
HAL Id: hal-03848124
https://hal.science/hal-03848124

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational Data Embeddings for Feature Enrichment
with Background Information

Alexis Cvetkov-Iliev, Alexandre Allauzen, Gaël Varoquaux

To cite this version:
Alexis Cvetkov-Iliev, Alexandre Allauzen, Gaël Varoquaux. Relational Data Embeddings for Fea-
ture Enrichment with Background Information. Machine Learning, 2023, 112 (2), pp.687-720.
�10.1007/s10994-022-06277-7�. �hal-03848124�

https://hal.science/hal-03848124
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Relational Data Embeddings for Feature Enrichment with
Background Information

Alexis Cvetkov-Iliev · Alexandre Allauzen ·
Gaël Varoquaux

September 13, 2022

Abstract For many machine-learning tasks, augmenting the data table at hand
with features built from external sources is key to improving performance. For
instance, estimating housing prices benefits from background information on the
location, such as the population density or the average income. However, this infor-
mation must often be assembled across many tables, requiring time and expertise
from the data scientist. Instead, we propose to replace human-crafted features by
vectorial representations of entities (e.g. cities) that capture the corresponding in-
formation. We represent the relational data on the entities as a graph and adapt
graph-embedding methods to create feature vectors for each entity. We show that
two technical ingredients are crucial: modeling well the different relationships be-
tween entities, and capturing numerical attributes. We adapt knowledge graph
embedding methods that were primarily designed for graph completion. Yet, they
model only discrete entities, while creating good feature vectors from relational
data also requires capturing numerical attributes. For this, we introduce KEN:
Knowledge Embedding with Numbers. We thoroughly evaluate approaches to en-
rich features with background information on 7 prediction tasks. We show that
a good embedding model coupled with KEN can perform better than manually
handcrafted features, while requiring much less human effort. It is also competitive
with combinatorial feature engineering methods, but much more scalable. Our ap-
proach can be applied to huge databases, creating general-purpose feature vectors
reusable in various downstream tasks.

Keywords feature engineering, feature enrichment, knowledge graph embedding

A. Cvetkov-Iliev
Soda, INRIA Saclay, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau – France E-mail:
alexis.cvetkov-iliev@inria.fr

A. Allauzen
ESPCI Paris, 10 Rue Vauquelin, Paris, 75005, France

G. Varoquaux
Soda, INRIA Saclay, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau – France

2 Alexis Cvetkov-Iliev et al.

1 Introduction

For machine learning on data tables, a data scientist may encounter columns with
many different discrete entries or entities, for instance cities in a housing price pre-
diction setting (Fig. 1a). These city names can be encoded as a categorical variable,
but generalizing to housing in a new city is then impossible. A good solution for
such columns is often to use external sources to bring in information: the GPS
coordinates of the cities, the population, the average income (Fig. 1b)... From
a data-science perspective, this requires feature engineering on relational data:
merging and aggregating information across data sources to create an enriched
table with extra features (Fig. 1c). In practice however, such feature engineering
is difficult and time consuming for the human analyst, because it requires a good
understanding of both the different data sources and the application domain. For
instance the number of wealthy people living in a city may be important, but es-
timating it may require crossing information across many tables to build a single
somewhat abstract indicator. In fact, it is often recognized that data preparation
is one of the biggest bottlenecks of data-science [2,23].

A specificity of learning across a complex relational structure is that different
entries come with very different information. For instance, when collecting infor-
mation on local wealth in Wikipedia –querying DBPedia [27] or YAGO [28]–, a
data scientist will find for San Francisco the GDP as well as many known individ-
uals and companies. But for the neighboring locality Muir Beach, none of this is
available. The data scientist may then need to dig information at the county level,

Features Target

City Area Price

San Francisco 30 m2 450,000$

San Diego 55 m2 ?

a) Base Table
Features Target

MEAN(City.
Inhabitant_ID.Salary)

City.State.
Poverty_Rate

City.
Population

Area Price

70,000$ 12.6% 0.87M 30 m2 450,000$

60,000$ 12.6% 1.4M 55 m2 ?

c) Enriched Table

b) External data

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

Feature engineering

Fig. 1 The classical pipeline of feature enrichment. A base table (a) contains a target to
predict and several features, including a categorical feature with discrete entities (here cities).
To boost prediction performance, external data (b) about the entities of interest is incorporated
into the base table –usually via tedious feature engineering– to obtain the enriched table (c).
The external data (b) can come under various formats, e.g. tables or multi-relational graphs.

