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ABSTRACT

High-order harmonic generation (HHG) in gases leads to short-pulse extreme ultraviolet (XUV) radiation useful in a number of
applications, for example, attosecond science and nanoscale imaging. However, this process depends on many parameters
and there is still no consensus on how to choose the target geometry to optimize the source efficiency. Here, we review the
physics of HHG with emphasis on the macroscopic aspects of the nonlinear interaction. We analyze the influence of medium
length, pressure, position of the medium and intensity of the driving laser on the HHG conversion efficiency (CE), using both
numerical modelling and analytical expressions. We find that efficient high-order harmonic generation can be realized over a
large range of pressures and medium lengths, if these follow a certain hyperbolic equation. The spatial and temporal properties
of the generated radiation are, however, strongly dependent on the choice of pressure and medium length. Our results explain
the large versatility in gas target designs for efficient HHG and provide design guidance for future high-flux XUV sources.

Key points:

• The physics of high-order harmonic generation in gases is reviewed with emphasis on the macroscopic
aspects.

• The medium length, gas pressure, position of the medium relative to the laser focus and intensity of the
driving laser influence the HHG conversion efficiency.

• Efficient high-order harmonic generation can be realized over a large range of pressures and medium lengths,
if these follow a certain hyperbolic equation.

• The spatial and temporal properties of the generated radiation depend on the choice of pressure and medium
length.

• Different gas target designs for HHG are suitable depending on the required properties of the XUV radiation
and flexibility of experimental setup.

Website summary: We study the macroscopic aspects of high-order harmonic generation in gases. A high conversion
efficiency can be achieved over a large range of pressures and medium lengths, following a hyperbolic equation.
Our results provide design guidance for future high-flux extreme ultraviolet sources.

1 Introduction

Extreme Ultraviolet light sources based on high-order harmonic generation in gases1, 2 are becoming ubiquitous in
many areas of science, from atomic and molecular physics to condensed matter physics, as well as more applied
topics, such as coherent imaging3 and microscopy4. The radiation consists of a train of extremely short light



bursts, in the attosecond range, allowing for outstanding temporal resolution. HHG has opened the field of
attosecond science, capturing ultrafast electron dynamics in matter5. The spatial properties of HHG sources are
also interesting for some applications since the radiation is spatially-coherent over a broad spectral range. During
many years, amplified femtosecond titanium-sapphire lasers have been the “standard” laser for HHG. Recently,
there is an increased diversity of HHG sources driven by a variety of lasers ranging from high energy lasers at
low repetition rate, with up to hundreds of mJ energy per pulse6–10, to high average power lasers, based upon
optical parametric amplification or simply high-power oscillators, with pulse energies in the µJ range or below11–13.
Also, high-power, compact, HHG sources based on post-compressed, ytterbium-doped femtosecond lasers14, 15 are
becoming increasingly interesting for industrial applications. Finally, the use of lasers in the mid infrared range
allows the generation of high energy photons, in the soft X-ray range16, 17. HHG sources can thus be vastly different,
with parameters such as peak power or repetition rate varying by several orders of magnitude18.

The HHG efficiency depends both on the response of a single atom to a strong laser field19–21 and, as in any
coherent nonlinear optical process, on the phase matching between the waves emitted by individual atoms in a
macroscopic medium22–27. The single atom response depends on the driving laser intensity, wavelength28, and
the atomic species, and can, to some extent, be boosted by multicolor schemes, at the cost of more complex optical
setups29, 30. The macroscopic response, on the other hand, can be optimized by choosing an appropriate focusing
geometry, medium length and pressure. Quasi-phase matching setups using complex gas target designs have
also been developed31, 32. The versatility of HHG sources can be understood, partly, by a rather simple scaling
principle: A given configuration for HHG can be scaled up (or down), if certain relations between input energy,
focusing geometry, atomic density and medium length are conserved33, 34. Similar conversion efficiencies can thus
be achieved using quite different laser systems, with energy per pulse differing by several orders of magnitude35–38.

A remaining question is: given a certain laser energy, how should the focusing geometry, medium length and
atomic density be chosen in order to maximize the HHG efficiency? Although HHG sources have been around for
more than 30 years, there is no consensus regarding optimal medium design, and current setups vary from high
pressure gas jets39, to low pressure cells40, semi-infinite cells41, or capillaries42, just to cite the most common ones.

In this work, we investigate the dependence of the HHG conversion efficiency and spatial and temporal
properties on the medium length and pressure, with the help of numerical simulations and analytical derivations.
After a tutorial review of the main physics behind HHG, we present simulations based on solving the time-
dependent Schrödinger equation (TDSE) and a wave propagation equation, including dispersion, absorption and
ionization, for the 23rd harmonic in argon and the 69th harmonic in neon, using 810 nm, 22 fs full width at half
maximum (FWHM) laser pulses. We find that for any given focusing geometry, efficient HHG can be achieved over
a wide range of pressures, as long as the medium length is appropriately chosen. The relation between pressure and
length, corresponding to a high conversion efficiency, follows a hyperbolic equation, which is derived analytically.
However, the choice of pressure (or length) strongly influences the temporal and spatial properties of the emitted
radiation. Our results, which can easily be extended to other harmonics, laser wavelengths and atomic species,
explain why the achieved conversion efficiencies are often comparable despite the large variety of design, ranging
from gas jets to capillaries, making HHG such a robust technique. This allows us to give a recommendation on
gas target design and geometry for optimizing the HHG flux depending on the application requirements. High
conversion efficiencies may be achieved at very high laser intensities, in the overdriven regime, where the driving
pulse is strongly reshaped, and the harmonic structure is partly lost43–47. Here, we limit ourselves to intensities in
the medium below 1015 Wcm−2, where conventional phase matching dominates.

The article is organized as follows: In Section 2, we give an overview of ionization by strong laser fields and
the single atom response of high-order harmonic generation. In Section 3, we discuss the macroscopic aspects
of high-order harmonic generation in gases, and develop a one-dimensional analytical model to describe phase
matching. In Section 4, we present the results of our simulations and compare them to the predictions of the model.
In Section 5, we give two examples of how to optimally choose the geometry and gas target, and we discuss the
range of parameters for which our guidelines are valid. We conclude with a recommendation in Section 6.

