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Counting the image sources of rectangular rooms is a well known technique, based on mirroring the original rooms
on all its walls in order to tesselate the Euclidian space, leading to a quadratic increase with layer order. We show
that a similar mirroring technique can be applied to polygonal and polyhedral rooms of arbitrary shapes, leading to
the tessellation of a Riemannian space with negative curvature. From this tessellation we derive a close formulation
for counting the numbers of image sources, which increases exponentially with layer order. Thus, a bridge between
rooms with flat walls and generic mixing rooms with partially curved walls is obtained.

1 Introduction
Computing the number of image sources for a rectangular

enclosure is an easy task that acousticians routinely carry
out [1]. Indeed, as all the images of the room tesselate
the Euclidean space, the computation simply amounts to
dividing the volume of a sphere of radius ct, where c is
the speed of sound and t the time elapsed since the source
emited, by the volume of the original room, as each image
room, or cell, only contains one image source. Thus one
obtains a number of image sources that increases with the
square of the time elapsed since the source emitted and is
inversely proportional to the volume of the room, and most
acousticians consider that this approximation is also valid
for rooms of arbitrary shapes.

Few authors have questionned the validity of this
approximation for rooms of arbitrary shapes. [3] has argued
that this number should increase exponentially for mixing
rooms, as a consequence of the conservation of the phase
space measure. Indeed, in mixing rooms, any small volume
of the phase space, for example the initial volume around
the source, exponentially expands in at least one phase
dimension as it propagates with time, and exponentially
decreases in at least one dimension, so that any volume
decays into exponentially thin stripes. Any elementary
cell of the phase space thus intersects exponentially many
stripes, corresponding to exponentially many image sources.

Polyhedral rooms, on the other hand, are not mixing
rooms since two neighbouring rays in the phase space almost
certainly separate linearly with time, and not exponentially.
Thus, the preceding argument cannot be used to evaluate
the number of image sources. The present paper therefore
addresses the non trivial issue of computing the number of
images sources for arbitrary polyhedral enclosures.

2 Images of obtuse angles
We first consider the obtuse angle β of Fig. 1 in a

2-dimensional Euclidean space. A sound source S (black
star) emitting inside the angle emits rays in all directions.
Some rays impinge on the left arm Ox of the angle and
are reflected (red arrows). As the position of impact moves
clockwise toward the apex, the reflected ray gradually moves
upwards and eventually hits the right arm on which it is
reflected once more. Finally, the ray impacts the apex of the
angle (black upwards broken-line arrow).

In a similar fashion, some rays will impinge on the right
arm Oy and be reflected (green arrows). As the position of
impact moves anticlockwise toward the apex, the reflected
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Figure 1 – Reflection and scattering of sound rays on obtuse
angle β. ε is the excess angle, since second order image
angles overlap by ε.

ray gradually moves upwards and eventually hits the left arm
on which it is reflected once more. Despite the continuity of
the impinging rays around the apex, there is no continuity of
the reflected rays, and this creates scattering.

In order to visualise the scattering, one needs to consider
the images of the sources by reflection on the two arms of
the angle. Let’s call S ′l the image of the source on the left
arm (red star), and S ′r the image on the right arm (green
star) ; S ′′l the left-most second order image (dim red star),
and S ′′r the right-most second order image (dim green star).
Reflected rays on the arms of the angle are first emitted
from the first order image sources S ′l and S ′r, then from the
second order sources S ′′l and S ′′r when the reflected rays hit
the opposite arm, until the rays emitted from the first-order
image sources reach the apex (red and green dotted-line
arrows). In that position, the rays emitted from the second
order image sources do not coincide in direction, since they
are emitted from two different image sources at angle ε with
respect to the apex. Scattering therefore comes in to fill the
gap between these two directions, and in fact beyond them.
In other words, one must consider a continuum of image
sources along the sector between S ′′l and S ′′r (grey sector),
that is, one must rotate the second order image angle by ε
from position y′′0x′ to position y′0x′′.

