) = ∅, as stated in (i).

(ii)–(iii) The proof of Lemma 2.2(i)-(iv) in [PZ20] goes mutatis in our more general
setup. This proves (ii) and the first two statements in (iii).

To show the remaining statement of (iii) suppose on the contrary that DS is isomorphic
to a Hirzebruch surface Fe where e > 0. Let E0 be the exceptional section of DS and f
be a ruling of DS. Then on DS

∼= Fe one has

ΓS ∼ E0 + αf ∼ τ(ΓS) for some α ≥ e > 0.

It follows that

0 = ΓS · τ(ΓS) = Γ2
S = 2α− e and so e = 2α ≤ α,

a contradiction. Therefore, e = 0, that is, DS
∼= P1 × P1. Now (iii) follows.

1Since any cubic cone S on V verifies this assumption, see Lemma 2.2, so does the general cubic scroll.
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(iv) The τ -invariance of DS in (iv) follows from the facts that the pair (S, τ(S)) is
τ -invariant and DS is uniquely defined by S due to (iii). The rulings of DS form a
unique pencil of lines on DS, hence this pencil is τ -invariant. The induced action of τ
on this pencil is not identical, since otherwise any ruling of DS is τ -invariant, and so,
DS = Π. However, the latter is impossible because deg(DS) = 6 and deg(Π) = 12, see
Proposition 2.1.

Thus, the action of τ on P1 parameterizing the pencil has exactly 2 fixed points, that
is, there are exactly 2 τ -invariant rulings of DS, say r1 and r2. By Lemma 2.3 the τ -action
on ri is not identical. So, ri contains exactly 2 fixed points of τ for i = 1, 2. If a ruling r
of DS different from r1 and r2 carries a fixed point x of τ then τ(r) is as well a ruling of
DS passing through x. Since the scroll DS is smooth we have r = τ(r). Hence r is a third
τ -invariant ruling of DS, a contradiction. Therefore, the points in (r1 ∪ r2) ∩ (E1 ∪ E2)
are the only τ -fixed points on DS.

(v) Any line l on AS · τ(AS) meets S and τ(S) in points of ΓS and τ(ΓS), respectively,
see Proposition 1.1(viii). Due to (iii) l is a ruling of DS. �

Remark 2.8. Assume that S and τ(S) are disjoint. One can show that the codimension
2 linear section AS ∩ τ(AS) of V is a union of 3 sextic surfaces DS, RS and τ(RS). In
the case that Aut0(V ) ∼= GL(2,C), and only in this case, one has RS = DS, so that
AS · τ(AS) = 3DS, cf. [PZ18, Theorem 13.5(c)].

Recall that the Hilbert scheme C of rulings of Π is a smooth rational quartic curve in
Σ contained in the diagonal of S1×S2

∼= P2× (P2)∨, see Proposition 2.1. The projection
Ci = pri(C) ⊂ Si is a smooth conic on Si

∼= P2, i = 1, 2.

Corollary 2.9.

(i) A pair of cubic scrolls (S, τ(S)) ∈ S1×S2 shares a unique common ruling r = r(S)
if and only if S ∈ C1. In the latter case r is a ruling of Π.

(ii) Let S ∈ S1 \ C1 and let DS be the smooth rational sextic scroll as in Proposi-
tion 2.7(iii). Then DS ∩ Π = r1(S) ∪ r2(S) is a union of two distinct rulings.

(iii) Let C(2) stand for the symmetric square of C and δ stand for the diagonal of C(2).
The correspondence

(3) S1 \ C1 3 S 7→ {r1(S), r2(S)} ∈ C(2) \ δ ∼= P2 \ {a smooth conic}
is an isomorphism.

Proof. (i) By virtue of Proposition 1.1(ix) S and τ(S) intersect if and only if they share
a unique common ruling. This ruling, say r, is τ -invariant, hence is a ruling of Π, see
Proposition 2.1. Thus, r ∈ C, and so S = pr1(r) ∈ C1, see again Proposition 1.1(ix).
The converse is immediate from Proposition 2.7(i).

Statement (ii) follows from (i) due to Proposition 2.7(iv) and its proof.
To show (iii) recall that the lines on V meeting S sweep out a hyperplane section AS

of V singular along S, see Proposition 1.1(viii). The Hilbert scheme Σ(S) of these lines
is the preimage pr−1

2 (hS) where hS ⊂ S2 = (S1)∨ is the dual line of the point S ∈ S1,
see Proposition 1.1(x). The smooth conic

σS := Σ(S) ∩ Σ(τ(S)) = pr−1
2 (hS) ∩ pr−1

1 (hτ(S))

parameterizes the lines on V which meet both S and τ(S), that is, the lines on AS∩Aτ(S).
By Proposition 2.7(v) these are the rulings of DS.

The line hS ⊂ S2 meets the smooth conic C2 = pr2(C) in an unordered pair of points.
Hence Σ(S) = pr−1

2 (hS) meets C in an unordered pair of points {r1(S), r2(S)}. The
corresponding rulings r1(S), r2(S) of Π intersect S. Since these rulings are τ -invariant
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and so is the scroll DS, these are the common rulings of Π and DS. By (i) r1(S) = r2(S)
if and only if S ∈ C1. This yields the morphism in (3).

To show that the correspondence in (3) is one-to-one, choose {r1, r2} ∈ C(2) \ δ =
P2 \ {a smooth conic}. Let l be the line on S2 such that l · C2 = pr2(r1) + pr2(r2). The
point S = l∨ in the dual projective plane S1 corresponds to a unique cubic scroll such
that DS and Π share the common rulings r1 and r2. Thus, the morphism in (3) is a
bijection, so an isomorphism. �

Remark 2.10. Notice that r1 = r2 if and only if DS and Π are tangent along the unique
common ruling r1 = r2, if and only if l is tangent to C2 at the corresponding point, that
is, S and τ(S) share a common ruling.

Proposition 2.11.