2 Atoms in strong laser fields

2.1 Strong field ionization
HHG is intimately related to ionization in strong laser fields, which initiates the single atom response, and at the
same time limits the macroscopic yield when a too high density of free electrons in the medium prohibits phase
matching and modifies the laser propagation. Fig. 1(a) shows ionization rates, Γ, as a function of laser intensity,
I, for Ar and Ne for a wavelength of 810 nm. Results obtained by solving the TDSE numerically in the single
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active electron approximation48 (dashed line) compare well with calculations using the so-called Perelomov-Popov-
Terent’ev (PPT)49 formula (solid line). The deviation at high intensity in the Ar case corresponds to depletion, not
included in PPT. The steps shown using the PPT approximation are due to channel closings related to the increase
of the ionization energy in strong laser fields. The well known Ammosov-Delone-Krainov (ADK)50 approximation,
which is the low frequency limit of PPT, valid in the tunneling limit, can also be used to calculate ionization
rates, though the results (not shown) deviate more than PPT from those obtained by solving the TDSE. For few
cycle pulses, where sub-cycle dynamics can be important51–54, the Yudin-Ivanov (YI) ionization rate55, which is an
extension to the cycle averaged PPT, can be used.
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Figure 1. Atoms in strong laser fields (a) Ionization rates, Γ, as a function of intensity in Ne (red) and Ar (blue),
calculated using the Perelomov-Popov-Terent’ev approximation49 (solid) and solving the time dependent
Schrödinger equation48 (dashed). The laser wavelength is 810 nm and (b) Ionization degree as a function of
intensity in Ne (red) and Ar (blue), calculated using PPT ionization rates for a Gaussian pulse with 22 fs FWHM
pulse duration. The ionization degree is given at the time t = 0 corresponding to the peak of the laser pulse. The
dashed vertical lines define an intensity window, bounded from below by the cut-off intensity obtained from the
three-step model, and from above by a critical intensity (see section 3.4). The dashed horizontal lines show the
ionization degree associated with these intensities. (c) Variation of the 23rd harmonic yield in Ar (blue) and 69th

harmonic yield in Ne (red) with intensity, obtained by solving the TDSE for a driving wavelength of 810 nm. The
black lines represent a linear approximation In with n = 16.5 (Ar) and 40 (Ne) in the cut-off region (dashed) and
n = 2.6 (Ar) and 5.5 (Ne) in the plateau region (solid).

In Fig. 1(b) we present the ionization degree (ηfe) obtained after half of the laser pulse, as function of laser
intensity, for a Gaussian pulse with 22 fs pulse duration FWHM. The ionization degree at the peak of the pulse,
assumed centered at t = 0, is given by

ηfe = 1 − exp
(
−

∫ 0

−∞
Γ[I(t)]dt

)
. (1)

2.2 Single atom response of High-order harmonic generation
The physics of HHG is well described using a semi-classical three-step model20, 56, or equivalently a quantum
mechanical description based on the Strong-Field-Approximation21. Briefly, the first step of the process is ionization
by a strong low-frequency field, as described in Section 2.1. The second step is the classical motion of the electron in
the continuum driven by the laser field. Most of the electron trajectories do not come back to the nucleus, hence
contribute to the partial ionization of the medium. For the trajectories coming back, there is a small probability
for recombination back to the ground state. This third step, which is the inverse of the photoionization process
described below in Section 3.6, is accompanied by the emission of extremely short, attosecond, XUV light pulses.
Interference between attosecond pulses emitted twice per laser cycle, with a sign flip between consecutive pulses,
leads to the emission of odd-order harmonics of the laser light. There are mainly two electron trajectories leading to
a given XUV photon energy, originating at different tunneling times. These trajectories are referred to as "short" or
"long", depending on the electron excursion time.
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The three step model successfully predicts the cut-off energy for high-order harmonic generation, equal to

Ecut-off = Ip + 3.17Up. (2)

Ip is the ionization energy and Up = e2|E0|2/(4meω2) is the ponderomotive energy, where e,me are the electron
charge and mass, E0 is the laser field strength and ω is the laser frequency.

In Fig. 1(c) we present the variation of the 23rd harmonic yield in Ar (blue) and the 69th harmonic yield in Ne
(red) as a function of driving field intensity. The single-atom data are obtained by solving the time-dependent
three-dimensional Schrödinger equation in Ar and Ne, for a large number of peak intensity values (about five
thousand)48. Both curves present rapid variations as a function of intensity, resulting from interference between
different electron trajectories57. The variation of the harmonic yields with intensity can be approximated by an In

power law with different exponents for the cut-off region and plateau58, 59. The harmonic yield varies rapidly in the
cut-off region, n ≈ 16.5 for Ar and n ≈ 40 for Ne (dashed black lines), and much slower in the plateau, n ≈ 2.6 for
Ar and n ≈ 5.5 for Ne (solid black lines).

3 Macroscopic aspects of high-order harmonic generation
3.1 Propagation of high-order harmonics and geometrical scaling
Using the slowly-varying envelope and paraxial approximations59, the propagation of the qth harmonic field can be
described by a wave equation,

∇2
⊥Eq − 2ikq

∂Eq

∂z
= −µ0q2ω2Pqe−i(qk1−kq)z, (3)

where the harmonic field and polarization are related to the slowly varying envelopes as Eq exp[i(qωt − kqz)] + c.c.
and Pq exp[i(qωt − qk1z)] + c.c. The symbol ∇2

⊥ refers to double differentiation with respect to the transverse
directions x and y (z denoting the propagation direction) and µ0 is the vacuum permeability. The wavevector of the
fundamental field is k1 = n1ω/c, and the wavevector of the qth harmonic field is kq = nqqω/c, where c is the speed
of light and n1 and nq are the refractive indices at frequencies ω and qω respectively. For propagation distances
small compared to the Rayleigh length of the driving laser, diffraction, i.e. the first term of Eq. (3), may be neglected,
resulting in a one-dimensional wave equation. Integrating the one-dimensional equation for a homogeneous
medium with length L and excluding the effect of reabsorption yields

|Eq|2 ∝
∣∣∣∣ sin(∆kL/2)

∆k

∣∣∣∣2 , (4)

where ∆k = qk1 − kq is the phase mismatch between the polarization field at frequency qω, induced by the response
of the medium to the fundamental field, and the generated harmonic field. This highlights the importance of
minimizing ∆k to optimize the conversion efficiency. Eq. (4) can be generalized to include diffraction and focusing,
assuming a power law (not necessarily within lowest-order perturbation theory) for the single atom response60.