Relational Data Embeddings for Feature Enrichment with Background Information 3

which has a different set of attributes. The root of the challenge is that the original
relational information is fundamentally irregular and cannot be represented to a
learning algorithm as a fixed set of “features”.

Our goal here is to make it very easy for the data scientist to enrich a feature
with information from external data sources. Inspired by word embeddings [30]
which brought a breakthrough to text processing by their ease of use, we strive
to associate entities to general-purpose feature vectors that can be used in mul-
tiple downstream tasks. This requires a feature extraction method that captures
well entity attributes, and is scalable enough to be used on large databases. For
instance, a general-purpose knowledge-base such as YAGO3 [28] is a particularly
useful source of data, with information on 75,000 cities; but it is huge: millions of
entities and hundreds of attributes. Existing automatic feature engineering meth-
ods, such as Deep Feature Synthesis (DFS) [19], are combinatorial: they greedily
join and aggregate entity attributes across tables to create feature vectors. Their
combinatorial nature leads to tractability challenges: running DFS on YAGO3
produces very high dimensional vectors (d ∼ 10,000 – 140,000) which entail large
storage costs and computational hurdles in downstream machine-learning tasks.

Instead, we propose to use embedding models that learn a static vector repre-
sentation for each entity. Indeed, they provide compact representations that can
encode knowledge about various entities into a fixed, low-dimensional space (e.g.

d = 200). We learn these vectors from the external data, and add them to the base
table as new features to enhance prediction performance. A pioneering work in this
direction is RDF2vec [38] and its variants, which have been used to learn entity
embeddings from multi-relational graphs for various downstream tasks [16,41,40,
43]. These works directly build on word-embedding tools developed for natural
language –namely word2vec [30]. As such, they leverage contextual information: as
San Francisco and California are connected in the graph they are related. However,
they do not account for the nature of these relations, which requires modeling the
relational information: Wikipedia specifies that San Francisco is in California, but
Sacremento is the capital of California. We will see that capturing well this informa-
tion is important to generate feature vectors for downstream analytic applications.
Another, more general, drawback of embedding methods is that they are designed
for discrete entities, and are less suited to capture numerical attributes. Yet these
attributes are often useful for the end task: densely populated cities tend to exhibit
high housing prices for instance.

We propose here an approach that addresses these two limitations and pro-
vide high-performance embeddings. To capture relational information, we rely on
knowledge graph embedding models [47], widely used for graph completion but
not studied for feature extraction purposes. In such models, embeddings are di-
rectly optimized to capture relationships between entities. We then introduce KEN
(Knowledge Embedding with Numbers), a module that extends knowledge graph
embedding models to numerical attributes. Finally, we conduct a thorough empiri-
cal evaluation of our approach, using entity embeddings to boost machine-learning
performance in multiple tasks, and show that:

– Feature vectors obtained via knowledge graph embedding models perform much
better than RDF2vec embeddings.

– Embeddings learned with KEN do capture numerical information, which greatly
improves prediction performance in downstream tasks.

4 Alexis Cvetkov-Iliev et al.

– A good embedding model coupled with KEN outperforms manually hand-
crafted features, while requiring much less human effort. It is also competitive
with Deep Feature Synthesis, but is more scalable in terms of computation
time, memory and size of the created features.

– Although designed for multi-relational graphs, simple heuristics allow our ap-
proach to be applied to tabular data, with good performance.

The rest of the paper follows as such: section 2 goes into depth explaining related
work, section 3 details our contributed approach, and section 4 gives a thorough
empirical study of approaches to create features from relational data.

2 Related work: extracting features from relational data

We focus here on two common data structures for data-science: tabular data, as
in relational databases, and multi-relational graphs (a.k.a. knowledge graphs), the
backbone of Linked Open Data [7]. We broadly refer to both as relational data. In
this section we give an overview of various lines of work related to creating vectors
from relational data, drawing from a variety of scientific communities.

2.1 The classic view: feature engineering

Manual feature engineering Feature engineering across multiple tables traditionally
relies on a human analyst crafting SQL queries or dataframe operations, such as
joins or aggregations, to build a single feature matrix. The problem is the same
with Linked Open Data [32,39]: statistical studies require features extracted from
the data, here coming as knowledge graphs rather than multiple tables. Proposi-

tionalization approaches used to mine knowledge graphs [20] tackle this by creating
for each entity (node) of the graph a set of features, statistical fingerprints and
aggregates of its neighbourhood [33,37]. Here again, manual crafting is needed to
capture specific information such as wealth.