In fact, when rays rotate clockwise around the original
source S , the reflected rays rotate anticlockwise around the
first order source S ′′l , and clockwise around the second order
source S ′′r . So, when the secondary source moves clockwise
from S ′′l to S ′′r on Fig. 1, the diffracted rays rotate clockwise
around the apex, thus filling the grey sector with continuity
of rotations at its boundaries.
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Figure 2 – Embedding scattering on obtuse angle in 3-
dimensional space. Angles α are vertical and measure
deviations of angle arms from horizontal plane. Note that the
two second order image sources coalesce in one single image
source.

In order to make the second order image angles coincide,
one needs to embed Fig. 1 in a 3-dimensional space as in Fig.
2. We call x1, y1, and z1 the three Cartesian coordinates, and
keep notations Ox and Oy for the arms of the original flat
angular sector, which is now slanted so that angle β exactly
projects on a right angle. As a consequence, Ox is elevated by
angle α above Ox1 and Oy is lowered by angle α below Oy1 ;
similarly, O(−x) is elevated by angle α above O(−x1) and
O(−y) is lowered by angle α below O(−y1), so that the apex
angle remains equal to β. In such a way, we obtain a locally
flat space where rays are free to cross the borders between
subsequent angular sectors without changing their direction.
But computation of the local metric tensor [4] shows that the
spaces has negative curvature at the apex O where it tends
toward 4( π2 − β) for small values of π

2 − β. Indeed, Regge [5]
has shown that the curvature is equal to the total deficit angle
at the apex −ε = 2π − 4β.

For a 3-dimensional obtuse dihedral angle, Fig 1
represents a projection of the rays on a plane perpendicular
to the apical edge. But no equivalent of Fig 2 can be drawn,
as the embedding takes place in a 4-dimensional space.
Full computation shows that the local curvature remains
null everywhere - flat space - except on the apical edge. In
the limit where β tends toward a right angle, the curvature
around the apical edge is equal to (2π − 4β)`, where ` is
the length of the apical edge, called hinge by [5]. Note that
hinges are subspaces of co-dimension 2 where excess angle
is non null.

3 Number of image sources
Let us now consider polygonal (2-dimensional case)

or polyhedral rooms (3-dimensional case). We impose the
restriction, that will be discussed at the end of this Section,
that all the internal angles of the polygons are right or
obtuse in order to obtain the 4 sectors of Figs. 1 and 2. In
the polyhedral case, beside keeping all internal dihedral
angles right or obtuse for the same reason, we also impose
that all vertices are shared by three faces only. Typical

examples are pentagons in 2-dimensions, and dodecahedra
in 3-dimensions.

3.1 Convex polygonal rooms
For convex polygonal rooms with n edges, the n first

order images are obtained by reflection on the edges.
However, the order of reflection is not relevant for counting
the images : layers are much more relevant. Thus, on Fig. 3,
the numbers correspond to the successive layers around the
original room.

Figure 3 – Image rooms of pentagon. Primed images are
skewed in order to fit in the picture. Numbers correspond
to successive layers of images, with 0 denoting the original
room and primes one supplementary order of reflection (see
text). Note that one supplementary image must be added each
time image rooms overlap (e.g. between 1′and 2).

Accordingly, the first layer is composed of the n images
on the edges, to which n supplementary images, one at each
vertex, are added. For the next layers, it is more efficient
to compute separately the number of free edges and the
number of free vertices, that is, edges and vertices that are
not common to two adjacent images : one adds one image
for each free edge, and one for each free vertex, exactly as
for the first layer. It can be seen on Fig. 3 that edge images
create (n− 3) free edges and (n− 4) free vertices ; and vertex
images crate (n− 2) free edges and (n− 3) free vertices. Note
that n > 4 if all angles are right or obtuse. Let’s call ei the
number of free edges and vi the number of free vertices of
layer i. One obtains the recurrence formula :(

ei

vi

)
=

(
n − 3 n − 2
n − 4 n − 3

) (
ei−1
vi−1

)
= Λi

(
e0
v0

)
(1)

where Λ =

(
n − 3 n − 2
n − 4 n − 3

)
and det Λ = 1 . The eigenvalues

of matrix Λ are respectively λ1 = 1
2 (
√

n − 2 +
√

n − 4)2 > 1
and λ2 = 1

2 (
√

n − 2 −
√

n − 4)2 6 1.
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Case n = 4 : If n = 4, we obtain rectangular rooms, for
which the number of image sources increases linearly with
the layer order. Indeed, in this case, the matrix is upper
triangular :

Λ =

(
1 2
0 1

)
(2)

with λ1 = λ2 = 1, and the computation of eq. (1) is
straightforward :

Λi =

(
1 2i
0 1

)
(3)

As expected, we obtain for rectangular rooms ei = 4(2i + 1)
and vi = 4 : the number of corners remains constant and equal
to 4, with a linear increase of the number of edge images.
And the total number of image sources Ni of layer i is Ni =

ei + vi = 8(i + 1), that is, increases linearly with i.