(i) No two distinct rulings of Π meet.
(ii) s|Π̃ : Π̃→ Π is a bijective normalization morphism.

(iii) deg(E1) + deg(E2) = 12.
(iv) Any line on V that intersects both E1 and E2 is a ruling of Π.

Proof. (i) The unordered pairs of distinct rulings of Π are in bijection with the points of
C(2) \ δ, see (3). Every such pair corresponds to a pair of rulings {r1, r2} of a smooth
sextic scroll DS for some S ∈ S1 \ C1, see Proposition 2.9(iii). However, DS is smooth
and therefore, no two distinct rulings of DS meet, see Proposition 2.7(iii).

(ii) Since Π̃ is smooth and s|Π̃ : Π̃ → Π is bijective due to (i), the latter is a normal-
ization morphism.

(iii) Recall that deg(Π) = 12 and that Ẽi and Ei are smooth rational curves, see Propo-
sitions 2.1(iii) and 2.6(i). Hence by (ii) s|Ẽi

: Ẽi → Ei is an isomorphism. Now (iii) follows
from the classical Edge formula [Edge31, Section I, p. 17], see [Har92, Example 19.5] for
a modern treatment.

(iv) Let l be a line on V which meets Ei in a point Pi, i = 1, 2. Since τ(Pi) = Pi we
have Pi ∈ τ(l) for i = 1, 2, and so τ(l) = l. Now the result follows from Proposition
2.1(iv). �

2.3. Numerical data of Π.

Lemma 2.12. Given a cubic scroll S ∈ S1 let AS be the associated hyperplane section
of V singular along S, see Proposition 1.1(viii). Then

(4) AS · Π = n1r1 + n2r2 + γS

where ni = ni(S) ≥ 1, γS is a section of Π and the rulings r1 and r2 of Π are disjoint if
S ∈ S1 \ C1 and equal if S ∈ C1.

Proof. By Corollary 2.9 S and τ(S) are disjoint if S ∈ S1\C1 and share a unique common
ruling r otherwise, where r is a ruling of Π. In the former case the corresponding sextic
scroll DS ⊂ AS ∩ τ(AS) shares with Π precisely two common rulings r1 and r2, see
Proposition 2.7(iv). These rulings r1 and r2 participate in the 1-cycle ΥS = AS · Π with
positive multiplicities n1 and n2, respectively. No third ruling r of Π is contained in AS.
Indeed, otherwise r = τ(r) ⊂ AS ∩ τ(AS) (see Proposition 2.1) would be a third common
ruling of DS and Π, which contradicts Proposition 2.9(iv). Thus, the residual effective
1-cycle γS in (4) is reduced and a section of Π. �

Lemma 2.13. For the general cubic scroll S ∈ S1 one has n1 = n2 in (4).
12



Proof. By Proposition 2.9 the rulings r1(S) and r2(S) are distinct for S ∈ S1 \ C1. The
unordered pair of coefficients {n1(S), n2(S)} in (4) is constant for S from a suitable open
subset U ⊂ S1 \ C1. Identifying S1 \ C1 with C(2) \ δ = P2 \ δ via (3) consider the

2-sheeted covering (P1×P1) \ δ̃ → P2 \ δ, where δ̃ stands for the diagonal in P1×P1. The
monodromy of the covering restricted to U interchanges the members of the ordered pair
of points from (P1 × P1) \ δ̃. It follows that n1(S) = n2(S) for S ∈ U . �

According to Proposition 2.11 Π̃ is isomorphic to a Hirzebruch surface Fe for some
e ≥ 0.

Lemma 2.14. The following conditions are equivalent:

• e = 0, that is, Π̃ ∼= P1 × P1;
• deg(E1) = deg(E2) = 6.

These conditions are fulfilled provided n1 = n2 = 3 in (4) for some cubic scroll S ∈ S1

such that γS 6= Ei for i = 1, 2.

Proof. Notice that γ̃S 6= Ẽi for a general S ∈ S1, i = 1, 2. Indeed, otherwise Ei ⊂
AS ∩ τ(AS) for any S ∈ S1 contrary to Proposition 1.1(xii).

Assume that e > 0, and let Ẽ0 be the exceptional section of Π̃ ∼= Fe. Since τ preserves
each ruling of Π̃ and τ(Ẽ0) = Ẽ0 one has τ |Ẽ0

= idẼ0
. So, Ẽ0 is one of the components of

the fixed point set Π̃τ = Ẽ1 ∪ Ẽ2; we may assume that Ẽ0 = Ẽ1.
Let now e ≥ 0. Letting F be a ruling of Π̃ we have Ẽ2 ∼ Ẽ1 + eF . Since (ÃS|Π̃)2 = 12

and the linear system |ÃS| restricted to Π̃ is base point free, see Proposition 2.11(ii), one
has ÃS|Π̃ ∼ Ẽ1 + aF where a = 6 + e/2 ≥ e. It follows that

(5) deg(E1) = ÃS · Ẽ1 = 6− e/2 and deg(E2) = ÃS · Ẽ2 = 6 + e/2,

what is in line with Proposition 2.11(iii). Therefore, e = 0 if and only if deg(E1) =
deg(E2) = 6. Thus, the two conditions of the lemma are equivalent.

Using Proposition 2.1(iii) and Lemmas 2.12 –2.13 and letting n = n1 = n2 in (4) we
obtain

12 = deg(Π) = deg(ΥS) = 2n+ deg(γS).

Let

ÃS = s∗(AS), Υ̃S = ÃS · Π̃, γ̃S = s∗(γS) · Π̃ and r̃i = s∗(ri) · Π̃.

Thus, Υ̃S, γ̃S and r̃i are the proper transforms of ΥS, γS and ri under the bijective
morphism s|Π̃ : Π̃ → Π. Using the Projection Formula, Proposition 2.11(iii) and (4) we
deduce

Υ̃S = n(r̃1 + r̃2) + γ̃S, 12 = ÃS · Υ̃S = 2n+ deg(γS)

and

12 = ÃS · (Ẽ1 + Ẽ2) = (Υ̃S · (Ẽ1 + Ẽ2))Π̃ = 4n+ (γ̃S · (Ẽ1 + Ẽ2))Π̃.