Whether it is done on tables or knowledge graphs, feature engineering is a
time-consuming task: studies show that data scientists spend 60% or more of their
time transforming the data for analysis [14]. Indeed, designing the right features
often requires careful effort from the analyst: which information is relevant for the
task at hand? How to query it? This is particularly difficult on large data sources.
For instance, a knowledge graph representation of Wikipedia leads to hundreds
of entity classes described by thousands of attributes in DBPedia [27]. Exploring
which joins are best for a given analysis is difficult even for an expert: How to
assemble indirect signals that capture information on the question at hand, for
instance estimating the distribution of wealth in a locality.

Automated feature engineering A few approaches have been proposed to automate
the construction of queries for feature engineering on relational databases. A fun-
damental challenge is that assembling such multi-table data transformations calls
for discrete choices –e.g. to join, or not to join?– with combinatorial possibilities
that explode on large databases. For instance, Deep Feature Synthesis (DFS) [19]
is a greedy approach that denormalizes a database by chaining joins from one

Relational Data Embeddings for Feature Enrichment with Background Information 5

reference table to all related tables and aggregates one-to-many relations using
combinations of a small base of functions (see Fig. 2). Typical aggregation func-
tions include COUNT, MODE (most common) for categorical features, and MEAN, MIN,
MAX, STD for numerical features. A crucial parameter of DFS is the depth, which
limits how many times joins can be chained to create new features. Higher depths
capture a wider range of information and usually improve performance, but quickly
result in very large feature vectors and computation times, as the number of possi-
ble join paths grows exponentially. This often calls for post-processing techniques
to remove unpredictive or redundant features.

Subsequent works have improved over DFS by adding aggregation functions
for other types of data (text, sequences) [25], for instance via recurrent neural
networks [24]. Although powerful feature extractors, all these methods remain
combinatorial in nature, and do not scale to large databases. Even with a limited
depth, a large number of entities of different types leads to increasingly wide
feature matrices with many missing values, as the different entities come with
different sets of attributes. Finally, automated feature engineering methods present
other drawbacks: the created features often contain categorical or missing values
that must be encoded, and their interpretability (we can trace back the joins and
aggregations needed to compute each feature) is challenged as their dimension
quickly grows.

City

Depth 0 Depth 1 Depth 2

City.
Population

City.
State

City.State.
Poverty_Rate

MEAN(City.
Inhabitant_ID.

Salary)

COUNT(City.
Inhabitant_ID)

COUNT(City.
State.City)

MEAN(City.
State.City.

Population)

San Francisco 0.87M California 12.6% 70,000$ 2 2 2.65M

San Diego 1.4M California 12.6% 60,000$ 1 2 2.65M

Reference
table

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000

A3 San Diego 60,000$

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Related tables

Deep Feature
Synthesis

Fig. 2 An example of Deep Feature Synthesis. Starting from a reference table with
entities of interest (here cities), new features are created by chaining joins to related tables, up
to a certain depth = 2. To aggregate values from one-to-many relations (e.g. city inhabitants),
we use the MEAN and COUNT operators, respectively for numerical and categorical features.
Colored arrows indicate join paths across tables for each depth.

6 Alexis Cvetkov-Iliev et al.

2.2 Entity embeddings in relational data

While entity embeddings come from a body of literature far from that of feature
engineering, they also create feature vectors from relational data [26].

Prelude: word embeddings Many embedding methods for relational data take in-
spiration from word embeddings. By injecting discrete entities (words) in vector
spaces, word embeddings have boosted statistical analyses of text. They rely on
the distributional semantics idea, which can be summarized by Firth’s sentence: “a
word is characterized by the company it keeps”. The central model is Skip-Gram
with Negative Sampling (SGNS), used in word2vec [30]. Each word w is associ-
ated to an embedding w ∈ Rp1. SGNS learns these embeddings by optimizing
similarities of pairs of words, using a scoring function:

Scoring function f(w,w′) = w ·w′ (1)

Given a text corpus, embeddings are optimized so that a word w is more similar
to a word w′ observed in the same context –e.g. the same sentence–, than another
word w† not in the context; minimizing a cross-entropy loss2:

SGNS L = −
∑

w, w′∈context(w),

w† 6∈context(w)

log(σ(f(w,w′))) + log(1− σ(f(w,w†))) (2)

After training, word embeddings capture contextual similarities: words with the
similar contexts (neighbors) end up close in the embedding space.