Under the transformation (x, y, z, ρ) → (ηx, ηy, η2z, ρ/η2), where η is a scaling factor33, we have

∇2
⊥ →

∇2
⊥

η2 ,
∂

∂z
→ ∂

η2∂z
, Pq →

Pq

η2 , (5)

so that Eq. (3) remains invariant. Scaling z implies to scale the medium length by the same factor. Such a scaling
also requires to keep the same laser intensity distribution in the medium, and therefore to scale the input (and
output) energies by η2. This geometrical scaling allows us to discuss the efficiency of HHG independently of the
focusing geometry. The results presented below will thus be scaled by the Rayleigh length zR.

3.2 Phase mismatch in HHG
In HHG in gases, there are four contributions to the phase mismatch between the fundamental field and the
generated qth harmonic field. These contributions are due to the dispersion in the neutral medium ∆kat, the
presence of free electrons ∆kfe, the influence of the laser focusing ∆kfoc and finally the so-called dipole phase
contribution ∆ki. The dipole phase is due to the single atom response57, and depends on the electron trajectory in
the continuum (short or long). In this section, we discuss the phase mismatch along the propagation axis due to
these four contributions, neglecting the contribution of ions28,

∆k = ∆kat + ∆kfe + ∆kfoc + ∆ki. (6)
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The dispersion in the neutral medium is equal to

∆kat = (n1 − nq)
qω

c
. (7)

At the fundamental frequency, n1 > 1 while at the harmonic frequencies above the ionization threshold nq < 1, so
that this contribution is positive. We introduce the polarizability αq = 2ϵ0(nq − 1)/ρ at frequency qω, where ϵ0
is the vacuum permittivity and ρ is the atomic density of the medium. Eq. (7) can be written as a function of the
polarizabilities (α1) and (αq) as

∆kat =
qωρ

2ϵ0c
(1 − ηfe)

(
α1 − αq

)
, (8)

where ηfe is the ionization degree in the medium. For long wavelengths, the polarizability at the fundamental
wavelength (α1) can be approximated by the static polarizability (α0), and the ionization degree can be assumed to
be small (ηfe ≪ 1), so that

∆kat ≈
qωρ

2ϵ0c
(
α0 − αq

)
> 0. (9)

The variation of α0 − αq as a function of photon energy is plotted in Fig. 2(a) in Ar and Ne. In the energy region
shown, the refractive index in Ar and Ne is below 1 and α0 − αq ≥ 0.

For a guided geometry, e.g. a hollow core capillary, the phase mismatch should also include the effect of the
mode dispersion in the wave guide42, leading to an additional phase mismatch

∆kwg = −q
u2

nmλ

4πa2 , (10)

where a is the radius of the wave guide, λ is the laser wavelength, and unm are constant factors of the propagating
modes, given by the mth root of the equation Jn−1(unm) = 061, where Jn(x) is the Bessel function of the first kind of
order n. Typically HHG in guided geometries use the first order mode, for which u11 = 2.4.

The dispersion due to free electrons can be expressed as

∆kfe = − qωρ

2ϵ0c
ηfee2

me

(
1

ω2 − 1
q2ω2

)
< 0. (11)

The second term in the parenthesis above, which scales as 1/q2, can be neglected for high-order harmonics.
When a laser beam goes through a focus, the phase varies (in addition to the usual kz). For a Gaussian beam the

phase variation is the Gouy phase shift ζ(z) = − tan−1(z/zR), where zR is the Rayleigh length. The Gouy phase
leads to an increase of the fundamental phase velocity. Neglecting the effect of the focusing of the harmonic beam,
the phase mismatch is

∆kfoc = q
dζ

dz
= − qzR

z2 + z2
R
< 0. (12)

∆kfoc is negative and equal to −q/zR when z = 0. For a guided geometry ∆kfoc is equal to zero.
Finally, to estimate the phase mismatch ∆ki, we use an approximate expression for the phase accumulated by

the electron in the continuum63,

Φi = αi I + tpi

(
qω − Ip

h̄

)
+

γi

I

(
qω − Ip

h̄

)2
, (13)

where i=s,ℓ for the short and long trajectories respectively, and h̄ is the reduced Planck constant. In the literature,
the dipole phase is commonly expressed as Φi = αi(qω)I57. The advantage of Eq. (13), where αi I now refers only to
the first harmonic above the ionization threshold, is that it gives a simple analytical expression for the frequency
dependence of the phase. For the short trajectory αs = 0 and for the long trajectory αℓ = −0.16αλ3/(mec3)64, with α
being the fine structure constant. The second term, where tpi is an approximate threshold return time, represents
the group delay and does not influence phase matching. The third term describes the group delay dispersion of the
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Figure 2. Energy dependent parameters governing phase matching (a) Difference between the static polarizability
α0 and the polarizability αq (see Section 3.2) as a function of photon energy in Ar (blue) and Ne (red). Data from62.
(b) ∂Φi/∂I [see Eq. (14)] in Ar, with I = 2.5 × 1014 Wcm−2 and (c) in Ne with I = 5 × 1014 Wcm−2 for the short
(solid) and long (dashed) trajectories, obtained by solving the saddle point equations in the strong field
approximation [blue, red] and from the model in Eq. (13) [purple, yellow].

attosecond pulse. The quantity γs is equal to 0.22cme/(αλ), while γℓ = −0.19cme/(αλ). Fig. 2(b,c) compares the
predictions of this model for

∂Φi

∂I
= αi − γi

(
qω − Ip

h̄

)2 1
I2 , (14)

with calculations performed by solving the saddle point equations within the Strong Field Approximation57, 65. The
good agreement between the two calculations validates the analytical model which will be used throughout.