Case n > 4 : If n > 5, then λ1 > 1 and λ2 < 1, and the
eigenvectors are given by :

X1 =

( √
n − 2
√

n − 4

)
, X2 =

( √
n − 2

−
√

n − 4

)
(4)

and the total number of image sources Ni of layer i is given
by the sum of the two contributions, that is :

Ni = ei + vi

≈
n(
√

n − 2 +
√

n − 4)2i+1

2i+1

(
1

√
n − 4

+
1

√
n − 2

)
=

n(
√

n − 2 +
√

n − 4)2(i+1)

2i+1
√

(n − 2)(n − 4)

(5)

Example : For a pentagon, n = 5 and the eigenvalues
are λ1 = 1

2 (
√

3 + 1)2 ≈ 3.73 and λ2 = 1
2 (
√

3 − 1)2 ≈ 0.27.
Matrix Λ is now equal to :

Λ =

(
2 3
1 2

)
(6)

and the total number of image sources Ni of layer i is given
by eq. (5) :

Ni = ei + vi ≈
5
(√

3 + 1
)2(i+1)

2i+1
√

3
(7)

In other words, the number of image sources increases
exponentially with the order of the layer, a very different
behaviour than for rectangular rooms, but similar to mixing
rooms [3].

3.2 Convex polyhedral rooms
For convex polyhedral rooms, it is not sufficient to only

consider the number N of faces. We must also consider the
number ni of edges of each face i. We thus obtain :

• the number of faces : F =
∑

i 1 = N

• the number of edges : since one edge is common to 2
faces, this number is E = 1

2
∑

i ni

• the number of vertices : with the assumption that
vertices are shared by 3 faces only, this number is
V = 1

3
∑

i ni

With the help of Euler’s polyhedron formula F − E + V = 2,
valid for convex polyhedra, we obtain :

F − E + V =
∑

i

[
1 −

ni

2
+

ni

3

]
=

∑
i

[
1 −

ni

6

]
= 2 (8)

that is, introducing the mean number of edges per face n̄ =
1
N

∑
i ni :

(6 − n̄)N = 12 (9)

As a consequence, the mean number of edges per face, the
total number of edges, and the total number of vertices are
given by :

n̄ =
6(N − 2)

N
, E = 3(N − 2), V = 2(N − 2) (10)

As in Sect. 3.1, we consider successive layers of image
rooms built around the original rooms, and we compute
separately the number of free faces, edges and vertices
belonging to the images created by free faces, edges an
vertices. If we call fm, em and vm the numbers of free faces,
edges and vertices respectively in layer m, we obtain the
recurrence formulae : fm+1

em+1
vm+1

 = Λ

 fm
em

vm

 = Λm+1

 f0
e0
v0

 (11)

with matrix Λ given by :

Λ =


N − n̄ − 1 N − 4 N − 3(

N
2 + 1

)
n̄ − n̄2

(
N
2 − 4

)
n̄ + 5

(
N
2 − 3

)
n̄ + 3(

N
3 + 2

)
n̄ − n̄2

(
N
3 − 4

)
n̄ + 8

(
N
3 − 3

)
n̄ + 5


(12)

and its determinant equal to :

−λ3 +λ2
[
6(N − 4)2

N
− 1

]
−λ

[
6(N − 4)2

N
− 1

]
+ 1 = 0 (13)

Case N = 6 : If N = 6, we obtain rectangular
parallelepiped rooms, for which eq. (10) reduces to
ni = n̄ = 4 for all i, e0 = 12, and v0 = 8 with f0 = N = 6. In
this case, the matrix is upper triangular :