2.2.1 Embedding entities in a table

Word embedding methods, such as SGNS, can be extended to other data structures
by defining a corresponding notion of context [18]. In tables, a common choice is to
view rows as sentences: two entities are in one another context if they appear in the
same row. This was for instance applied to enable semantic queries over tables [9]
and for automatic table completion and retrieval [50]. More recent work integrates
intra-row and intra-column information to learn richer representations. Cappuzzo
et al. [11] link entries of a table to the row and column nodes they belong to.
Random walks through the resulting graph generate “sentences” of tokens, then
fed to a SGNS model.

2.2.2 Embeddings entities in knowledge graphs

Knowledge graphs use a more general representation of relational data than tables.
They replace the notion of columns by that of relations, which enables a uniform
representation over many tables, and helps assembling information from multiple
sources of data. Each piece of information is encoded as a triple (h, r, t), indicating a

1 To be precise, two embeddings are learned for each word. Which one is used in the scoring
function depends if we view it as the context word (w ∈ context(w′)) or not (w′ ∈ context(w)).

2 This is actually a simplified version of the loss optimized by word2vec; eg it does not
account for multiple negative examples.

Relational Data Embeddings for Feature Enrichment with Background Information 7

certain relation r between the head and tail entities (h, t). Large knowledge graphs,
such as YAGO3 [28] or DBPedia [27] contain millions or even billions of triples –
e.g. (San Francisco, HasState, California) – and cover millions of entities.

Knowledge graph embedding models learn a vector for each entity (node) and
relation (edge) of the graph. They have been mostly developed for two purposes,
leading to two distinct lines of research [36]:

1) Predicting new triples of the knowledge graph for completion purposes, which
has been the main application of knowledge graph embeddings.

2) Providing feature vectors for downstream tasks outside the knowledge
graph, which received much less attention in the literature, but is our focus
here.

Embeddings for downstream tasks RDF2vec [38] is a central work applying knowl-
edge graph embeddings in external downstream tasks. It has been used to incor-
porate background information in various tasks: geospatial data analysis [16], rec-
ommender systems [41,40], or biomedical prediction tasks [43]. Given a knowledge
graph, RDF2vec generates sequences of tokens by performing random walks on
the graph, alternating between entities and relations (see Fig. 3). These sequences
are then fed to a SGNS model to obtain embeddings for entities and relations. An
important parameter is the depth, which limits the number of hops in the random
walk, and thus the range of information to capture. A depth of 1 captures rela-
tionships between entities and their nearest neighbors in the graph, and so on...
Similarly to Deep Feature Synthesis, a challenge is that the number of possible
walks increases exponentially with depth. To avoid this, walks are often computed
for certain entities of interest only, with a limited number of walks for each entity.

Since RDF2vec, most research efforts focused on the creation of walks, for in-
stance giving more weight to relations/entities based on their frequency, PageRank
or degree, removing rare entities, or allowing teleportations between entities that
share similar properties [13,46].

SanFrancisco

California

0.87M

HasState

MayorOf

HasMember
HasPopulation

USA
LocatedIn

USF

LocatedIn

LondonBreed

DemocraticParty

Knowlege graph Text representation

“USF LocatedIn SanFrancisco
HasPopulation 0.87M”
“LondonBreed MayorOf
SanFrancisco HasState California”

“DemocraticParty HasMember
LondonBreed MayorOf SanFrancisco
HasState California LocatedIn USA”

Random walks

Depth 1

Depth 2

Fig. 3 Graph to text representation in RDF2vec. Random walks are performed on the
knowledge graph to generate sentences of tokens. Often, walks are only computed for a subset
of entities, here San Francisco. The depth parameter limits the number of hops in the random
walk, either forward or backward.

8 Alexis Cvetkov-Iliev et al.

Embeddings for graph completion Knowledge graph embeddings have been widely
used for graph completion, either through link prediction (predicting the missing
entity in an incomplete triple (h, r, ?)) or triple classification (predicting if a triple is
True of False). Similarly to SGNS, these models define a scoring function f(h, r, t)
that represent the plausibility of a given triple (h, r, t). Embeddings are then op-
timized so that observed triples obtain high scores, while negative ones (typically
sampled by corrupting the head or tail entity in observed triples) obtain low scores.

