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Abstract

A broad spectrum of applications require numerous simulations (such
as optimization, calibration or reliability assessment for example) in
various input sets. In that context, some simulation failures or insta-
bilities can be observed, due for instance, to convergence issues of the
numerical scheme of complex partial derivative equations. Most of the
time, the set of inputs corresponding to failures is not known a priori
and thus may be associated to a hidden constraint. Since the obser-
vation of a simulation failure regarding this unknown constraint may
be as costly as a feasible expensive simulation, we seek to learn the
feasible set of inputs and thus target areas without simulation fail-
ure before further analysis. In this classification context, we propose to
learn the feasible domain with an adaptive Gaussian Process Classifier.
The proposed methodology is a batch mode active learning classifica-
tion strategy based on a Stepwise Uncertainty Reduction of random sets
derived from the Gaussian Process Classifiers. The performance of this
strategy will be presented on different hidden-constrained problems and
in particular within a wind turbine simulator-based reliability analysis.

Keywords: Gaussian Process; Classification; Stepwise Uncertainty
Reduction; Batch; Hidden Constraints; Failure; Simulator; Random set
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1 Introduction

Nowadays, the design of engineering systems implies the use of numerical
models, involving complex physical systems with non-linear behaviours and
numerous design and uncertain variables. Taking into account uncertainties,
for instance, in the context of uncertainty propagation (Sudret, 2007) or robust
design (Moustapha et al, 2022) can require numerous simulations of these
numerical models and become computationally very expensive.

Moreover, some combinations of values of the input variables x ∈ Ω can
lead to simulation instabilities or failures (Digabel and Wild, 2015). Indeed,
the numerical simulator f can for instance fail to converge due to instabilities
in the numerical scheme of complex partial derivative equations (e.g. time
step smaller than the critical step) or to an inadequate mesh (e.g. not fine
enough in areas of high-stress concentration) and sometimes computed values
can also tend to infinity (e.g. species concentration outputs in chemical reaction
simulations). Such cases have been reported in the literature in different fields
such as offshore wind turbine design (Poirette et al, 2017), styrene chemical
compound production management (Audet et al, 2008) or the simulation of
fuel-coolant interaction in severe nuclear accident (Hakimi et al, 2022). In that
respect, we are interested in the identification of the subset of the parameter
space where simulations succeed. This feasible set Γ∗ ⊂ Ω can be formalized by

Γ∗ = {x ∈ Ω / y(x) = 1}, (1)

where y : Ω → {0, 1} and y(x) takes the value 0 when the simulator fails to
provide a converged output and the value 1 when the simulation succeeds.

However, it is difficult and most often impossible for the expert to define
a priori the feasible set of inputs i.e. inputs corresponding to converged sim-
ulation and therefore the function y is a priori unknown. In the field of
optimization, belonging to this feasible set is commonly referred to as verifying
a hidden constraint (Digabel and Wild, 2015).

Since the observation of a simulation failure y(x) = 0 might be as costly as
a feasible simulation, it is useful to assess the convergence domain likeliness.

Hence, we seek to learn the feasible set of inputs in order to target
areas without simulation failure during processes such as optimization, active
metamodel learning, reliability assessment or more basically to study code
performances.

In order to learn the hidden set of input-values leading to failures, we con-
sider in this study that only binary observations corresponding to failure or
non-failure status are available. Indeed we do not consider partial failure/con-
vergence of the simulator nor any smoothness or regularity hypothesis between
the failure and feasible areas.

It is actually a binary classification problem and thus classification mod-
eling techniques can be used to approximate the failure likelihood. Moreover,
adaptive approaches, also known as active learning in the Machine Learning
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(ML) community, are one promising way to reduce the number of expensive
simulations for classifier construction.

Active learning for classification has been a prolific subject of interest
in ML and the object of extensive surveys as in Settles (2009); Kumar and
Gupta (2020). Among the large spectrum of available approaches, one-step-
look-ahead methods based on the Expected Error Reduction (EER) have
recently presented promising results in comparison with published strategies
(Zhao et al, 2021b,a), especially when coupled with a Gaussian process clas-
sifier (GPC) Kapoor et al (2007); Freytag et al (2014); Zhao et al (2021a).
Indeed, coupling both GPC and EER enables to take advantage of the flexi-
bility of the non-parametric GP model and the goal-oriented EER formulation
of the classification problem. However EER-based learning criteria might be
numerically costly due to the repeated training of the predictive posterior. To
overcome this issue, fast update of the posterior predictor without retrain-
ing the GP model has been proposed for instance in Zhao et al (2021a).
Notice that, in the Uncertainty Quantification community, EER approaches
have been independently introduced as Stepwise Uncertainty Reduction (SUR)
which will be introduced in section 3. From another perspective, Adcock
et al (2023) proposed an adaptive strategy to learn hidden constraints by
sequentially sampling the domain with respect to a measure which support is
updated according to Christoffel function estimations (Nevai, 1986). However,
this method can present high rejection rates and therefore not suitable in our
context of expensive simulations.

In this paper, we propose a novel one-step-look-ahead GPC active learn-
ing strategy based on random set theory to assess the feasible domain. Indeed,
Gaussian process models have the advantage of providing a measure of uncer-
tainty on the (class) prediction and thus allowing the definition of enrichment
criteria naturally derived from this uncertainty measure. This latter makes
easier the introduction of an exploration/exploitation tradeoff in the active
learning criterion and therefore presents a clear advantage against methods
using the SVC or other models which focuses mainly on exploitation (Tong
and Koller, 2001; Roy and McCallum, 2001; Moskovitch et al, 2007). The
proposed methodology is an adaptation of the Stepwise Uncertainty Reduc-
tion strategies introduced and used for excursion set estimation with Gaussian
Process Regression as in Bect et al (2012); Chevalier (2013); Duhamel et al
(2023). We propose to extend this latter to the classification setting with GPC
models based on signs (Bachoc et al, 2020). In terms of improvement/learning
criterion, our approach generalizes the Mean Objective Cost of Uncertainty
(MOCU) method presented in Zhao et al (2021b) and will be compared to
SMOCU an improved version of MOCU introduced in the same paper.