It follows that n ≤ 3 for γS 6= E1 and n = 3 if and only if deg γ̃S = 6.
Let now S ∈ S1 be such that n1 = n2 = 3 and γS in (4) is different from E1 and E2.

Then (γ̃S · Ẽi)Π̃ = 0, therefore Ẽ1, Ẽ2 and γ̃S are 3 disjoint sections of Π̃ → C. Hence

e = 0, these 3 sections are constant sections of the projection Π̃ ∼= P1 × P1 pr2−→ P1, while

the other projection Π̃ ∼= P1 × P1 pr1−→ P1 defines the ruled surface structure on Π̃. Thus,
the both conditions of the lemma are fulfilled. �
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3. Starting the proof of the main theorem

The following is a weaker version of Theorem 0.1.

Theorem 3.1. Let V be a Fano-Mukai fourfold of genus 10 half-anticanonically embedded
in P12, and let τ ∈ Aut(V ) \ Aut0(V ) be an involution. Then the fixed point set V τ is a
union of two disjoint smooth rational sextic curves E1 and E2. Furthermore, there is a
surface scroll Π = Π(V, τ) in V verifying the following.

(i) Each ruling of Π is τ -invariant and each τ -invariant line on V is a ruling of Π.
(ii) Π has degree 12 and its normalization Π̃ is a rational normal scroll isomorphic

to P1 × P1 and embedded in P13 by the complete linear system of type (1, 6). The
normalization morphism Π̃→ Π is bijective.

(iii) An isomorphism Π̃ ∼= P1 × P1 sends the proper transforms Ẽi of Ei on Π̃, i = 1, 2
into constant sections of the projection pr1 : P1 × P1 → P1.

It suffices to show that deg(Ei) = 6 for i = 1, 2, the remaining assertions being already
established in Propositions 2.6, 2.11 and Lemma 2.14 or follow immediately from these.
We prove the equalities deg(Ei) = 6, i = 1, 2 separately for each type of the group
Aut0(V ), see Propositions 3.2, 3.3 and 3.4. Once we know that these equalities hold
provided Aut0(V ) = GL(2,C), the other two cases where Aut0(V ) = G2

m and Aut0(V ) =
Ga ×Gm are reduced to this one by a specialization argument.

3.1. The case Aut0(V ) = GL(2,C).

Proposition 3.2. Suppose Aut0(V ) = GL(2,C). Then deg(E1) = deg(E2) = 6.

Proof. Let S ∈ S1 be an Aut0(V )-invariant cubic cone on V . There is a unique such
cone in S1, and so τ(S) is a unique Aut0(V )-invariant cubic cone in S2, see Proposition
1.4. According to [PZ18, Theorem 13.5(c)] one has AS · Aτ(S) = 3DS. Hence

(6) AS · Aτ(S) · Π = 3DS · Π = 3(r1 + r2).

It follows by (4) that AS · Π = 3(r1 + r2) + γS, that is, n1 = n2 = 3. We claim that
γS is different from E1 and E2. Indeed, otherwise τ(γS) = γS, and therefore γS ⊂
AS ∩ Aτ(S) ∩ Π = DS ∩ Π. The latter contradicts (6), which proves our claim. Now
Lemma 2.14 applies and gives the result. �

3.2. The case Aut0(V ) = G2
m. In this case we use the Mukai presentation of the Fano-

Mukai fourfolds of genus 10, see subsection 1.2.

Proposition 3.3. Assume Aut0(V ) = G2
m. Then deg(E1) = deg(E2) = 6.

Proof. Let T be a maximal torus of G and h = Lie(T ) be the corresponding Cartan
subalgebra of g = Lie(G). The T -action on Pg = P13 fixes pointwise the projective line
Ph. Hence T ⊂ Aut(V (h)) = StabG(Ph) for any point Ph ∈ Ph. If h ∈ g \ {0} is
semisimple then Aut(V (h)) contains a maximal torus of G. Since the maximal tori in G
are conjugate, the line Ph intersects each semisimple G-orbit in Pg including Ωsr and does
not intersect the orbit Ωa; cf. [KR13, Proof of Lemma 1] and [PZ22, Corollary 2.5.1].

Let F → Pg be the universal family of hyperplane sections of Ω. The restriction

FT := F |Ph\D`
→ Ph \D`

∼= P1 \ {3 points},
see [PZ22, Lemma 2.8], is a smooth one-parameter family of Fano-Mukai fourfolds of genus
10 consisting of the smooth hyperplane sections V (h) of Ω which satisfy T ⊂ Aut(V (h))
where Aut(V (h)) coincides with the stabilizer StabG(Ph).
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Let NG(T ) stand for the normalizer of T in G and let W = NG(T )/T be the Weyl
group of G. One has W ∼= D6 where D6 is the dihedral group of order 12. By [AH17]
there is a splitting NG(T ) = T oW . Let τ ∈ NG(T ) be the central element of order 2 in
W ⊂ NG(T ). Then τ acts on the Cartan subalgebra h via the central symmetry h 7→ −h,
acts on T via the inversion t 7→ t−1 and acts identically on the line Ph ⊂ Pg. For any
point Ph ∈ Ph the torus T acts effectively on V (h) and τ acts on Ω via an involution
preserving V (h). Thus,

Aut(V (h)) = StabG(Ph) ⊃ 〈T, τ〉 ∼= T o Z/2Z.

Hence τ acts on the total space of the family FT → Ph \D` and acts effectively on the
fiber V (h) for any Ph ∈ Ph \D`.