Scoring functions typically model the different relations between entities as
geometrical operations in the embedding space. For instance, the seminal TransE
model [10] represents a relation r as a translation vector r ∈ Rp between entity
embeddings h and t:

TransE f(h, r, t) = −‖h+ r − t‖ (3)

with ‖.‖ a `1 or `2 norm. Given a knowledge graph G, embeddings are trained to
minimize a margin loss:

L =
∑

(h,r,t)∈G,
(h′,t′) s.t.(h′,r,t′) 6∈G
with h′=h or t=t′

[f(h′, r, t′)− f(h, r, t) + γ]+ (4)

Many models that improve upon TransE [47] focus on better modeling of one-
to-many relationships and certain relational patterns (e.g. symmetry/antisymmetry,
inversion, composition) [49,44,6]. For link prediction in knowledge bases, one of
the best performing methods [3] is MuRE, Multi-Relational Poincare graph em-
beddings [6]. The key component of the method is the model of the link between
head and tail entity (homologous to (3) for TransE):

MuRE f(h, r, t) = −d(ρr � h, t+ rr)2 + bh + bt (5)

where � is the element-wise multiplication, two vectors ρr, rr ∈ Rp represent the
relation r, and the head and tail entities are represented by vectors h, t ∈ Rp and
biases bh, bt ∈ R. d is the Euclidean distance3. The model is optimized by sampling
positive and negative triples (as in (4), but using a logistic loss (2) instead).

Structure of contextual vs relational embeddings Approaches based on SGNS such as
RDF2vec only capture contextual information, while much progress in knowledge
graph embedding has focused on modeling different types of relations separately.
As a consequence they induce very different neighborhood structures on entities
embeddings.

Contextual embeddings, as RDF2vec, are trained on “sentences” of tokens,
where each entity is surrounded by the relations and entities it co-occurs with
in triples (Fig. 3). Two entities end up close in the embedding space if they have
similar contexts: 1) They may share a relation, but not necessarily with the same
entity, e.g. (San Francisco, LocatedIn, California) and (Paris, LocatedIn, France).
This tend to group entities of the same type, since entities of different nature,
like people and cities, share few relations. 2) They may share a connection to
a common entity, but not necessarily via the same relation, e.g. (MathWorks,

3 MuRE can also use the Poincaré non-Euclidean geometry. However in practice [6] the
Euclidean version is an excellent performer, as good as the non-Euclidean one for p ≥ 150.

Relational Data Embeddings for Feature Enrichment with Background Information 9

(Facebook, FoundedIn, Massachussetts)
(Facebook, HeadquartersIn, California)
(MathWorks, FoundedIn, California)
(MathWorks, HeadquartersIn,
Massachussetts)
(Google, FoundedIn, California)
(Google, HeadquartersIn, California)
(Apple, FoundedIn, California)
(Apple, HeadquartesIn, California)

Input triples
a) Contextual:

RDF2vec embeddings
b) Relational: knowledge

graph embeddings

Google

Apple

California

Massachussetts
Facebook

MathWorks

FoundedIn

H
ea

d
q

u
ar

te
rs

In

Google

Apple
FoundedIn

HeadquartersIn

MathWorks
Facebook

Massachussetts

California

Fig. 4 What drives entity neighborhoods in embedding space? a) Contextual em-
beddings (as RDF2vec) ignore the nature of the relation: given information on states in which
companies have been founded and have their headquarters, it cannot differentiate Facebook
(born in Massachussetts, moved to California), from MathWorks (born in California, moved
to Massachussetts). b) Knowledge graph embeddings models can give rise to different geo-
metric constraints for these two relations, separating out the companies. For instance here a
relation is encoded with a projection.

FoundedIn, California) and (Nevada, HasBorderWith, California). Fig. 4a gives
a paradigmatic example: such contextual information is blind to the difference
between Facebook, founded in Massachussetts but headquartered in California,
and MathWorks, founded in California but headquartered in Massachussetts.

Knowledge graph embeddings using the relation type in the scoring function
between two entities create a very different structure in the embedding space. As
relations of different nature lead to different transformations of the embedding
space, they each “pull” entities in different directions. In addition, modern models
can learn transformations that are not one-to-one –non bijective–, better suited
to many-to-one relations, as when many cities are located in the same state. As a
result the different relations can be encoded separately in the entities embeddings,
for instance along different coordinates (Fig. 4b).