The dependence of Φi with intensity, and therefore with z, leads to a phase mismatch

∆ki =
∂Φi

∂I
∂I
∂z

(15)

∆ki changes sign across the focus, being negative when z ≤ 0 and positive when z ≥ 0. For a Gaussian beam
characterized by a Rayleigh length zR, and a laser focus at z = 0, Eq. (15) becomes

∆ki = −2zβi(z)
z2 + z2

R
, (16)

where

βi(z) = αi I(z)−
γi

I(z)

(
qω − Ip

h̄

)2
< 0. (17)

In a guided geometry the intensity is constant and thus ∆ki = 0.

3.3 Phase matching on axis
Phase matching amounts to compensating the effect of the fundamental Gouy phase (and to some extent the qth

harmonic dipole phase) by choosing appropriately the pressure-dependent refractive indices at frequencies ω and
qω for a given ionization degree.

We first consider the case where the nonlinear medium is centered at the focus of the laser, so that ∆ki can
be neglected. Introducing ∆κat = ∆kat/ρ and ∆κfe = ∆kfe/(ρηfe), the atomic density required to achieve phase
matching (i.e. ∆k = 0) is

ρmatch = − ∆kfoc
∆κat + ηfe∆κfe

. (18)
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Figure 3. Phase matching pressure (a) as a function of ionization degree in Ar for different harmonic orders [q =
19, 23, 27 (light blue, blue, purple)] and in Ne for different harmonic orders [q = 61, 69, 77 (dark red, red, yellow)].
The dashed black lines correspond to the critical ionization (ηmac

fe ) for the 23rd and 69th harmonic in Ar and Ne
respectively. The ionization degree is indicated with the bottom (top) x-axis for Ar (Ne). (b) Multiplication factor fi
[see Eq. (23)] describing the effect of moving the medium relative to the laser focus for the 23rd harmonic in Ar and
the 69th harmonic in Ne for the long (dashed) and short (solid) trajectory. The intensities are chosen to be 2.5
×1014 Wcm−2, and 5 ×1014 Wcm−2, respectively in the medium.

The atomic density is related to the pressure through the ideal gas law p = ρkBT, where kB is the Boltzmann constant
and T is the temperature in Kelvin, often assumed to be the room temperature. Although not always true, e.g. for a
gas jet with supersonic expansion, we will here express our results in terms of pressure and not atomic density,
assuming that these are related by the ideal gas law. Using ∆kfoc = −q/zR, we have,

pmatchzR =
qkBT

∆κat + ηfe∆κfe
, (19)

where pmatch is the phase matching pressure. This equation holds when ∆κat > |ηfe∆κfe|, requiring that the ionization
degree is less than a critical value ηmac

fe defined as42, 66,

ηmac
fe =

meω2

e2

(
α0 − αq

)
, (20)

where α0 − αq is obtained from Fig. 2(a). The critical ionization degree, ηmac
fe , corresponds to equal phase velocities of

the fundamental and qth harmonic fields. An ionization degree above ηmac
fe implies that the phase velocity difference

changes sign and that phase matching on axis is no longer possible. Eq. (19) can be rewritten as a function of the
ionization degree as

pmatchzR =
2meωϵ0ckBT

e2(ηmac
fe − ηfe)

. (21)

Fig. 3(a) shows pmatchzR in mbarcm (or equivalently in Pam) as a function of the ionization degree in the
medium for different harmonic orders in Ar and in Ne. The critical ionization degree, indicated by the dashed lines,
is about 6% for the 23rd harmonic in Ar, while for the 69th harmonic in Ne it is slightly more than 1.1%.

When the medium is not centered at the laser focus, we take into account ∆ki and generalize Eq. (21) to

pmatchzR =
2meωϵ0ckBT fi

e2(ηmac
fe − ηfe)

, (22)

where

fi=
z2

R
z2 + z2

R

(
1 +

2zβi(z)
qzR

)
. (23)
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Here, z is the position of the center of the medium relative to the laser focus ( fi = 1 for z = 0). This factor is shown in
Fig. 3(b) for the 23rd and 69th harmonic in Ar and Ne for intensities I = 2.5 × 1014 Wcm−2, and I = 5 × 1014 Wcm−2,
respectively, in the center of the medium.

While fi remains close to unity for the short trajectory, it displays a strong variation for the long trajectory.
Consequently, phase matching will be achieved at different pressures for the two trajectories when the medium
is moved relative to the laser focus. In addition, fi becomes negative for the long trajectory when the medium is
located after the laser focus, preventing it from being phase matched in conditions where ηfe < ηmac

fe
67. However, in

this case, phase matching above the critical ionization might become possible.

3.4 Intensity window for efficient HHG
Efficient HHG is limited by the intensity and duration of the driving laser pulse, through the cut-off energy [see
Eq. (2)], above which the harmonic yield decays rapidly, and through the critical ionization degree [see Eq. (20)
and Fig. 3(a)], above which phase matching cannot be achieved. This allows us to define an intensity window for
efficient HHG. The minimum intensity Imic is the cut-off intensity, obtained from Eq. (2),

Imic =
meω2

3.17 × 2πα

(
qω −

Ip

h̄

)
, (24)

where the laser intensity I is related to the field strength E0 by I = cϵ0|E0|2/2. The index “mic” indicates that this
intensity cut-off is related to the microscopic single atom response. Using Fig. 1(b), we can deduce the corresponding
ionization degree ηmic

fe .
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Figure 4. Phase matching window (a) Variation of Imac as a function of FWHM pulse duration for λ = 810 nm for
the 23rd harmonic in Ar (blue solid) and 69th harmonic in Ne (red solid). The horizontal dashed lines indicate the
corresponding value of Imic. (b) Variation of the cut-off harmonic (such that Imic = Imac) as a function of driving
wavelength for an 8-cycle FWHM pulse length. (c) Variation of the cut-off harmonic as a function of pulse duration
for a driving wavelength of 810 nm in Ar (blue) and in Ne (red). The shaded regions indicate where on-axis phase
matched HHG is possible.

For a given laser pulse duration, we introduce Imac, as the peak intensity for which ηfe = ηmac
fe at the peak of the

pulse [as shown in Fig. 1(b)]. We indicate the values of Imic and Imac and the corresponding ionization degrees ηmic
fe

and ηmac
fe for the 23rd harmonic in Ar and the 69th harmonic in Ne in Table 1, for a 22 fs FWHM Gaussian pulse.