The article is organized as follows, first, we provide in Section 2 a presenta-
tion of the GPC model formulation. Then in Section 3, we recall the Stepwise
Uncertainty Reduction (SUR) paradigm and propose a (batch mode) learning
criterion, from the random set theory, for classification. Section 4 is dedicated
to an algorithmic presentation of our contribution: an active learning strategy
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to recover hidden sets by a SUR method with a fast-to-update GPC model.
Finally, we present the performance of our methodology on three application
examples in Section 5. The two first applications are analytical cases and the
third one is an industrial case targeting the simulation-based estimation of the
cumulated damage of a wind turbine subject to environmental conditions.

2 The Gaussian process classification model

In probabilistic binary classification, only binary values yi ∈ {0, 1} are
observed. Given these observations, one would like to predict the membership
probability of a new point to the class of interest, class ”1” indicating feasi-
bility (convergence of the simulation). GP based classification models propose
to use a latent random process that describes the class membership.

The classical GPC model is described in Rasmussen and Williams (2006);
Nickisch and Rasmussen (2008). In this model, the latent distribution pos-
terior is non-gaussian and several approaches have been proposed to build
a Gaussian approximation of the posterior (such as the Laplace approxima-
tion, Expectation-Propagation, the Kullback-Leibler method and variational
method). Nickisch and Rasmussen (2008) give an overview of all these methods.
The authors conclude that the Expectation-Propagation (EP) approximation,
although numerically expensive, is the best one in terms of accuracy.

More recently, another GP based classification model has been proposed
Bachoc et al (2020), that consists in conditioning the latent GP on the sign
observations characterizing the belonging to a class. This model has the
advantage to come with theoretical guarantees, unlike the first model that
implies Gaussian approximation of the posterior. In the rest of the section,
we will present the formulation of this model on which our active learning
strategy (presented in Section 3) is based.

Let Z be a GP characterized by a constant mean function µZ ∈ R and
a stationary kernel kZθ (·, ·) on Ω2 with hyperparameters θ ∈ Θ ⊂ R

d. The
posterior distribution of Z knowing the observations {Xn = (x1, . . . , xn), zn =
(z1, . . . , zn)} is Gaussian with posterior mean mn(·, zn) and covariance kn(·, ·)
given for x, x′ ∈ Ω2 by

mn(x, zn) = µZ + kZθ (x)K
−1(zn − µZ) (2)

kn(x, x
′) = kZθ (x, x

′) + kZθ (x)K
−1kZθ (x

′) (3)

with K = kZθ (Xn,Xn) the covariance matrix between the observations and
kZθ (x) = (k(x, x1), . . . , k(x, xn)). In addition, we denote by σ2

n(x) = kn(x, x)
the posterior variance of the GP.

In probabilistic binary classification, we don’t have access to the realiza-
tions zn of the GP Z but only to binary observations Y = (y1, . . . , yn) ∈ {0, 1}n
with ∀i, yi = 1xi∈Γ∗ .
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The GPC modeling of the feasibility (or non-failure) probability proposed
in Bachoc et al (2020) consists in defining a latent GP Z and predicting for any
x ∈ Ω, Y (x) = 1Z(x)>0 given Yn = (1Z(x1)>0, . . . ,1Z(xn)>0): the 0-1 encoding
of the sign of Z(x) knowing the sign of Zn = (Z(x1), . . . , Z(xn)).

The feasibility probability is then defined as

pn(x) = P[Z(x) > 0|Xn,Yn = Y]. (4)

The feasibility probability can actually be expressed as follows

pn(x) =

∫
Rn

Φ̄

(
−mn(x, zn)

σn(x)

)
ϕZn
n (zn) dzn, (5)

where ϕZn
n is the density function truncated Gaussian conditioned probability

of the Zn restricted to respect Yn = Y and Φ̄ is defined as:

Φ̄(
a

b
) =

{
1− Φ(ab ) if b ̸= 0
1−a>0 if b = 0

(6)

with Φ is the cumulative density function (c.d.f.) of the standard normal
distribution.

The value of pn(x) can be approximated by a Monte Carlo method as

p̂n(x) =
1

N

N∑
i=1

Φ̄

(
−mn(x, z

i
n)

σn(x)

)
, (7)

where (zin)i=[1,N ] are N realizations of the latent random vector Zn fol-
lowing the truncated Gaussian distribution ϕZn

n . As the sampling of the
realizations (zin)i=[1,N ] is independent of x, it can thus be generated only once
with a rejection strategy or more advanced ones dedicated to sample from trun-
cated multivariate Gaussian distributions (Botev, 2017; Pakman and Paninski,
2014).

The hyperparameters µZ and θ of the latent GP must be estimated to
sample realizations at observation points and approximate the probability of
failure at any point. They are estimated by maximizing the likelihood leading
to the estimators

(µ̂Z , θ̂) = argmax
µZ ,θ

PµZ ,θ [Yn = Y] . (8)

This likelihood is a Gaussian orthant probability that can be estimated by
Monte Carlo based methods (Genz and Bretz, 2009; Botev, 2017; Azzimonti
and Ginsbourger, 2018).
Note that the GPC model does not provide an analytical posterior GP mean
in the sense that the latent GP posterior mean mn(x,Zn) actually depends on
the random vector Zn of the latent GP at the observation points Xn.
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Hence, we can not make use of existing learning functions in GP regression
that depend directly on the posterior GP mean and covariance function. In
the classification setting, we are then restricted to learning strategies that rely
on the feasibility probability pn(x) and the Stepwise Uncertainty Reduction
(Bect et al, 2012) paradigm is well suited for this type of problem.