Since 〈τ〉 ∼= Z/2Z is a reductive group the fixed point set (FT )τ is a smooth subvariety
of the smooth variety FT . Any fiber V (h)τ of (FT )τ → Ph\D` in a union of two disjoint
smooth rational curves E1(h), E2(h) where deg(E1(h) + E2(h)) = 12. Hence (FT )τ is a
smooth rational surface fibered over Ph \ D` = P1 \ {3 points} into a family of smooth
reducible curves E1(h) ∪ E2(h) of degree 12. It follows that the lower semicontinuou
function deg(Ei(h)) on Ph\D` is constant for i = 1, 2. For a point h0 ∈ Ph∩Ds = Ph∩Ωsr

with Aut0(V (h0)) ∼= GL(2,Z) one has

Aut(V (h0)) = Aut0(V (h0)) o 〈τ〉 ∼= GL(2,Z) o Z/2Z,

see [PZ22, Theorem A]. By Proposition 3.2 one has deg(E1(h0)) = deg(E2(h0)) = 6.
Therefore, deg(E1(h)) = deg(E2(h)) = 6 for any Ph ∈ Ph \D`.

The same equalities hold for any Ph′ ∈ Pg \ (D` ∪ Ds), that is, for any h′ with
Aut0(V (h′)) ∼= G2

m. Indeed, the projective line Ph meets any G-orbit Dt \D`, t /∈ {`, s},
see Theorem 1.2(ii) and [PZ22, Corollary 3.5.1]. Hence the G-orbit of Ph′ contains a point
Ph ∈ Ph \ (D` ∪Ds). Thus, there is an element g ∈ G ⊂ PGL(14,C) which sends Ph to
Ph′, V (h) isomorphically onto V (h′), τ to an involution τ ′ ∈ Aut(V (h′)) \ Aut0(V (h′)),
and Ei(h) to Ei(h

′), i = 1, 2, up to switching the order.
By Corollary 1.7 the choice of an involution τ ∈ Aut(V ) \Aut0(V ) is irrelevant for our

purposes. Therefore, the above argument proves the proposition. �

3.3. The case Aut0(V ) = Ga × Gm. The proof in this case is similar to the preceding
one. We construct a one-parameter family of Fano-Mukai fourfolds {Vt} with Aut0(Vt) =
Ga × Gm which specializes to V0 with Aut0(V0) = GL(2,C) and then apply the same
argument as before.

Proposition 3.4. Assume Aut0(V ) = Ga ×Gm. Then deg(E1) = deg(E2) = 6.

Proof. According to [KR13, Lemma 1 and its proof], see also Theorem 1.2(iii) there exist
commuting elements s, n ∈ g such that s is subregular semisimple, n is nilpotent and
g = s+n is regular. We have Ps ∈ Ωsr and P(s+n) ∈ Ωa. It follows from the description
of G-orbits in g, see Theorem 1.2, that the same inclusions hold if one replaces n by λn
with λ ∈ C \ {0} and s+ n by s+ λn ∈ f := span(s, n).

Notice that f is a two-dimensional abelian Lie subalgebra of g. Consider the projective
line Pf ⊂ Pg. Let ω = Pf \ {Pn} be the image in Pg of the affine line {s + λn |λ ∈ C}
and let ωa = ω \ {Ps}. Since s is subregular, any regular element of f \ {λn|λ ∈ C} is
mixed. Since n is nilpotent one has Pn ∈ D` ∩Ds, see Theorem 1.2(i). It follows that

ω = Pf \D` ⊂ Ds \D` and ωa = Pf ∩ Ωa = ω ∩ Ωa.
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Consider the smooth one-parameter family Fω := F |ω → ω of hyperplane sections
V (h) of Ω with Ph ∈ ω. For Ph ∈ ω we have by Theorem 1.3,

Aut0(V (h)) ∼= Ga×Gm ⇔ Ph ∈ ωa and Aut0(V (h)) ∼= GL(2,C)⇔ Ph = Ps ∈ ω \ωa.

Let
L =

(
StabG(Ps)

)0
= Aut0(V (s)) ∼= GL(2,C)

and
L̃ = StabG(Ps) = Aut(V (s)) = Lo Z/2Z.

For λ 6= 0 we let gλ = s+ λn,

Hλ =
(
StabG(Pgλ)

)0
= Aut0(V (gλ)) ∼= Ga ×Gm

and
H̃λ = StabG(Pgλ) = Aut(V (gλ)) = Hλ o Z/2Z.

Thus, for h ∈ H̃λ one has Ad(h)(gλ) = µgλ for some µ ∈ C\{0}. In view of the uniqueness
of the Jordan decomposition we have Ad(h)(s) = µs and Ad(h)(n) = µn. It follows that
H̃λ ⊂ L̃ and Hλ ⊂ L.

The centralizer Centg(gλ) is contained in Lie(StabG(Pgλ)). Hence also

f ⊆ Lie(StabG(Pgλ)) = Lie(Hλ).

Both f and Lie(Hλ) are Lie subalgebras of dimension 2, hence they coincide. Thus,
Lie(Hλ) = f does not depend on λ, and therefore Hλ = H ⊂ L for all λ ∈ C \ {0} where
H := H1.

The generator τ ∈ G of the factor Z/2Z in the decomposition H̃λ = HoZ/2Z stabilizers
the point Pg1, that is, Ad(τ)(s+ n) = ±(s+ n). So Ad(τ)(s) = ±s and Ad(τ)(n) = ±n
with the same signs in both cases. Therefore, Ad(τ)(gλ) = ±gλ for all λ ∈ C. The
latter means that τ fixes any point Pgλ ∈ Ds and acts via involution on the Fano-Mukai
fourfold V (gλ) interchanging the pairs of disjoint Aut0(V (gλ))-invariant cubic cones on
V (gλ). Furthermore, τ ∈ L̃ serves as a generator of the factor Z/2Z in a decomposition
L̃ = LoZ/2Z. Due to Theorem 1.5(iv) and Corollary 1.7, up to conjugation by an element
of L, τ acts on L = GL(2,C) via the Cartan involution g 7→ (gt)−1 and acts on H via the
inversion. Thus, H coincides with one of the subgroups H± from Proposition 1.6(v).