For a given generating gas and harmonic order, as the pulse duration increases, Imac generally decreases,
while Imic is constant, thus reducing the intensity window for efficient HHG. This is shown in Fig. 4(a) for the
23rd harmonic in Ar and the 69th harmonic in Ne, where the shaded regions indicate the pulse lengths and peak
intensities for which efficient, phase matched HHG is possible. Similarly, as the harmonic order increases, Imac
generally decreases [see Fig. 3(a)], while Imic increases, thus reducing the intensity window for efficient HHG.

The condition Imic = Imac defines a cut-off harmonic68 above which on-axis phase matched HHG is no longer
possible. This cut-off harmonic can be moved to higher XUV photon energies by using longer driving wavelengths68,
as shown in Fig. 4(b), at the cost of a lower CE69. Alternatively, as shown in Fig. 4(c), shorter driving pulse lengths
can be used26, 70. This highlights the importance of using short driving laser pulses for efficient harmonic generation,
and longer wavelengths to reach the soft X-ray regime16, 17.
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The use of few-cycle driving pulses introduces additional limitations to phase matching, for example from
CEP-slip, as recently pointed out by R. Klas71. Furthermore, for very long wavelengths (> 3µm), the validity of the
dipole approximation in the single atom response may break down72. Using short pulses with very high intensities,
it is possible to produce very high photon energies, also for near infrared wavelengths, through a process called
nonadiabatic self-phase matching51, 73. However, recent experimental comparisons of the efficiency favor long
driving wavelengths74.

Table 1. Intensity window for efficient generation of the 23rd harmonic in Ar and 69th harmonic in Ne,
ionization degrees, absorption cross sections and α0 − αq.

Ar q = 23 Ne q = 69
Imic (Wcm−2) 1.0 × 1014 3.3 × 1014

Imac (Wcm−2) 2.1 × 1014 4.6 × 1014

ηmic
fe (%) 0.15 0.16

ηmac
fe (%) 6.0 1.0

σabs (cm2) 1.5 × 10−17 3.8 × 10−18

α0 − αq (A2 s4 kg−1) 3.0 × 10−40 5.1 × 10−41

3.5 Phase matching off-axis
So far we have only considered phase matching along the propagation direction. Phase matching can also be
achieved in other directions, not parallel to the laser propagation. Phase matching can in general be formulated as a
vectorial momentum conservation equation75,

kkkq = qkkk1 + KKKi. (25)

Here, kkk1∗ and kkkq represent the wavevectors of the fundamental and qth harmonic fields, which include dispersion
and focusing, and KKKi =∇Φi describes the effect of the dipole phase. For simplicity we only consider phase matching
in the focal plane, so that kkk1 is parallel to the propagation axis and KKKi is perpendicular to it. Using Eq. (14), assuming
that the fundamental beam is Gaussian, and that the radial coordinate, r, is much smaller than the beam waist,

Ki =
∂Φi

∂r
= −4πrβi

λzR
. (26)

Phase matching can therefore be achieved at certain distances from the optical axis, such that k2
q = q2k2

1 + K2
i .

This requires that the scalar quantity ∆k = qk1 − kq is negative and, using Eq. (26) together with K2
i ≈ 2qk1|∆k|, that

r =
zR

βi

√
qλ|∆k|

2π
. (27)

This off-axis phase matching, which depends on the electron trajectory, is characterized by a ring-like emission at
the exit of the medium76. Phase matching off-axis is easier to achieve, since ∆k ≤ 0. It allows for a higher intensity
and ionization degree in the medium than on-axis phase matching.

3.6 Reabsorption and other macroscopic effects
Photoionization by XUV radiation is intrinsically linked to HHG. Indeed, the reverse phenomenon, recombination,
is an inherent step of the single atom response. In addition, the interaction of XUV light with the medium affects
propagation, through dispersion (see Section 3.2) and absorption (real and imaginary parts of the refractive index).
Fig. 5(a) shows the absorption cross section, σ, for Ar and Ne in the energy range reached with HHG using a near
infrared laser driver. The rapid variation of the cross section in Ar is due to a Cooper minimum at 52 eV77.

Absorption of the harmonic field in the medium can be included by modifying Eq. (4) as27, 78

|Eq|2 ∝ e
− L

2Labs
cosh

(
L

2Labs

)
− cos(∆kL)

∆k2 + 1
4L2

abs

, (28)
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Figure 5. Influence of absorption (a) Absorption cross section as a function of photon energy in Ar (blue) and Ne
(red). Data from62. (b) Harmonic intensity as a function of medium length in units of Labs for different coherence
lengths [Lc = Labs, 4Labs, 8Labs, and Lc ≫ Labs (blue, violet, green, red)]. The yellow line indicates the harmonic
intensity calculated without absorption. The dashed black lines indicate at what medium length the maximum
harmonic intensity is obtained for the case Lc = 4Labs, which is related to the fit parameter ς = 3 introduced in
Eq. (32). [adapted from E. Constant (1999)].

where Labs denotes the absorption length (the inverse of the absorption coefficient at frequency qω, which is equal
to ρσabs, see Section 3.6). Fig. 5(b) shows how the harmonic yield varies as a function of the medium length (in units
of Labs) for different coherence lengths, Lc = π/∆k. The yellow line is obtained with Labs = ∞ and Lc = ∞. For a
given coherence length, for example Lc = 4Labs (see violet curve), increasing the medium length beyond 3Labs leads
to destructive interference and limits the harmonic yield. Recently, this model has been extended to include the
effects of linear density gradients along the propagation direction79.

Finally, when an intense laser beam propagates in a partially ionized medium, the radially dependent refractive
index, due to the free electrons, leads to defocusing, shifting the focus towards negative z. For the gas densities
considered in this work, Kerr induced focusing can be neglected. The peak intensity in the effective focus will
then be lower than the peak intensity in vacuum. The reshaping of the pulse can lead to efficient generation
through self-guiding of the driving field80, 81. Strong defocusing can also extend the phase matching cut-off due fast
variations of the driving laser intensity along the propagation axis82. To estimate the degree of defocusing, one can
introduce a defocusing length, LD, corresponding to a doubling of the diffraction limited beam divergence, defined
as83–85

LD =
πcϵ0meωkBT

pηfee2 =
πcϵ0meωσabs

ηfee2 Labs. (29)

When ηfe = ηmac
fe , LD = 17Labs for the 23rd harmonic in Ar and 26Labs for the 69th harmonic in Ne. When ηfe < ηmac

fe ,
LD increases and defocusing plays a negligible role in phase matching of HHG.