3 Stepwise Uncertainty Reduction strategy for
hidden failure learning

3.1 The Vorob’ev deviation uncertainty measure from
random set theory

In this section, we provide some useful notions from random set theory
(Molchanov, 2005; Vorobyev and Lukyanova, 2013) that allow the definition of
a measure of uncertainty on a random set Γ. These notions have already been
used to define SUR strategies for excursion set estimation (Chevalier, 2013;
El Amri et al, 2020; El Amri et al, 2023). Here, our aim is to introduce these
random set notions in the context of GPC modelling introduced in the previ-
ous section.
In our framework, we are only interested in random set fully characterized by
a given stochastic process. Let us consider

Γ := {x ∈ Ω / Y (x) = 1} (9)

= {x ∈ Ω / Z(x) > 0},

with Z the latent GP introduced in section 2 and Y (x) a Bernouilli random
variable with mean p0(x) = P(Z(x) > 0). Γ is a random set modelling a prior
on the set Γ∗. We then consider the posterior GP conditioned on failure/non-
failure observations modelled with the 0-1 Bernouilli variable Y associated with
the sign of Z. In this context, we are interested in the posterior random set
induced by conditioning on Y observations. The conditional feasibility function
pn(x) introduced in (4-5), also known as coverage function, is defined with
respect to the posterior latent GP model.
Let us then define Qα the (posterior) α-percentiles of Γ, that are actually
linked to the level sets of pn(x), as

Qα = {x ∈ Ω : pn(x) ≥ α}, α ∈]0, 1]. (10)

The posterior Vorob’ev expectation (Vorobyev and Lukyanova, 2013) is
defined as the α∗-percentile of Γ, where α∗ is chosen so that the volume of the
defined set, Qα∗ , equals the expected volume of Γ

E[µ(Γ)|Xn,Yn = Y] = µ(Qα∗), (11)

with µ the Lebesgue measure. In practice, α∗ can be obtained by a dichotomy
method (El Amri, 2019).
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The Vorob’ev expectation is actually a global minimizer (see proof in
Molchanov (2005)), among closed sets of volume equal to the mean volume of
Γ, of the Vorob’ev deviation given by

V arn(Γ) = E[µ(Qα∆Γ)|Xn,Yn = Y], (12)

with Γ∆Qα = (Γ \ Qα) ∪ (Qα \ Γ) the symmetric difference between the two
sets Γ and Qα. In Chevalier (2013), mainly by interverting the expectation and
the integral involved in the volume calculation, one can derive the following
expression of the Vorob’ev deviation:

V arn(Γ)
=
∫
(1− pn(x))1pn(x)≥α∗µ(dx)

+
∫
pn(x)1pn(x)<α∗µ(dx)

(13)

with pn defined by (4), α∗ solution of (11).

3.2 Stepwise Uncertainty Reduction strategy

A Stepwise Uncertainty Reduction (SUR) strategy aims to sequentially choose
a sequence of learning points in order to reduce the expected future uncer-
tainty on a quantity of interest. In the classification problem, our quantity
of interest is the feasible set Γ∗ which uncertainty is modeled with the prior
random set Γ and its posterior counterpart previously introduced.

Let Un be a measure of uncertainty on the random set Γ knowing obser-
vations at points Xn. A SUR strategy for this uncertainty measure consists in
finding at each step the point x∗

n+1 such that

x∗
n+1 = argmin

xn+1∈Ω
Jn(xn+1), (14)

with Jn(xn+1) = En [Un+1] and En [·] corresponds to a conditional expecta-
tion on the stochastic process used to model Γ. Therefore, in our setting, the
criterion has the following dependence

Jn(xn+1) = En [Un+1(xn+1, Y (xn+1))] , (15)

where the expectation is with respect to the posterior Y (xn+1)|Xn,Yn = Y
(characterized by the posterior latent GP) i.e.

En [·] = EY (xn+1) [·|Xn,Yn = Y] . (16)

3.3 SUR active learning criterion with Bernouilli model

In the regression setting investigated in Chevalier (2013), the author also con-
sidered a SUR strategy based on random set theory with Vorob’ev deviation
as uncertainty measure. Nevertheless, in the regression context, continuous
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observations are available such that the GP is explicitly conditioned. In our
GPC setting, where the GP is latent and conditioned on sign observations, we
directly extend this approach by considering the Vorob’ev deviation defined in
Eq. (12) as uncertainty measure and the more complex pn given by (4), involv-
ing an additional integration with respect to the latent GP, such that for any
yn+1 ∈ {0, 1}

Un+1(xn+1, yn+1)
= V arn+1(Γ)
=
∫
(1− pn+1(x))1pn+1(x)≥α∗µ(dx)

+
∫
pn+1(x)1pn+1(x)<α∗µ(dx) ,

(17)

where pn+1(x) = P[Z(x) > 0|Xn,Yn = Y, Y (xn+1) = yn+1]. In the regression
setting pn+1 simply involves the Gaussian cumulative function but no inte-
gral. In our classification context, because of the latent nature of Z, pn+1 is

an integral w.r.t. ϕ
Zn+1

n+1 the density function of the truncated Gaussian condi-
tioned probability Zn+1 restricted to respect Yn = Y and Y (xn+1) = yn+1.

Let us now consider the random set Γ in terms of the Bernoulli random
process Y as defined in Eq. (9). We can then derive the posterior distribution of
Yn(x) representing the conditional Bernoulli random variable Y (x)|Xn,Yn =
Y (Dai et al, 2013). Indeed straightforwardly, Yn(x) is also a Bernoulli random
variable with mean pn(x) given in (4).
Then, the expression (15) of Jn(xn+1) using the expectation with respect to
the Bernoulli process Yn(xn+1) writes

Jn(xn+1) = (1− pn(xn+1)) Un+1(xn+1, 0)
+pn(xn+1) Un+1(xn+1, 1).

(18)

Finally, our SUR strategy boils down to iteratively minimizing Jn(xn+1)
(18) with uncertainty measure (17).