Λ =

 1 2 3
0 1 3
0 0 1

 (14)

Since all diagonal terms are equal to 1, the three
eigenvalues are equal to 1 and the computation of eq.
(11) is straightforward :

Λi =

 1 2i 3i2

0 1 3i
0 0 1

 (15)

We obtain for rectangular parallelepiped rooms fi =

6(2i + 1)2, ei = 12(2i + 1) and vi = 8 : as expected,
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the number of corners remains constant and equal to 8,
with a linear increase of the number of edge images and
a quadratic increase of the number of the face images.
And the total number of image sources Ni of layer i is
Ni = fi + ei + vi = 24(i + 1)2 + 2, that is, increases
quadratically with i.

Case N > 6 : The direct solution of eq. (13) gives then the
three eigenvalues :

• λ0 = 1,

• λ1 =
[

3(N−4)2

N − 1
]

+ N−4
N

√
3[(N − 6)(3N − 8)] > 1,

• λ2 =
[

3(N−4)2

N − 1
]
− N−4

N

√
3[(N − 6)(3N − 8)] < 1.

with eigenvectors :

X0 =


(N − 3)

0
−

(N−2)(N−6)
N

 , X1 =


√

3[(N − 6)(3N − 8)]
+

3(N−6)(3N−8)
N

2(N−6)
√

3[(N−6)(3N−8)]
N

 ,
X2 =


√

3[(N − 6)(3N − 8)]
−

3(N−6)(3N−8)
N

2(N−6)
√

3[(N−6)(3N−8)]
N


(16)

For large values of the layer number i, λi
2 −→ 0, and eq.

(11) is approximated by : fi
ei

vi

 ≈
[√

3
N (N − 4) +

√
(N−6)(3N−8)

N

]2i

2i+1(3N − 8)
N − 2 N

√
3[(N−6)(3N−8)]

3(N−6)
(N−2)

√
3[(N−6)(3N−8)]

N 3N − 8
3(N−2)(N−6)

N 2
√

3[(N − 6)(3N − 8)]
N(N−3)

√
3[(N−6)(3N−8)]
3(N−6)

(N − 3)(3N − 8)
2(N − 3)

√
3[(N − 6)(3N − 8)]


 f0

e0
v0


(17)

and Ni = fi + ei + vi

Example : For a dodecahedron, N = 12 with n̄ = 5,
e0 = 30, and v0 = 20 with f0 = N = 12. The eigenvalues are
λ0 = 1, λ1 = 15+4

√
14 ≈ 29.97 and λ2 = 15−4

√
14 = 0.03.

Matrix Λ is now equal to :

Λ =

 9 8 9
10 15 18
5 8 10

 (18)

and the total number of image sources Ni of layer i is given
by the sum of the 3 terms in eq. (17), that is :

Ni = fi + ei + vi

≈

(
15 + 4

√
14

)i

46

(
5
[
4 +
√

14
]

f0 + 2
[
15 + 2

√
14

]
e0

+ 37
[
7 + 4

√
14

]
v0

)
=

10(29.97)i
(
316 + 157

√
14

)
23

(19)

In other words, the number of image sources increases
exponentially with the order of the layer, as is the case for
polygonal rooms with more than 4 edges.

4 Conclusion
We have presented a geometrical theory that naturally

accounts for scattering on the boundaries of a room. It
introduces Riemannian spaces with negative curvature,
which constitute the proper setting for the distribution of
images created by non-rectangular rooms with obtuse angles,
that is, created by irregular polyhedra. The crucial factor is
the excess angle that arises around specific edges, called
hinges, when first and second order images are considered,
as it pilots the curvature of the space.

From this Riemannian tessellation, we have proposed
a scheme for counting the number of image sources. Here,
the parameter is not the order of reflection, but counting the
layers of images around the original room. Only free faces,
edges and vertices are taken into account to build the layers,
and it makes it possible to give a closed-form formula for
the number of image sources in case all dihedral angles
are obtuse : the number of images increases exponentially,
making polyhedral rooms similar to mixing rooms in this
respect. We did not explicitly solved for the cases when
some dihedral angles are reflex or acute, but gave some
indications as how to handle them.
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