4 Simulations of high-order harmonic generation

4.1 Method
We performed numerical calculations based on the method presented in59, and using tabulated single-atom data
obtained by solving the time-dependent three-dimensional Schrödinger equation in Ar and Ne [see Section 2.2
and Fig. 1(c)]. These data serve as input in a propagation code based on the paraxial and slowly-varying envelope
approximations (i.e. it is accurate for pulse lengths longer than ≈ 3 cycles). For methods going beyond the slowly-
varying envelope approximation see e.g.23, 25, 86. We use a fundamental wavelength of 810 nm, a pulse duration of
22 fs, peak intensities ranging from 1.5–4.5 × 1014 Wcm−2 in Ar and 5 × 1014 Wcm−2 in Ne. We vary the medium
length, pressure and position relative to the fundamental focus. Our propagation code includes effects of reshaping
of the fundamental field due to propagation in a partially ionized medium.
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Figure 6. Simulations of HHG. Conversion efficiency (color scale) as a function of pressure and medium length for
the 23rd harmonic in argon for (a) I = 1.5 ×1014 Wcm−2, (b) 2.5 ×1014 Wcm−2 and (c) 4.5 ×1014 Wcm−2, (d)
conversion efficiency of 69th harmonic in Ne for I =5 ×1014 Wcm−2. The medium is centered at the laser focus. The
dashed lines represent the prediction from Eq. (32). (e) Normalized 23rd harmonic intensity in Ar as a function of
divergence angle in the far field and (f) as a function of time, with t = 0 at the peak of the fundamental pulse, for
the cases of high pressure (blue) and low pressure (red), indicated by the blue and red circles in (b). The average
ionization degree on axis in the medium as a function of time is shown for high pressure (dashed blue) and low
pressure (dashed red). The horizontal black line indicates the critical ionization degree ηmac

fe . (g) Conversion
efficiency (color scale) for the 23rd harmonic in Ar as a function of pzR and medium length, with the medium
centered at z = −zR and (h) as a function of pzR and medium position, for a medium of length L = 0.2zR. The solid
(dashed) white lines indicate how Eq. (32) varies for the short (long) trajectory. The intensity at the center of the
medium is 2.5×1014 Wcm−2.

There are two reasons why we use peak intensities that are larger than Imac, thus outside the phase matching
intensity window introduced in Table 1 and illustrated in Fig. 4(a). First, the rapid variation of the single atom
response with intensity strongly influences the CE, and can to some degree compensate for non-optimal phase
matching. Second, HHG is a time-dependent macroscopic phenomenon, which takes place in a certain time interval
and volume. The definition of Imac is valid only at the focus and t = 0. While Imic can be considered as an intensity
threshold for HHG, Imac is not a strict maximum intensity, but represents the highest local intensity (in time and
space) at which efficient phase matching is possible. We use a flat medium density profile, with a short sigmoid
edge, i.e. we do not study the effects of varying the slopes of the medium. The reader is referred to reference79 for a
detailed study of the effect of linear density gradients, at the beginning and end of the generating medium, on the
CE.

4.2 Simulation results
Fig. 6(a)-(c) shows the conversion efficiencies for the 23rd harmonic in Ar for several peak intensities. The medium
is centered at the laser focus. The CE is represented in color as a function of medium length, in units of zR, and pzR,
in units of mbarcm (or equivalently Pam). The CE variation has a hyperbolic shape, with a maximum indicated
by the dark red color, below 10−5 in Ar. The position of the hyperbola does not move significantly with the peak
intensity, as shown for Ar in Fig. 6(a)-(c). As the intensity increases from 1.5×1014 Wcm−2 to 2.5 × 1014 Wcm−2, the
maximum CE increases from 2.5 × 10−6 to 6×10−6. Increasing the intensity to 4.5 × 1014 Wcm−2, however, does
not lead to significantly higher conversion efficiencies, and for even higher intensities the CE begins to decrease.
Increasing the pressure further outside the range shown in Fig. 6 the maximum CE remains approximately constant,
with a peak below 10−5. We also perform simulations with different pulse duration (∼15-40 fs). The CE increases,
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approximately as τ−0.571, however the position of the hyperbola does not change significantly. We expect this to
remain true also in the few cycle regime.

Fig. 6(d) shows the conversion efficiency for the 69th harmonic in Ne at an intensity 5×1014 Wcm−2. The shape
is very similar to that obtained in Ar. The range of pressures which lead to a high CE in the case of a long medium
becomes, however, very narrow for higher orders. Our simulations do not include high pressure effects, such
as clustering or loss of coherence in the single atom response when the mean free path approaches the electron
excursion in the continuum11, 87, which could lead to a decrease of the CE.

This hyperbolic shape reflects the interplay between phase matching and absorption. At any pressure p, phase
matching determines an optimum ionization degree to meet the phase matching condition p = pmatch in Eq. (22). A
sufficient peak intensity ensures that, for a wide range of pressures, this condition is reached at some point in the
temporal pulse. As the pressure increases, optimum phase matching is reached at a higher ionization degree [as
illustrated in Fig. 3(a)]. At the same time, absorption determines an optimum pressure-length product as shown
in Fig. 5(b). If a similar coherence length is reached, a similar optimum pressure-length product is obtained, so
that the maximum CE is found on the same hyperbola. A maximum CE following such a hyperbolic relationship
between pressure and length has been observed experimentally for a gas jet in88.