Note that the calculation of pn+1(x) involves potentially costly conditional
simulations. In the regression setting, with the use of GP update formulae,
Chevalier (2013) proposed closed-form expressions for the coverage probabil-
ity pn+1(x). Unfortunately, these latter are not applicable in our GPC context
due to the form of the coverage probability that is expressed as a mean of stan-
dard normal c.d.f. Nevertheless, also using GP update formulae, we propose in
section 4 an alternative formulation to mitigate the expectation computation
cost.

3.4 Batch version of the active learning criterion

The criterion introduced in the previous section is here extended to a parallel
version that allows evaluating several learning points simultaneously at each
improvement iteration. Indeed, when the criterion optimization is perfectly
solved and has a negligible computational cost compared to a simulation then
this parallelisation enables accuracy enhancement. If one of the two previous
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conditions is not met, a compromise needs to be found between the accuracy
and the computational cost of the learning stage. This latter point will be dis-
cussed in section 4.
Let denote in the sequel xq = (xn+1, . . . , xn+q) ∈ Ωq a batch of q ≥ 1 can-
didate points at step n and let use the same notation xi = (xn+1, . . . , xn+i)
for any 1 ≤ i ≤ q. Denoting Yn(x) the conditional Bernouilli random variable
Y (x)|Xn,Yn = Y, then the random vector Yn(x

q) = (Yn(xi))i=n+1,...,n+q fol-
lows a multivariate Bernoulli distribution with, for all i, Yn(xi) a Bernoulli
random variable with probability pn(xi). In this setting, we define the
uncertainty measure for a batch of points as

Un+q(x
q, yq)

= V arn+q(Γ)
=
∫
(1− pn+q(x))1pn+q(x)≥α∗µ(dx)

+
∫
pn+q(x)1pn+q(x)<α∗µ(dx),

(19)

where pn+q(x) is the updated feasibility probability estimated with the
updated GPC for the considered outcome yq = (yn+1, . . . , yn+q) ∈ {0, 1}q, i.e.

pn+q(x) = P[Z(x) > 0|Xn,Yn = Y, xq, Y (xq) = yq]. (20)

Then, the expression of the parallel criterion boils down to

Jn(x
q) = EY (xq) [Un+q(x

q, Y (xq))|Xn,Yn = Y]
=

∑
yq∈{0,1}q

Un+q(x
q, yq)p(yq), (21)

where yq = (yn+1, . . . , yn+q) ∈ {0, 1}q are the possible outcomes of Yn(x
q)

and the probability of these outcomes is thanks to the Bayes formula

p(yq) = P(Y (xq) = yq|Xn,Yn = Y)
=
∏n+q

i=n+1 pn(yi|yi−1),
(22)

where for i = n+ 1 to n+ q

pn(yi|yi−1) = P[Y (xi) = yi|Xn,Yn = Y, xi−1, Y (xi−1) = yi−1]
= pi−1(xi)

yi(1− pi−1(xi))
1−yi .

(23)

Note that the number of terms of the sum in (21) increases exponentially
with q. Accordingly, the computation time of the criterion (21), and even more
its optimization (14), grows rapidly with the increase of q. For this reason, a
greedy strategy will be discussed in the next section.

4 ARCHISSUR algorithm

For the classification problems that we wish to tackle, in the more general
batch-setting, we propose an Active Recovery of a Constrained and Hidden
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Set by SUR (ARCHISSUR) method with learning criterion Eq. (21) devel-
oped in Section 3.4. In this section, we first introduce some tricks to reduce
the computational cost of the method followed by the overall algorithm.

The considered learning function (21) coupled with (19) and (22) depends
on the future feasibility probability pn+q that can be estimated, given the
estimator of the conditional feasibility probability expression in Eq. (7), by

p̂n+q(x) =
1

N

N∑
i=1

Φ̄

(
−mn+q(x, z

i
n+q)

σn+q(x)

)
, (24)

where (zin+q)i=[1,N ] are N realizations of the latent random vector
Zn+q = (Z(x1), . . . , Z(xn), Z(xn+1), . . . , Z(xn+q)) sampled from the

truncated distribution ϕ
Zn+q
n (zn+q) and mn+q(x, z

i
n+q), kn+q(x, x

′) are
respectively the updated mean and covariance function.

For each q-batch of points xq, the evaluation of the criterion given by
(21) (resp. (18) if q = 1) involves 2q distinct updates of the GPC Yn(x)
for the 2q possible outcomes of Yn(x

q). The use of a crude GPC update
with ((Xn, x

q), (Y, Y (xq))) would require generating 2q times realizations of
a truncated (n+q)-dimensional normal distribution, leading to an untractable
criterion. Hence, to allow fast computation of the criterion we propose to use
the GP update formula provided in Chevalier (2013) so that we avoid sampling
the whole random vector Zn+q.

The updated mean mn+q and covariance function kn+q of the GPC are
then

mn+q(x, z
i
n+q) = mn(x, z

i
n)

+ λnew(x)
T
(
zq,i −mn(x

q, zin)
)
,

(25)

kn+q(x, x
′) = kn(x, x

′)− kn(x, x
q)TK−1

newkn(x
′, xq) (26)

with λnew(x) = K−T
newkn(x, x

q) ∈ Rq, Knew = kn(x
q, xq) ∈ Rq×q and zq,i =

(zin+1, . . . , z
i
n+q).

Moreover, zq,i follows the truncated multivariate normal distribution given
zin

zq,i ∼ N
(
mn(x

q, zin),Knew

)
(27)

such that (1zi
n+1>0, . . . ,1zi

n+q>0) = yq.

Thus, only one realization of the random vector zq,i knowing the zin has
to be sampled to compute mn+q(x, z

i
n+q). Moreover, if the batch size q is

small, zq,i can be simply sampled by rejection at low cost without requiring
a dedicated truncated multivariate distribution improved sampling algorithm
such as (Botev, 2017; Pakman and Paninski, 2014).