Integrating numerical attributes in embeddings Numerical attributes, such as city
populations, are poorly handled by most embedding methods. They are often
simply dismissed, or at best binned and treated as discrete entities [11], which
remains suboptimal as it does not capture the topology of numbers.

Recent knowledge graph embedding models address this issue [17]. TransEA
[48] adds a loss to reconstruct numerical values from embeddings with a linear
model. LiteralE [21] is a state-of-the-art approach where each entity i is represented
by two vectors: ei ∈ Rp representing the entity itself, and li ∈ Rq, li containing each
of its numerical attribute (0 if no value, and where q is the number of numerical
relations in the KG). When used in the scoring function, embeddings h and t are
constructed with a function g that combines the two vectors into a single one:
h = g(eh, lh), and t = g(et, lt), both in Rp. LiteralE implements g as a learnable
mechanism similar to gated recurrent units.

10 Alexis Cvetkov-Iliev et al.

Input data

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

San Francisco

San Diego

California

0.87MState

1.4M
Population

City

A2A1

Salary

A3

65k$

60k$

75k$

Knowledge graph
representation Embeddings

San Francisco

San Diego

Population

0.87M

Population

Salary

KEN

Knowledge graph embedding

f(San Francisco, Population, 0.87M)

f(San Diego, Population, 0.87M)

negative
sampling

Features Target

City Embedding Area Price

San Francisco 0.1 -0.3 … 0.7 30 m2 450,000$

San Diego 0.15 -0.2 … 0.8 55 m2 ?

Downstream task

Fig. 5 Our pipeline for automatic feature extraction from relational data. 1) The
input data, which may contain tables, is transformed into a knowledge graph. 2) We use a
knowledge graph embedding model to learn a vector for each entity, and leverage numerical
values by embedding them in the same space as other entities with KEN. 3) After training,
entity embeddings can be easily added as new features in downstream tasks.

3 Contribution: multi-relational embeddings that capture numbers

We introduce here our approach to automatically extract information from rela-
tional data, creating feature vectors that can be used in downstream tasks. It relies
on 3 key ingredients, that we describe in the following subsections:

1) Using knowledge graph embedding models designed for graph completion, as
opposed to RDF2vec, to capture well relational information.

2) KEN (Knowledge Embedding with Numbers), a module that extends knowl-
edge graph embedding models to numerical attributes.

3) Representing tables as knowledge graphs, to leverage them in our approach.

Fig. 5 summarizes our pipeline for automatic feature extraction from relational
data.

3.1 Relational rather than contextual embeddings to encode information

With our goal of creating embeddings as features for downstream tasks, we mo-
tivate here the importance of using relational embeddings, originally designed for
knowledge graph completion, rather than contextual RDF2vec-like models, tradi-
tionally used to extract features for downstream tasks.

From a big picture perspective, given an entity h of interest (e.g. a city), we
would like an embedding h that encodes as well as possible the information re-
lated to h in the data. At the very least, it implies representing well the various

Relational Data Embeddings for Feature Enrichment with Background Information 11

relationships h has to other entities (e.g. its state), to make them available to the
machine-learning model used in the downstream task. Representing not only the
related entity t but also the nature of the relation r is often important: knowing
whether a person A is the mother, the sister, or the daughter of a person B informs
on the age difference.

In contextual embeddings such as RDF2vec, the presence of a link between a
entity h to another entity t is modeled somewhat independently from the nature r
of the link, i.e. the type of the relation. Indeed, the scoring function used in SNGS
–eq (1)– is only applied to pairs (h, t), (h, r) and (r, t). Structure between h, r, and
t is created indirectly as they appear in the same context.

In contrast, relational embeddings developed for knowledge graph embeddings
use a scoring function involving h, r, and t jointly. As this scoring function is
minimized for triples in the graph, it induces algebraic relations between the cor-
responding embeddings: for TransE t ≈ h+r, or for MuRE t ≈ ρr�h−rr. These
algebraic relations imply that t captures the link to h in a way that is specific to r
and hence a downstream analysis model can recover this specific information, e.g.

selecting on the mother, and not all relatives.
Fig. 4 illustrates the specificity of the link: for RDF2vec the relations are en-

coded as vectors which lie in the middle of the embeddings of the entities while
a knowledge graph embedding encodes the relations as a transformation of these
vectors (here a projection), and allows the different relations to be expressed on
different coordinates of the vectors.