In Fig. 6, two regimes leading to similar conversion efficiencies can be identified

(i) A regime where phase matching is achieved at relatively low pressure, which requires a low ionization degree,
i.e. reached early in the pulse. In this case, the neutral atom dispersion approximately cancels the sum of the
Gouy phase and dipole phase contributions, i.e. ∆kat + ∆kfoc + ∆ki ≈ 0. Phase matching at a low ionization
degree requires a medium with low pressure [see Fig. 3(a)]. As a consequence of the low pressure, a long
medium length is needed to achieve a high efficiency. In this regime, the phase matching pressure approaches
its minimal value p0, with

p0zR =
2meωϵ0ckBT fi

e2ηmac
fe

=
2ϵ0ckBT fi

ω(α0 − αq)
, (30)

giving p0zR = 28 mbarcm for the 23rd harmonic in Ar and p0zR = 170 mbarcm for the 69th harmonic in Ne.
For the sake of generality we here include explicitly ∆ki through fi, though in Fig. 6(a)-(d) the medium is
centered at z = 0 and ∆ki = 0 ( fi = 1). The CE does not vary much with the medium length, which can be
explained by the fact that the process is limited by absorption [see Fig. 5(b)]. However, it strongly depends on
the pressure, especially for high harmonic orders, since ∆k ∝ q [see Fig. 6(d)]. The maximum medium length
is limited to values not exceeding the Rayleigh length since the dipole response far outside zR is small at the
intensities considered here. This, in combination with absorption, leads to a lower HHG signal for lengths
larger than zR.

(ii) A regime where HHG takes place at relatively high pressures, requiring ionization degrees close to ηmac
fe ,

and across a much shorter and well defined interaction length. In this case, the neutral atom dispersion
approximately compensates the free electron contribution, i.e. ∆kat + ∆kfe ≈ 0. Thus much higher pressures
are required to achieve ∆kat + ∆kfe + ∆kfoc = 0. In this regime the efficiency depends strongly on the medium
length but not much on the pressure, provided the pressure is sufficiently high (p ≫ p0).

4.3 Analytic form of the hyperbola
To parametrize the hyperbolic shape exhibited by the simulations, we assume that HHG is absorption-limited27

with L = ςLabs, where ς = 3 is a fit parameter depending on the achieved coherence length [see dashed black line in
Fig. 5(b)]:

pzR
L

zR
=

ςkBT fi

σabs
(31)

This suggests a (partial) explanation in which the medium should not be too short (which will make full coherent
build-up impossible) but also not too long (which will not lead to any additional coherent build-up, but leads to
deteriorating effects such as decoherence or plasma effects).

Including the phase matching pressure for the case of ηfe = 0, introduced in Eq. (30) we propose the following
equation for the hyperbola

(p − p0)L =
ςkBT fi

σabs
. (32)
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The factor fi can be chosen to be constant, equal to 1, for a medium centered at the focus. Alternatively, we can
use fi = fi(L/2), since the XUV radiation emitted at the end of the medium (z = L/2) has experienced the least
reabsorption. This leads to a small correction to the hyperbolic equation, with a slightly tilted “horizontal” branch.
Eq. (32), represented by the dashed white line in Fig. 6(a)-(d) for ς = 3, agrees with the simulations in both Ar
and Ne for harmonics in the plateau region. The hyperbolic behavior, which is the main finding of this work, is
remarkably universal, i.e. independent of the peak intensity, harmonic order, generating gas, and focusing geometry
through the scaling laws presented in Section 3.1.

4.4 Spatial and temporal profile of the emitted XUV radiation
The spatial profile of the emitted XUV radiation is shown in Fig. 6(e) using I = 2.5 × 1014 Wcm−2 for the 23rd

harmonic in Ar for (p, L) = (25 mbarcm, 0.7 zR) and (p, L) = (170 mbarcm, 0.1 zR) corresponding to regime (i) and
(ii), respectively (indicated in Fig. 6(b) as the red and blue circles). As can be seen, the harmonic is much less
divergent in regime (i) being confined to a solid angle of θ

√
zR < 2 mradcm1/2. In contrast, the spatial profile

in regime (ii) is more irregular with a strong off-axis contribution, possibly due to off-axis phase matching, as
discussed in Section 3.5 and/or due to the contribution of the long trajectory.

Fig. 6(f) shows the temporal profile of the XUV radiation exiting the medium, together with the average
ionization degree on axis. In both regimes the generation takes place mostly prior the peak of the IR pulse. The
emission is, however, much more transient in regime (ii) than in regime (i), taking place at a later time when the
ionization degree is close to the critical ionization degree, indicated by the horizontal black line [see also Fig. 3(a)]18.
The higher ionization degree in regime (ii) is a consequence of a higher average intensity in the shorter medium.

4.5 Variation of the medium position
Finally, we vary the position of the medium relative to the laser focus, which is known to affect the conversion
efficiency,76, 89 and the position of the harmonic focus64, 90, 91. In Fig. 6(g), we show the CE of the 23rd harmonic in
Ar (color scale) as a function of medium length and pzR for a medium centered at z = −zR, i.e. before the laser
focus. The laser intensity at the center of the medium is 2.5×1014 Wcm−2. We observe two hyperbolic shapes with
similar CE, converging to different pressures, approximately 26 mbarcm and 58 mbarcm. The hyperbolic equation
depends on the different trajectories through fi [see Eq. (23) and Fig. 3(b)]. The equation for the short trajectory
(solid white line) follows the simulation results very well, while that of the long trajectory (dashed line) follows the
trend of the upper feature at high pressure. The discrepancy in the long trajectory at long medium length could
be due to strong off-axis phase matching, requiring ∆k < 0 (see Sec. 3.5), and thus allowing for phase matching at
ionization degrees larger than ηmac

fe , or conversely, at lower pressures.
Fig. 6(h) shows how the CE varies as a function of medium position, z and pzR for a constant medium length of

L = 0.2zR. The solid (dashed) white line shows how pzR, extracted from Eq. (32), varies with z for the short (long)
trajectory. At z = 0 the long and short trajectory phase match at the same pressure, since there is no dipole phase
contribution, leading to a region of high CE which is confined to a narrow range of pressures. For z>0, (medium after
the laser focus) fℓ becomes negative, meaning that phase matching can only be achieved for the short trajectory. For
z < 0 the CE increases, reaching a maximum at z =−0.75zR (short trajectory) and z =−1.1zR (long trajectory). These
maxima correspond to optimized generating positions, such that the laser- and dipole-phase-induced wavefronts
compensate each other64, 90, which are different for the two trajectories. In the interval −1.25zR < z < −0.5zR the
CE displays a double peak structure, with the largest splitting at z = −zR. The regions of high CE agree quite well
with the phase matching pressure predictions for the long (dashed line) and short (solid line) trajectories. This
analysis suggests that the upper hyperbolic feature in Fig. 6(g) corresponds to phase matching of the long trajectory,
while the lower one to that of the short trajectory.