The ARCHISSUR learning function evaluation algorithm for a batch of
points xq is provided in Algorithm 1.

Despite the proposed tricks and formulae to decrease the numerical costs,
the batch version numerical cost grows very fast with the increase of the



11

Algorithm 1 ARCHISSUR criterion computation

Require: n observations of the binary constraint, N samples (zn
i)i=1,...,N of

the latent GP Z at Xn, Zn

Require: a batch of locations xq

1: for yq ∈ {0, 1}q do
2: for j = 2, . . . , q do
3: for i = 1, . . . , N do
4: Generate a sample zin+j−1 by applying Eq. (27)

(with q ← 1 and n← n+ j − 1)
5: Do the concatenation: zin+j−1 ← (zin+j−2, z

i
n+j−1)

6: end for
7: Compute σn+j−1(xn+j)

2 and mn+j−1(xn+j , z
i
n+j−1) following

Eq. (26)
8: Compute p̂n+j−1(xn+j) following Eq. (24)
9: Compute pn(yn+j |yn+j−1) following Eq. (23)

10: end for

11: p(yq)←
q∏

j=1

pn(yn+j |yn+j−1)

12: for i = 1, . . . , N do
13: Generate a sample zin+q following Eq. (27)

14: zin+q ← (zin+q−1, z
i
n+q)

15: end for
16: Estimate Un+q(x

q,yq) according to Eq. (19) with a Monte Carlo
sampling of size M w.r.t. the distribution µ on Γ

17: end for
18: Jn(x

q)←
∑

yq∈{0,1}q

Un+q(x
q,yq)p(yq)

problem dimension and the number of batch points q. Indeed, it involves an
NP-hard, non-linear, multivariate minimization of Jn(x

q) that can be very dif-
ficult to tackle. In practice, as pointed out for instance in Krause et al (2008),
a sub-optimal greedy version of the batch optimization problem is preferred,
consisting in adding iteratively one point at a time. By using the latter strategy,
the optimization problem that is solved at each iteration becomes numerically
affordable. Another numerical advantage to mention concerns the sampling of
zq,i that is also done one point at a time in the greedy version.

Taking this latter into account and from our numerical tests, we recom-
mend using the greedy version when batches of size greater than 3 or 4 are
needed. In the numerical section, with the non-greedy strategy, we achieved
good performances in terms of computational time and points selection with
q = 2.
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4.1 Link between ARCHISSUR and MOCU active
learning criterion

Some other GPC based active learning methods have already been proposed.
In particular, the Mean Objective Cost of Uncertainty, MOCU, method (Zhao
et al, 2021b) proposes a learning function, given in Eq. (A1), which is defined
as the increase of the classification error due to the model uncertainty. There
is a relationship between the MOCU criterion and the one we proposed that,
to our knowledge, has never been presented before. Indeed, in appendix A
a few derivations enable the reinterpretation of the MOCU learning function
expression Eq. (A1) as:

UMOCU (xn+1) = En[V arn+1(Γ)]− V arn(Γ) (28)

where V arn(Γ) is given by (12) with α = 1/2.

In that respect, it can be interpreted as a particular case of the Vorob’ev
based SUR strategy for q = 1 with a fixed level set α equals to 1/2, i.e. with
the Vorob’ev median instead of the value α∗ solving (11).

Note that a smooth concave approximation of the MOCU function Soft-
MOCU has also been proposed in Zhao et al (2021b) in order to improve
efficiency in the long run, i.e. for the remaining iterations when the model
has already been learned quite well, as the concavity enables the detec-
tion of small model changes. In fact, this function is obtained by using a
smooth approximation of the maximum function (see the original expression
of MOCU (A1)) by the nested log of the sum of exponentials, generally named
LogSumExp (or RealSoftMax). Moreover, GPC updates formulas with EP-
approximation (Nickisch and Rasmussen, 2008) are provided in Zhao et al
(2021a). In the numerical applications, we will compare the results obtained
with ARCHISSUR to the ones achieved using NR-SMOCU: the SMOCU learn-
ing function with no GPC retraining (no computation of the covariance matrix
and its inverse for the n+ 1 observations), using update formula.

5 Applications

5.1 Methodology settings and comparison measures

The GPC active learning method actually provides a random set whose uncer-
tainty has been reduced as a result. Then, a deterministic classifier must be
chosen to characterize the feasible set. This can be done by choosing a sta-
tistical moment of the random set. A natural choice is then the Vorob’ev
expectation which minimizes the symmetric difference to the random set Γ.

The performances of the different learning strategies can be assessed by
using different error measures on the built classifiers when we have access to
the real feasible set (for analytic examples) by means of a grid of validation
point
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• relative error on the feasible set:

critF = µ(Γ∗∆Qα∗ )
µ(Γ∗)

= FN+FP
TP+FN

(29)

• the true positives and negatives rates:

critP =
TP

TP + FN
(30)

critN =
TN

TN + FP
, (31)

where TP, TN hold respectively for the number of true positives and nega-
tives, i.e. the number of correctly predicted validation points in each class,
and FP, FN for the number of false positives and negatives, i.e. the number
of mispredicted validation points in each class.

In practice, the stopping criterion proposed in El Amri et al (2020) for SUR
strategies can be adopted for ARCHISSUR. Indeed, this criterion is based on
the Vorob’ev deviation that is available at each step of the algorithm. This
stopping criterion is given by

∀ 0 ≤ j ≤ l, ∆j ≤ ϵ (32)

with ∆j = |V arj−1(Γ) − V arj(Γ)| the absolute error on Vorob’ev deviations
between two consecutive iterations, ϵ a tolerance value and l the number of
steps during which ∆j must be smaller than the ϵ.

The application of GP based active learning methods is usually done by
updating GP hyperparameters by MLE at each iteration. However, we noticed
that ARCHISSUR has better exploration properties when the hyperparame-
ters are constant for a certain number of iterations. Moreover, the Vorob’ev
deviation evolution is smoother when fixing hyperparameters, which allows
the use of the stopping criterion presented above. Hence, we recommend fix-
ing the hyperparameters for a certain number of iterations and updating them
periodically by MLE considering the new observations.