Finally, the involution τ acts on the total space of the smooth family Fω → ω pre-
serving each fiber V (gλ) with Pgλ ∈ ω. The fixed point set (Fω)τ is a smooth surface
fibered into a family of smooth reduced curves of degree 12, each curve being the union
of two disjoint rational components E1(λ) and E2(λ). The pair of degrees of these curves
is locally constant in the family and equals (6, 6) for λ = 0, hence also for any λ ∈ C.
Since the fourfolds V (h) with Ph ∈ Ωa are pairwise isomorphic and ωa ⊂ Ωa, the same
conclusion holds for any Ph ∈ Ωa. �

4. Smoothness of Π

Due to the following proposition Π is smooth, so the normalization morphism Π̃→ Π
is an isomorphism.

Proposition 4.1. Given a Fano-Mukai fourfold V of genus 10 and an involution τ ∈
Aut(V ) \ Aut0(V ), the scroll Π in τ -invariant lines on V is smooth.

The proof of Proposition 4.1 is done after Lemmas 4.2 and 4.4.

Lemma 4.2.

(i) (sing Π) ∩ (E1 ∪ E2) = ∅.
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(ii) dim(sing Π) = 0.

Proof. (i) Pick a point P̃ ∈ Ẽi and let r̃ be the ruling of Π̃ passing through P̃ and
r = s(r̃) be the ruling of Π passing through P = s(P̃ ). The restrictions s|Ẽi

: Ẽi → Ei
and s|r̃ : r̃ → r are isomorphisms. Hence the rank of the differential d(s|Π̃)P̃ : TP̃ Π̃→ TPΠ

equals 2, so s|Π̃ is étale at P̃ . Now (i) follows.
(ii) Assume that sing Π contains an irreducible curve γ, and let γ̃ = (s|Π̃)−1(γ). By

virtue of (i), γ̃ does not meet Ẽ1 ∪ Ẽ2. Then deg(γ̃) = 6, so γ̃ is a constant section of
the projection Π̃ ∼= P1 × P1 → P1. The morphism s|γ̃ : γ̃ → γ is bijective, so étale at a

general point Q̃ ∈ γ̃. By the same argument as in the proof of (i), s|Π̃ : Π̃ → Π is étale

at Q̃. This contradicts our assumption γ ⊂ sing Π. �

In the sequel we use the following notation.

Notation 4.3. The complete linear system of type (1, 6) on P1×P1 embeds the quadric
P1×P1 onto a rational normal scroll Πnorm ⊂ P13 of degree 12. The fibers of the projection
pr1 : P1 × P1 → P1 are sent to rulings of Πnorm and the constant sections of pr1 are sent
to smooth rational normal sextic curves γ̄t on Πnorm. Any two different curves γ̄t and γ̄t′
span two disjoint P6’s in P13. We identify Πnorm with the normalization Π̃ of Π. Thus,
the linear projection π : P13 → Pk := 〈Π〉 ⊂ P12 with center P12−k ⊂ P13 defined by
the linear system of hyperplane sections of Π ⊂ P12 is the normalization morphism. By
Proposition 2.11(ii) π is a bijection. So, P12−k intersects no non-tangent secant line to
Πnorm. Furthermore, it does not meet Πnorm because deg(Πnorm) = deg(Π) = 12.

Following [Har92], for a point Q̄ ∈ Πnorm we let TQ̄Πnorm and TQ̄Πnorm ⊂ P13 be the
tangent plane and the projective tangent plane of Πnorm at Q̄, respectively. Clearly, the
image Q = π(Q̄) is a singular point of Π if and only if the center P12−k of π intersects
the projective tangent plane TQ̄(Πnorm). Recall the following well known facts.

Lemma 4.4.

(i) Πnorm is cut out by quadric hypersurfaces in P13.
(ii) Every projective line tangent to Πnorm and different from its rulings intersects Πnorm

in a single point.
(iii) Every projective plane tangent to Πnorm intersects Πnorm in a single ruling.
(iv) Given a ruling r̄ of Πnorm, the projective planes tangent to Πnorm along r̄ sweep out

a P3 that contains r̄.
(v) Projective planes tangent to Πnorm sweep a quadruple Tan(Πnorm) (also swept by

the one-parameter family of P3’s from (iv)).
(vi) The secant variety Sec(Πnorm) is a fivefold of degree 45.

Proof. Statement (i) follows from [Har92, 9.11–9.12] and implies (ii), which in turn implies
(iii). See [Edge31, Section I.51] for (iv)-(vi). �

Proof of Proposition 4.1. The action of τ on Π lifts to a τ -action on the normalization
Πnorm, which in turn extends to the ambient space P13 as a linear involution. Let Ēi be
the preimage of Ei in Πnorm and let r̄ be the preimage of a ruling r of Π. The fixed point
set of τ acting on P13 is the union of two disjoint P6s that are the linear spans 〈Ē1〉 and
〈Ē2〉. Any ruling r̄ of Πnorm is τ -invariant. The projection π : P13 99K Pk is τ -equivariant.

If Q ∈ Π is a singular point, then Q /∈ E1 ∪ E2, see Lemma 4.2(i). So, τ(Q) 6= Q is a
second singular point of Π. The ruling r of Π that contains Q is τ -invariant, therefore
r = (Qτ(Q)). Let Q̄ ∈ Πnorm be the preimage of Q, r̄ be the ruling of Πnorm passing

through Q̄ and τ(Q̄) = τ(Q) ∈ r̄ be the preimage of τ(Q). The projective tangent planes
17



T2
Q̄

Πnorm and T2
τ(Q̄)

Πnorm intersect precisely along r̄ and span a P3 ⊂ P13 that contains

each projective tangent plane TQ̄′Πnorm for Q̄′ ∈ r̄, see Lemma 4.4(iv).
The center P12−k of π is τ -invariant. Since Q ∈ Π is a singular point, P12−k meets

T2
Q̄

Πnorm at a point, say P 6= Q. Since τ(Q̄) is singular on Π, P12−k also meets T2
τ(Q̄)

Πnorm

at τ(P ). The projective line

(7) lQ = (P, τ(P )) = P12−k ∩ P3

does not meet r̄ and intersects each projective tangent plane TQ̄′Πnorm from the pencil
of planes in P3 with base locus r̄. It follows that each point Q′ = π(Q̄′) ∈ r is a singular
point of Π. The latter contradicts Lemma 4.2(ii). �

5. Linear nondegeneracy of Π in P12

What is left to complete the proof of Theorem 0.1? We do not yet know the value of
k = dim〈Π〉 and the splitting types of the normal bundles of the fixed curves E1 and E2.
The first is done in this section and the second in the next.