5 Discussion
The initial motivation for this work was to find a “recipe” for phase matched, efficient HHG, i.e. to suggest a best
choice of geometry, medium length and gas pressure for a given set of laser parameters. We find that there is no
unique best solution, but several, with advantages and disadvantages. We illustrate this below with two examples.
Given a driving pulse energy E = 1mJ, duration τ = 22fs FWHM and wavelength of 810nm, we want to optimize
the number of photons of the 23rd harmonic in Ar, with (i) and without (ii) the additional requirement of a high
spatial quality. Finally, we discuss the influence of the driving wavelength and compare our prediction to existing
experimental data13, 88, 92, 93.
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5.1 High conversion efficiency and spatial quality
A high spatial quality requires to be in regime (i), i.e. on the horizontal branch of the hyperbola [see Fig. 6(e)]. We
choose a focal intensity equal to 2.5×1014 Wcm−2, such that I ≥ Imic over a large volume in the medium. Above
this intensity the ionization increases and the CE in regime (i) saturates. Assuming Gaussian optics, the Rayleigh
length must be chosen to be

zR =
4
√

ln2E√
πτλI

= 0.042m, (33)

which requires a focal length f =
√

πzR/4λD = 200D, where D is the unfocused beam diameter. The pressure
should be approximately 7 mbar according to Eq. (30) and Eq. (32). The medium length is not a sensitive parameter
in this regime. However, the simulations [see Fig. 6(a-c)] indicate that a length equal to 0.5zR ≈ 2.1cm is appropriate.
The obtained CE is 4 × 10−6. The beam is well collimated, with a smooth spatial profile and a divergence less than
1 mrad.

5.2 High conversion efficiency
We now target regime (ii), i.e. the vertical branch of the hyperbola. We choose a higher focal intensity, equal to
4×1014 Wcm−2, to reach an intensity I ≈ Imac over a large volume in the medium. This implies a Rayleigh length
equal to zR = 0.026m, and f = 160D. The pressure-length product is equal to 8 mbarcm [see Eq. (31)]. As shown in
the simulations, the CE increases only slightly when increasing the pressure while decreasing the medium length.
In many experimental situations, either the pressure or the length will be determined by technical limitations (e.g.
highest backing pressure or shortest possible medium length in the case of a gas jet). Using a pressure equal to
220 mbar the length of the medium should be of the order of 0.35 mm. The obtained CE is approximately 8×10−6.
The harmonic beam has a poor spatial quality with many annular spatial structures, and a divergence of the order
of 6 mrad [see Fig. 6(e)].

5.3 Influence of the driving wavelength and comparison to experimental data
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Figure 7. Validity of hyperbola. (a) Pressure-length hyperbola [see Eq. (32)] for different harmonic photon
energies [29 eV (blue), 56 eV (red) and 84 eV (green)] in Ar from two different driving wavelengths [810 nm (solid)
and 1800 nm (dashed)]. (b) Pressure length hyperbolas for different harmonic orders and driving wavelengths in Ar
[9th harmonic of 515 nm (blue), 33rd harmonic of 1030 nm (red) and 23rd harmonic of 800 nm (green)] compared to
experimental conditions resulting in optimal XUV photon flux. The data points [1-4] are from refs.88,92,93,13

respectively.

Finally, we examine the validity of our recommendation as a function of driving wavelength and XUV photon
energy, and compare to experimental results reported in the literature. Fig. 7(a) shows the variation of the hyperbola
for a few different XUV photon energies at two driving wavelengths (810 nm and 1800 nm). The phase matching
pressure varies linearly with the driving wavelength, and does not depend on the harmonic order, but rather on the
XUV photon energy, as predicted in Eq. (32). The different position of the hyperbola for 56 eV and 84 eV photon
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energies, relative to that for 29 eV photon energy, reflects the large drop in the absorption cross section [see Fig. 5(a)].
In Fig. 7(b) we indicate experimental results, obtained at different driving wavelengths, focusing geometries and

XUV photon energies, together with the corresponding hyperbolas. Unfortunately, to our knowledge, very few
studies of HHG report the actual pressure in the generating medium. Interestingly, these results13, 88, 92, 93, which
agree well with our prediction, span the different phase matching regimes discussed in the present article. Note
that Comby et al.88 (blue squares) report five different measurements.

6 Conclusion
In summary, we have reviewed the main physical principles of high-order harmonic generation in gases, with
emphasis on the macroscopic aspects. Using numerical simulations we have calculated the CE as a function of
various parameters (pressure, intensity, medium length, position of medium relative to the laser focus, focusing
geometry and trajectory) in Ar and Ne.

Efficient generation follows approximately a hyperbolic shape [(p − p0)L ∝ 1/σabs, see Eq. (32)]. The pressure
must be larger than p0 [see Eq. (30)], while L should be less than approximately a Rayleigh length. The conversion
efficiency remains approximately constant along this hyperbola, however, the properties of the harmonics strongly
depend on the choice of (p, L). At low pressure, the maximum CE does not depend much on the medium length
and the generated XUV radiation is well collimated. In contrast, at high pressure, the maximum CE is relatively
pressure-independent, and the generated radiation is much more divergent and emitted more transiently, later
in the pulse. Finally, moving the medium approximately one Rayleigh length before the laser focus leads to an
enhanced CE. In this case, optimal phase matching of the long and short trajectories occurs at different pressures
and lengths, leading to two hyperbolas.

In conclusion, for any given focusing geometry, harmonic order and generating gas, efficient generation is
possible for a variety of gas pressures and medium lengths. The best choice of pressure and length depends on
whether a high spatial quality, high CE or a flexible experimental setup is prioritized for a specific application. We
recommend using a long (on the order of 0.5zR), low pressure medium if a high spatial and temporal quality of
the XUV source is required. To optimize (only) the CE, we recommend a short, high pressure medium. The laser
intensity, and focusing geometry, should be chosen so that the intensity in the medium is on the order of a few Imic,
depending on the optimization strategy above.
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