We benchmark the proposed ARCHISSUR strategy with other active
learning methods including

• the NR-Soft-MOCU (Zhao et al, 2021a) method using its implementation
available at https://github.com/QianLab/NR SMOCU SGD GPC,

• a naive approach for GPC that consists in enriching simultaneously the
model with two points corresponding to the one maximising the variance of
the latent process and the one which is the closest to a feasibility probability
of 0.5,

https://github.com/QianLab/NR_SMOCU_SGD_GPC
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• and with simple GPC built on Maximin Pronzato and Müller (2012) optimal
design of experiments (DoE).

5.2 Analytic example in two dimensions

The performances of our proposed method and different methods are assessed
on a two-dimensional classification problem based on the Branin function
fbranin defined as follows

y(x) =

{
1 if f(x) ≤ 10
0 else

(33)

where

fbranin(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t)cos(x1) + s (34)

with a = 1, b = 5.1/4π2, c = 5/π, r = 6, s = 10 and t = 1/(8π).

We have applied the naive strategy, the SMOCU method as well as the
ARCHISSUR method with one point and with a batch of two points on
the example (33). All methods were run for the same 80 initial DoEs of 12
samples, a budget of 80 enrichment points and 1000 integration points (used
in the integration-based criterion estimation) for ARCHISSUR and SMOCU.
Moreover, the GPC hyperparameters were optimized every 10 iterations for
ARCHISSUR and every 5 iterations for ARCHISSUR with a batch of two
points.

The final feasibility probability map and DoE resulting from a run of
ARCHISSUR, ARCHISSUR BATCH 2 points and the NR-SMOCU method
for the same initial DoE are illustrated on Figures 1. On these Figures, we can
see that all methods manage to learn a good approximation of the real feasible
set (in black lines on the Figures). It can also be observed that the classical
GPC model with EP approximation that is used for the SMOCU algorithm is
much smoother than the GPC model based on signs used in ARCHISSUR, as
already highlighted in the article (Bachoc et al, 2020).

The results obtained, on average, by 80 runs on GPC model with a Max-
imin DoE of 92 points and the mean results of all active learning methods are
presented in Tab. 2. Moreover, the evolution of the relative error through the
run of each active learning method is presented on Figure 2. These results show
that ARCHISSUR achieves a better estimation of the feasible set on this exam-
ple. In fact, the significant difference in performance between ARCHISSUR
and NR-SMOCU algorithms is mainly due to the type of GPC model chosen
in the original NR-SMOCU algorithm implementation. Indeed, using the clas-
sical GPC model with Expected-Propagation approximation in ARCHISSUR
implementation is greatly reducing its efficiency.
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(a) ARCHISSUR (b) ARCHISSUR BATCH

(c) NR-SMOCU with GPC model
(Nickisch and Rasmussen, 2008)

Fig. 1: Probability of feasibility pn(x) maps obtained with ARCHISSUR,
ARCHISSUR BATCH with 2 points and SMOCU active learning methods

Method E[critF ] CoV (critF )

Maximin with GPC (Bachoc et al, 2020) 4.97× 10−2 0.23

ARCHISSUR 2.86× 10−2 0.30

ARCHISSUR BATCH 3.08× 10−2 0.23

NR-SMOCU 1.32× 10−1 0.25

MIX 4.82× 10−2 0.28

Table 1: Branin-Hoo based analytical hidden constraint — mean and coeffi-
cient of variation (CoV) of the relative error critF (29) for each method

In order to compare the criteria and their implementations in terms of
numerical cost, the computational times of ARCHISSUR, ARCHISSUR for a
batch of two points and NR-SMOCU criteria were assessed on this test case



16

Fig. 2: Evolution of the relative error on the feasible set critF as a function
of the number of enrichment points for the Branin based example

and are given in Table 2. Note that the proposed ARCHISSUR formulation
allows reducing on average the computational time by almost 4 in comparison
to the usual definition adapted to classification.

Method CPU time (s)
ARCHISSUR 0.079

ARCHISSUR BATCH (2 points) 0.412
NR-SMOCU 0.849

Table 2: Mean of system and user CPU times sum (in seconds) on 20 repeti-
tions for each criterion evaluation with 2000 integration points x

The Figures 3 to 6 show the evolution of the true negative and positives
rates critN and critP during the runs of each algorithm. From these Figures,
it can be noted that the approximation obtained by NR-SMOCU is more
conservative, in the sense that the unfeasible domain is overestimated (rates
of true positive around 20%), compared to the other methods (rates of true
positives around 98%). This is as well a consequence of the smoothness of the
model.

5.3 Analytic example in ten dimensions

The performances of the different algorithms were tested in higher dimension
on an analytical example with 10 inputs x ∈ [0, 1]10, given by:

y(x) =

{
0 if x ∈ {x/f1(x) ≥ 0} ∪ {x/f2(x) ≥ 0}
1 else

(35)

where
f1(x) = x2 + x1 − 1.6 + 0.1x3

f2(x) = 0.15(0.1 + x4)− (x2
5 + (x6 + 0.1)2).

(36)
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Fig. 3: Evolution of the true positives critP and true negatives critN rates as a
function of the number of enrichment points throughout a run of ARCHISSUR
on the Branin based example

Fig. 4: Evolution of the true positives critP and true negatives critN rates as
a function of the number of enrichment points throughout a run of SMOCU
on the Branin based example

Fig. 5: Evolution of the true positives critP and true negatives critN rates as a
function of the number of enrichment points throughout a run of ARCHISSUR
with a batch of two points on the Branin based example
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Fig. 6: Evolution of the true positives critP and true negatives critN rates as
a function of the number of enrichment points throughout a run of the naive
algorithm on the Branin based example

The feasible set represents 86% of the domain for this example and the
unfeasible sets are located at borders of the domain with different shapes.