5.1. The first observations. Let as before g be the Lie algebra of G, T be a fixed
maximal torus of G, h = Lie(T ) be the corresponding Cartan subalgebra of g, and ∆ be
the root system in h∨. For a root α ∈ ∆ let gα be the corresponding root subspace of g.
Consider the Cartan decomposition

g = h⊕
⊕
α∈∆+

(gα ⊕ g−α).

Consider the Weyl groupW = NG(T )/T ofG. The central Weyl involution τ ∈ z(W) ⊂ G
acts on h via τ |h = −idh and acts on every plane gα⊕ g−α by interchanging gα and g−α.
So g can be decomposed into a direct sum g = F+ ⊕ F− of eigenspaces orthogonal with
respect to the Killing form, where

(8) τ |F+ = idF+ , τ |F− = −idF− , dimF+ = 6, dimF− = 8, h ⊂ F−.

The fixed point set (Pg)τ ⊂ P13 consists of two disjoint subspaces PF+ ∼= P5 and PF− ∼=
P7, where Ph ⊂ PF−.

Since the torus T is an abelian group, T |h = idh, and so T |Ph = idPh. The center
z(W) = 〈τ〉 of the Weyl group also acts identically on Ph. So, the action of the dihedral
group W = D6 on h descends to an effective action of the symmetric group S3 = W /z(W)
on the projective line Ph ⊂ Pg = P13. This line meets the sextic hypersurfaces D` and Ds

along a zero-cycles 2 O` and 2 Os, respectively, where O` and Os are S3-orbits of length
3, see [PZ22, Lemmas 3.7 and 3.8].

Choose a point Ph ∈ Ph \ D`. Then the hyperplane section V = V (h) = h⊥ ∩ Ω is
a smooth Fano-Mukai fourfold of genus 10 with a reductive group Aut(V ) that contains
the torus T and the involution τ normalizing T . Notice that V = V (h) is singular exactly
when Ph ∈ O` = Ph ∩D`.

Let now V be a smooth Fano-Mukai fourfold of genus 10 with a reductive group Aut(V )
that contains the torus T and the involution τ normalizing T . Then V ∼= V (h) for some
h ∈ g with Ph ∈ Ph \ D`, see [PZ22, Corollary 3.5.1]. Besides, Aut0(V ) ∼= GL2(C) if
Ph ∈ Os and Aut0(V ) = T ∼= G2

m if Ph ∈ Ph \ (Os ∪O`), see [PZ22, Corollary 3.8.1].
It is known that V = V (h) ⊂ P12 is linearly nondegenerate. Since the involution τ

leaves 〈V (h)〉 = h⊥ invariant we have h ∈ F+ ∪ F−. Letting

(9) Λ+ = PF+ ∩ h⊥ and Λ− = PF− ∩ h⊥
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we have

(10) Λ+ ∩ Λ− = ∅, dim Λ+ + dim Λ− = 11 and 〈Λ+ ∪ Λ−〉 = h⊥ ∼= P12.

For h ∈ h ⊂ F− one has h⊥ ⊃ F+, therefore Λ+ ∼= P5 and Λ− ∼= P6.
Let Π ⊂ V = V (h) be the scroll in τ -invariant lines. Then Πτ = E+ ∪ E− where E+

and E− are disjoint smooth rational sextic curves, see Theorem 0.1. We may consider
that E+ ⊂ Λ+ and E− ⊂ Λ−. Indeed, if both E+ and E− were contained in the same
projectivized eigenspace, say E+∪E− ⊂ Λ−, then Π ⊂ 〈E+∪E−〉 ⊂ Λ−, and so τ |Π = idΠ,
a contradiction. Hence E± = Λ± ∩ V . Since min{dim+, dim Λ−} = 5, at least one of the
sextics E± ⊂ Λ± is not a rational normal curve, therefore Π ⊂ P12 is not linearly normal.

5.2. Linear nondegeneracy of Π.

Proposition 5.1.

(i) The scroll Π in τ -invariant lines is linearly nondegenerate in P12.
(ii) Up to enumeration we have dim〈E1〉 = 5 and dim〈E2〉 = 6.

We start with the following lemma.

Lemma 5.2. Let k = dim〈Π〉 and let π : P13 99K Pk = 〈Π〉 be the linear projection with
center Z = P12−k which sends the rational normal scroll Πnorm onto Π and sends Ēi onto
Ei, i = 1, 2. Let Hi = 〈Ēi〉 ⊂ P13 and Zi = Z ∩Hi, i = 1, 2. Then either

• Z = Zi for some i ∈ {1, 2}, or
• Z coincides with the join J(Z1, Z2) = 〈Z1, Z2〉. In the latter case dim(Z) = 12−k =

dim(Z1) + dim(Z2) + 1.