In this example, only the results obtained with the proposed algorithm
ARCHISSUR and the naive said Mix method, are presented on Figure 7.
Indeed, integration points are sampled using an importance sampling strategy
with a truncated Gaussian auxiliary density in NR-SMOCU code (see (Zhao
et al, 2021a)). The implemented sampling of this truncated density consists
in a rejection method that does not scale in higher dimensions and fails to
provide integration points in this test case.

The naive strategy and the ARCHISSUR method with one point were
applied with initial DoEs of 60 points, a budget of 500 enrichment points and
10000 integration points for ARCHISSUR. Moreover, the GPC hyperparame-
ters were optimized every 10 iterations for the first 100th iterations and on an
interval of 20 iterations then.

The evolution of the relative error critF for the two learning criteria is
given on Figure 7. It can be observed that the relative error is decreasing a
little faster for the naive method during the 250th first iterations but with
notable outliers that reach higher error values in comparison to the evolution
for ARCHISSUR which is more regular. After the 250th iteration, the relative
error continues to decrease and achieves lower values with ARCHISSUR while
the error interval for the naive method is wider with higher values. Table 4
gives the mean and coefficient of variation of critF obtained at the end of
each algorithm as well as the values for a GPC built on a Maximin DoE with
the equivalent number of points as for the algorithms, i.e. 560 points. On the
basis of these results, we can note that ARCHISSUR continues to perform well
in higher dimensions with a final mean relative error 2.1 times lower than a
naive method with far more regular results and 4.2 times lower than a crude
Maximin DoE.



19

Fig. 7: Evolution of the relative error on the feasible set critF as a function
of the number of enrichment points for the ten-dimensional example

Method E[critF ] CoV (critF )

Maximin with GPC (Bachoc et al, 2020) 2.24× 10−1 0.86

ARCHISSUR 5.3× 10−2 0.38

MIX 1.12× 10−1 1.11

Table 3: Ten inputs example — mean and coefficient of variation (CoV) of
the relative error critF (29) for each method applied on the ten-dimensional
example

The Figures 8 and 9 show the evolution of the true negative and positives
rates critN and critP during the runs of both naive and ARCHISSUR algo-
rithms. From these Figures, it can be noted that ARCHISSUR achieves better
and more regular predictions of the feasible set.

Independently from the results, the computational times of the different
criteria were assessed on this test case and are given in Table 4.

Method CPU time (s)
ARCHISSUR 0.363

ARCHISSUR BATCH (2 points) 4.529
NR-SMOCU 7.58

Table 4: Mean System and User CPU time sum (in seconds) on 10 repe-
titions for each criterion evaluation with 10000 integration points x on the
ten-dimensional test case

We can note that the numerical cost of ARCHISSUR with a batch of two
points goes up significantly in comparison to the times measured in two dimen-
sions. Combined with the cost of optimization in ten dimensions, the use of a
batch strategy becomes quickly intractable.



20

Fig. 8: Evolution of the true positives critP and true negatives critN rates as
a function of the number of enrichment points throughout a run of the naive
algorithm on the ten-dimensional example

Fig. 9: Evolution of the true positives critP and true negatives critN rates as a
function of the number of enrichment points throughout a run of ARCHISSUR
algorithm on the ten-dimensional example

5.4 Hidden failure study of a wind turbine damage
computation code

5.4.1 Description of the problem

In this section, the damage prediction of an onshore wind turbine NREL 5MW
is studied. As illustrated on Figure 10, the wind turbine is subject to several
wind loads that cause damage at the base of the tower. The computation of
the damage involves the use of the open-source multi-physics simulator FAST
(Jonkman and Buhl Jr., 2005) taking as inputs four environmental variables
that concerns the wind loads. The simulator provides an estimation of one
hour damage for 36 regularly spaced impact points that represent the damages
on the whole wind turbine base of the tower circumference.
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Fig. 10: Diagram of an onshore wind turbine subject to wind loads described
by 4 parameters: wind speed Ū , wind direction θwind, turbulence intensity TI
and misalignment angle NacY aw.

The wind direction θwind influences on the damage is considered negligible
and this parameter is fixed to 30◦. Hence, the damage d computation depends
on the three following parameters: the mean wind speed in the 10-minute
interval: Ū , the turbulence intensity: TI and the misalignment angle of the
wind turbine blades: NacY aw. These parameters are supposed to be uncer-
tain and are modeled by independent random variables following probability
distributions given in Table 5.

Input Ū T I NacY aw
Unit m/s % ◦

Probability law Uniform Uniform Uniform
minimum 10 2.5 -20
maximum 22 25 20

Table 5: Probability distributions of the wind turbine problem parameters.

Moreover, the wind is modeled by a stochastic process and for each set of
inputs (Ū , T I,NacY aw) realizations of the wind are simulated using the open
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(a) Wind turbine damage simu-
lated points classification: purple dots
account for failed simulations and yel-
low dots for converged points

(b) Example of the classification
obtained at the end of a run of
ARCHISSUR with noisy GPC on the
wind turbine test case

Fig. 11: Wind turbine damage validation points

source software Turbsim (Jonkman and Buhl Jr., 2006). In the following, we
chose arbitrarily to fix the number of wind realizations to 18 per input set.

However, FAST and/or the Turbsim simulators encounter simulation
crashes due to poor convergence for some values of the inputs. The feasible
domain can thus be estimated in this test case in order to avoid simulation
failures when predicting damage values. We consider that a simulation fails
for an input set when a failure happens for at least one wind realization.

This test case is interesting as it allows to test the algorithms on a real
physical problem on one side and is numerically affordable enough to simulate
test points to have a picture of the feasible domain on the other. Indeed, short-
term wind simulation and a rather small number of uncertain variables are
considered, leading to a few minutes-long simulation with parallelization use.
Thus, we have simulated 3000 test points whose classification in regards to
simulation failure is plotted on Figure 11a. On this Figure, it can be observed
that the feasible and unfeasible domains can be rather well differentiated. But
we can also note that the frontiers are blurred and detect the presence of some
outliers. Moreover, the feasible domain coverage, estimated from these test
points, is about 58.8% of the domain.
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Fig. 12: Evolution of the relative error on the feasible set critF as a function
of the number of enrichment points for the wind turbine test case

5.4.2 Results

Contrary to the previous example, the hidden constraint is non-deterministic
due to the stochasticity of the wind. As indicated in the previous section, the
learning algorithm might encounter outliers and the GPC model is challenged
by a blurred limit.

Thus, in order to get a more realistic modelling of the problem we consider
a noisy latent GP. Considering independent homoscedastic noise σn, the prior
kZθ (Xn,Xn) becomes:

kZθ,σn
(Xn,Xn) = kZθ (Xn,Xn) + σnIn (37)

In this model, the noise is an additional hyperparameter to be optimized by
maximisation of the likelihood (MLE) as presented in Section 2.

The ARCHISSUR method with and without noise and the NR-SMOCU
algorithms have been applied on this example. All methods were run for the
same 20 initial DoEs of 20 samples, a budget of 200 enrichment points and
5000 integration points. The error indicators were computed on the basis of
the same 3000 test points.

The evolution of the relative error through the run of each active learn-
ing method is presented on Figure 12. This Figure shows that the use of a
noisy model greatly improves the results of ARCHISSUR. Moreover, it can be
observed that the relative error decreases faster using ARCHISSUR with noisy
GPC than NR-SMOCU. Both methods achieve an almost constant relative
error value between 0.10 and 0.12, which is mainly due to the non-regularity
of the test points at the frontiers of the feasible set.

The Figures 13 and 14 show the evolution of critN and critP during the
runs of respectively ARCHISSUR with noisy GPC and NR-SMOCU methods.
We can note that both methods assess a true positive rate of 0.95 and 0.925
respectively, which confirms the observation made with the relative error critF .
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Fig. 13: Evolution of the true positives critP and true negatives critN
rates as a function of the number of enrichment points throughout a run of
ARCHISSUR with noisy GPC on the wind turbine test case

Fig. 14: Evolution of the true positives critP and true negatives critN rates
as a function of the number of enrichment points throughout a run of SMOCU
on the wind turbine test case

Finally, we provide on Figure 11b an example of the classification of the
test points (see Figure 11a to observe the true class of each point) obtained
at the end of a run of ARCHISSUR with a noisy GPC. This Figure allows to
verify the conclusion drawn from the observation of the error reduction limit,
i.e. the classification of the points at the border is more regular than the reality
and the model obviously does not predict outliers.
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5.5 Discussion and conclusions

In this paper, we proposed a GPC active learning method based on Stepwise
Uncertainty Reduction strategies to assess hidden constraints prediction. We
provided a formulation of the enrichment criteria suited for classification that
is less numerically expensive compared to existing criterion implementations
Zhao et al (2021a) and that allows the selection of a batch of multiple points
at a time in order to improve the classification model.

The proposed algorithm was benchmarked with other methods on three
different applications: two analytical examples and an industrial case. In the
different applications, we have highlighted the importance of the choice of the
GPC model for the performances of the algorithm. Indeed, we have noticed
that the GPC model (Bachoc et al, 2020) shows improved performances on
completely deterministic hidden constraints. In the non-deterministic case
with significant outliers or blurred frontiers between feasible and unfeasible
domains, a smoother model performs better. Hence, more accurate predic-
tions were achieved by using a noisy GPC model in this context.

Moreover, we have observed that the use of the batch strategy becomes
quickly untractable when the problem dimension increases. Future work
should involve an improvement of the learning function to extend the appli-
cability of the batch strategy.

Another perspective of this work is its use in constrained optimization.
Indeed, hidden crash constraints are a well-known problem in design opti-
mization. However, the learning of crash constraints is usually done using the
points proposed by the optimizer. Hence, we are currently studying how to
combine this method with the learning of crash constraints.

A final opening for further work could be to consider the problem directly
with the conditional Bernoulli model framework introduced in Dai et al (2013)
and draw a few links with our current GPC latent model.

Acknowledgments. This work was supported by the French National
Research Agency (ANR) through the SAMOURAI project under grant
ANR20-CE46-0013.

Appendix A Mean Objective Cost of
Uncertainty

The Mean Objective Cost of Uncertainty (MOCU) was first defined in a gen-
eral parametric setting in Yoon et al (2013) and for instance, adapted to a
parametric classification context in Zhao et al (2021b). In Zhao et al (2021a)
the approach was extended to a non-parametric classification setting with a
GPC model and a one-step-look-ahead active learning strategy. In this latter,
the active learning criterion is written, with our notations, as follows
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UMOCU (xn+1)
=

∫
Ω [En [1−max(pn+1(x), 1− pn+1(X))]]µ(dx)

−
∫
Ω [1−max (pn(x), 1− pn(x))]µ(dx)

(A1)

where En[.] = EY (xn+1) [·|Xn,Yn = Y]. The second term in the previous
formulation can be developped as:∫

Ω
1−max (pn(x), 1− pn(x))µ(dx)

=
∫
Ω
(1− pn(x))1pn(x)≥1/2dx+

∫
Ω
pn(x)1pn(x)<1/2µ(dx)

=
∫
Q1/2

pn(x)dx+
∫
QC

1/2

1− pn(x)µ(dx)

= V arn(Γ)

(A2)

with
Q1/2 = {x ∈ Ω : pn(x) ≥ 1/2}. (A3)

Similarly, we have∫
Ω

[1−max (pn+1(x), 1− pn+1(x))]µ(dx) = V arn+1(Γ). (A4)

Hence, the MOCU boils down to:

UMOCU (xn+1) = En[V arn+1(Γ)]− V arn(Γ) (A5)

where V arn(Γ) is given by (12) with α = 1/2.
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