Proof. We have Hi
∼= P6, H1 ∩H2 = ∅ and H1 ∪H2 is the fixed point set (P13)τ . Recall

that through any point of P13 \ (H1 ∪H2) passes a unique line meeting both H1 and H2.
Assume that Z 6= Zi for i = 1, 2 and let P ∈ Z \ (H1 ∪H2). Since Z is τ -invariant, the

τ -invariant line lP = (Pτ(P )) is contained in Z and Pi = lP ∩Hi ∈ Zi, i = 1, 2, are the
two fixed points of τ on lP . Thus, P ∈ lP = (P1, P2) ⊂ J(Z1, Z2), and so Z ⊂ J(Z1, Z2).
The opposite inclusion is evidently true. �

Corollary 5.3. Π is linearly nondegenerate if and only if Z is a point in Hi \ Sec(Ēi)
for some i ∈ {1, 2}. In the latter case

dim 〈Ei〉 = 5 and dim 〈Ej〉 = 6 for j 6= i.

Proof. This follows immediately from Lemma 5.2. �

Let us recall the notation and some formulas from [Hir57].

Notation 5.4. Let C1 and C2 be curves in Pn with no common component. For a
point P ∈ C1 ∩ C2 let I(Ci) be the ideal of Ci in the local ring A of (Pn, P ). Then the
intersection index of C1 and C2 at P is defined as

i(C1, C2;P ) = lengthA/(I(C1), I(C2))A.

It is known that i(C1, C2;P ) = 1 if and only if the Zariski tangent spaces of C1 and C2

at P intersect only in P , see [Hir57, Proposition 3].
Let now C1 = C ′1 ∪ C ′′1 where C ′1, C ′′1 and C2 are smooth at P . If C1 lies on a smooth

surface S and C2 is transversal to S at P then i(C1, C2;P ) = 1. If C ′1 is a simple tangent
line to C2 at P and C ′′1 is transversal to C2 at P then i(C1, C2;P ) = 3. If, finally, C ′1 is a
simple tangent line to C2 at P and C ′′1 = C ′1 then i(C1, C2;P ) = 2i(C ′1, C2;P ) = 4.
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Given r curves C1, . . . , Cr with no common component, one conseder the following
zero-cycle supported at the singular points of C =

⋃r
i=1 Ci:

Λ(C) =
∑

P∈sing(C)

i(Λ(C), P )P where i(Λ(C), P ) =
r∑

k=2

i

(( k−1∑
i=1

Ci
)
, Ck;P

)
.

In fact, this cycle does not depend on the choice of enumeration. The arithmetic genus
pa(C) can be computed by the following formula, see [Hir57, Theorem 3]:

(11) pa(C) =
r∑
i=1

pa(Ci) + deg(Λ(C))− (r − 1).

Lemma 5.5.

(i) The curve Ei is intersection of quadrics in 〈Ei〉 for i = 1, 2.
(ii) We have k ≥ 11.

Proof. (i) It is known that Ω ⊂ P13 and V = Ω ∩ h⊥ in P12 are intersections of quadrics,
see [Isk77, Lemma 2.10], cf. also [PZ18, 4.5]. Then also Ei = E± = Λ± ∩ V = 〈Ei〉 ∩ V
is intersection of quadrics in 〈Ei〉, i = 1, 2, see subsection 5.1.

(ii) Fix i ∈ {1, 2} and let E = Ei, Ē = Ēi and Z = Zi ⊂ 〈Ē〉 = P6. Since the curve
E = π(Ē) is smooth, the center Z of the projection π : P6 → 〈E〉 ⊂ P12 does not intersect
the threefold Sec(Ē) in P6. Hence dimZ ≤ 2.

Suppose that dimZ = 2. Then 〈E〉 = P3. By (i), E is intersection of quadrics in P3.
Thus, E ⊂ Q1 ∩ Q2 for some distinct quadrics Q1 and Q2 in P3. So, 6 = deg(E) ≤ 4, a
contradiction. It follows that dimZ ≤ 1.

If dimZ = 1 then 〈E〉 = π(〈Ē〉) = P4. By (i), E is contained in a proper intersection
of quadrics Q1, Q2 and Q3 in P4. This intersection is a curve of degree 8 and of arithmetic
genus 5. It consists of the smooth sextic E and a conic C. We claim that C is reducible.
Indeed, let L = P3 be a hyperplane in P4 that contains C. Then the surface L∩Sec(E) in
L = P3 meets C. Hence, there is a secant line l of E which intersects C, and so l ·Qi ≥ 3
for i = 1, 2, 3. Thus, l ⊂

⋂3
i=1Qi is a component of C = l + l′, where l′ is the second

component of C.
Letting Γ = E + l + l′ we obtain by (11)

5 = πa(Γ) = deg(Λ(Γ))− 2,

and so deg(Λ(Γ)) = 7. However, we claim that deg(Λ(Γ)) < 7 whatever is the configura-
tion (E, l, l′).

Indeed, E being a smooth intersection of quadrics, the intersection of E with any line is
either transversal or a simple tangency at a single point. Therefore,

∑
P∈E i(E, li;P ) ≤ 2.

Assume first that l1 6= l2. If Γ has only nodes as singularities then the number of these
points is ≤ 5, and also deg(Λ(Γ)) ≤ 5, a contradiction.

Suppose now that Γ has a triple point P . Then either l1, l2 and E are transversal at P
and then

i(Λ(Γ), P ) = i(l1, l2;P ) + i(l1 + l2, E;P ) = 2,

or at most one of the li, say l1 is a simple tangent to E at P and l2 is transversal to l1 +E
at P , hence

i(Λ(Γ), P ) = i(E, l1;P ) + i(E + l1, l2;P ) = 3.

It is easily seen that in any case deg(Λ(Γ)) ≤ 5. This leads again to a contradiction.
Suppose finally that l1 = l2 is a double line of the intersection Q1 ·Q2 ·Q3. If this double

line meets E transversally in two points P1 and P2, then deg(Λ(Γ)) = 2(i(l1, E;P1) +
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i(l1, E;P2) = 4. If l1 and E are tangent at a point P then again deg(Λ(Γ)) = 2i(l1, E;P ) =
4. In all the other cases deg(Λ(Γ)) < 4, which proves our claim.

Thus, dimZi ≤ 0 for i = 1, 2, hence 12− k = dimZ ≤ 1 and k ≥ 11. �

Proof of Proposition 5.1. Statement (ii) follows from (i) due to Corollary 5.3. To show
(i) suppose that Π is linearly degenerate. By Lemma 5.5 one has 〈Π〉 = P11, and so
Π is contained in the hyperplane section M = 〈Π〉 ∩ V . By Lefschetz’ theorem on
hyperplane sections, Pic(M) ∼= Pic(V ) = Z, see e.g. [Fuj80, Section 1]. Hence Π is a
complete intersection in M . However, deg(Π) = 12 does not divide deg(M) = 18, a
contradiction. �

6. Normal bundles of the fixed curves

In this section we determine the splitting type of the normal bundles N− = NE−/P6

and N+ = NE+/P5 where E± are the components of the fixed point set V τ . Using the
notation from subsection 5.1 we may consider that

E+ ⊂ Λ+ = 〈E+〉 = P5 and E− ⊂ Λ− = 〈E−〉 = P6.

We will show that the first normal bundle is almost balanced and the second is balanced.
More precisely, we have the following

Proposition 6.1. The normal bundles N± admit decompositions

N− = OP1(8)5 and N+ = OP1(8)⊕2 ⊕OP1(9)⊕2.

Actually, the first equality is well known. Indeed, let C ⊂ Pn be a linearly nondegen-
erate smooth rational curve of degree d ≥ n. Then

NC/Pn =
n−1⊕
i=1

OP1(d+ bi) where bi ≥ 2 and
n−1∑
i=1

bi = 2d− 2,

see e.g. [Sac80], [CR18, Corollary 2.2]. In particular, for the rational normal curve
C = Cn of degree n in Pn (i.e. for d = n) one has b1 = . . . = bn−1 = 2, and so the normal
bundle is balanced, that is,

NCn/Pn = OP1(n+ 2)n−1.

For n = 6 this yields the first equality in Proposition 6.1.
As for the second, notice that the preceding formulas leaves just the following pos-

sibilities (a) and (b), depending on the choice of the center Z of the linear projection
π : P6 99K P5 which sends a rational normal curve C6 to E+:

(12) (a) N+ = OP1(8)2 ⊕OP1(9)2 and (b) N+ = OP1(8)3 ⊕OP1(10).

Apriori, both of these splitting types could occur, due to the following facts.

Theorem 6.2.

(i) ([Sac80]; see also [CR18, Theorem 2.7]) For any sequence of integers bi ≥ 2, 1 ≤
i ≤ n − 1 such that

∑n−1
i=1 bi = 2d − 2 there exists an unramified map f : P1 → Pn

onto a linearly nondegenerate, immersed curve C ⊂ Pn of degree d ≥ n such that

Nf =
n−1⊕
i=1

OP1(d+ bi).
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(ii) ([Sac80]; see also [AR17, Theorem 2]) For a generic rational curve C in Pn of
degree d > n ≥ 3 one has

Nf = OP1(d+ q + 1)⊕n−r−1 ⊕OP1(d+ q + 2)⊕r

where 2d− n− 1 = q(n− 1) + r with r < n− 1.

From (ii) of Theorem 6.2 we deduce the following

Corollary 6.3. The normal bundle of a generic rational sextic curve in P5 is of splitting
type (a) in (12).

Let us give concrete examples of rational sextic curves with normal bundles of splitting
types (a) and (b) in (12).

Example 6.4. Consider the smooth monomial sextic curves C and C ′ in P5 with parametriza-
tions

C = (u6 : u5v : u4v2 : u2v4 : uv5 : v6) resp. C ′ = (u6 : u5v : u3v3 : u2v4 : uv5 : v6).

Then

NC/P5
∼= NC′/P5

∼= OP1(8)2 ⊕OP1(9)2,

see [CR18, Theorem 3.2].
The other splitting type in (12) can be realized for immersed rational sextic curves.

For example, let pi = aiu+ biv, i = 1, 2 be two coprime linear forms with ai, bi 6= 0, and
let C ⊂ P5 be the rational sextic curve with parameterization

f : (u : v) 7→ (u5p1 : u4vp1 : u3v2p1 : u2v3p1 : uv4p1 : v5p2).

Then C is immersed with normal bundle

Nf = OP1(8)3 ⊕OP1(10),

see [Sac80] and [CR18, Lemma 2.4]. Notice that C is the image of the rational normal
curve C6 = h(P1) ⊂ P6 parameterized via

(u : v) 7→ (u6 : u5v : . . . : v6)

under the projection πP : P6 99K P5 with center

P = (1 : λ : . . . : λ5 : λ5µ) ∈ P6 where λ = −a1/b1 and µ = −a2/b2.

The center P is situated on the secant line (Q1(λ)Q2) of C6 where

Q1(λ) = (1 : λ : . . . : λ6) ∈ C6 and Q2 = (0 : 0 : . . . : 0 : 1) ∈ C6.

Hence π(Q2) = (0 : . . . : 0 : 1) ∈ P5 is a point of self-intersection of C = πP (C6).

The above phenomenon is of general nature. Namely, the following theorem allows to
replace the assumptions “generic” in Theorem 6.2(ii) and Corollary 6.3 by the assumption
of smoothness.

Theorem 6.5 ([Ber11, Theorem 3.3.13], [Ber12, Theorem 2.12]). Let Cn ⊂ Pn be the
rational normal curve of degree n. Then the image C = πP (Cn) ⊂ Pn−1 has normal
bundle

NC/Pn−1 = OP1(n+ 2)⊕n−4 ⊕OP1(n+ 3)⊕2

if and only if the center P ∈ Pn of the projection πP : Pn 99K Pn−1 does not lie on a secant
or tangent line to Cn, if and only if C is smooth.

Since E+ ⊂ P5 = 〈E+〉 is a smooth sextic curve, the following corollary is immediate.
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Corollary 6.6. One has

NE+/P5 = OP1(8)⊕2 ⊕OP1(9)⊕2.

This ends the proofs of Proposition 6.1 and Theorem 0.1.
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