3.2 Capturing numerical attributes with KEN

Numerical attributes are omnipresent in relational data, and often contain precious
information for downstream tasks, e.g. a city’s wealth influences housing prices.
While they are readily-available as numbers, the irregular nature of the information
prevents from merely adding them as coordinates to the feature vectors. A first
challenge is that different entities have different numerical attributes. A more
serious one arises when aggregating numerical information across many-to-one
relations: there are many ways of doing so. For instance, to characterize wealth in
a county from the GDP of its cities, the mean, the Gini index, the percentiles, etc.

are all useful aggregates. As a result, Deep Feature Synthesis generates more than
2,000 features derived from numerical attributes for cities in YAGO3.

We strive for lower-dimensional representations, and thus aim to capture nu-
merical information in entity embeddings. However, embedding methods are for-
mulated in terms of discrete elements (sec. 2.2): words, entities. A naive way to
adapt them to numerical attributes would be to consider numbers as tokens and
learn an independent embedding for each value. Yet doing so discards the topol-
ogy underlying those numbers: close numerical values should have similar rep-
resentations. Binning values before embedding reduces this effect, but remains
suboptimal. To tackle this, we introduce here KEN (Knowledge Embedding with
Numbers), a module that adapts embedding models to numerical attributes.

The KEN module Entity-embedding approaches can be seen as relying on a linear
encoder to associate an entity h with its vector representation h ∈ Rp. In this

12 Alexis Cvetkov-Iliev et al.

light, we propose to inject numerical values in the same vector space also with an
encoder, learning a function e : R→ Rp that maps numerical values to embeddings.

We use as function a single-layer neural network with a ReLU activation to
embed numerical values. To embed different types of attribute separately (e.g. city
populations and GPS coordinates), we learn a function er for each attribute r:

er(x) = ReLU(xwr + br) (6)

with x ∈ R the numerical value to embed, and wr, br ∈ Rp the weights and biases
of the linear layer. Embeddings er(x) of numerical values can then be used in place
of tail embeddings t in the scoring function f(h, r, t).

Comparison with other methods capturing numerical attributes An asset of KEN is
that it comes with no hyper-parameters to tune. This is unlike TransEA [48], where
the importance of numerical attributes must be controlled, with the danger that
the optimal value might differ for each attribute. Another important difference
with TransEA is that KEN can capture non-linear interactions between entities
and numerical attributes, thanks to the ReLU activation. For instance, cities in
California are associated to latitudes between 32◦N and 41◦N which cannot be
expressed by a mere threshold on a linear representation.

Importantly, KEN uses numerical values x during the training as new triples
(h, r, x) to be predicted, which forces entity embeddings to capture these numerical
attributes. This is different from LiteralE [21], where numerical values are incorpo-
rated to entity embeddings to better predict non-numerical triples (h, r, t). LiteralE
therefore only captures the information in numerical values useful to triangulate
other entities, and not the values in themselves. In particular non discriminant
numerical attributes can be discarded by the gate mechanism. As an extreme ex-
ample, an entity linked to numerical attributes but not to other entities will not
be embedded in LiteralE, as there is no training data.

In contrast, KEN draws no major distinction between discrete entities and
numerical values: they are embedded in the same space. Each type of numerical
attribute is associated to a specific relation and thus embedded on a specific line
segment via eq. (6). An analytic model for a downstream task can extract this
information, proceeding in a similar way as with discrete information (as described
in 3.1). The numerical attributes that an entity has and its relations to other
entities may contribute to create similar neighborhood structures: for a city to
be locatedIn California is equivalent to its GPS coordinate taking specific value
ranges.

Making the architecture robust to attribute distribution One challenge of heteroge-
neous data is that different numerical attributes have very different distributions.

Fig. 6 Embedding numer-
ical values with KEN.

2.2M

Population

0.9

CDF(2.2M)

-0.3

-1.7

-0.8

wr

br

.00

1.7

0.8

ReLU

er(2.2M)

Relational Data Embeddings for Feature Enrichment with Background Information 13

We normalize numerical values x ∈ R to the interval [0, 1] before embedding
them. With neural networks, a common way to do so is “min-max” normaliza-
tion: x′ = x−xmin

xmax−xmin
. However it is problematic when dealing with heavy-tailed

distributions, such as city populations. Indeed, after normalization, most values
x′ will be very close to zero and have similar representations er(x′) ' ReLU(br).
This makes it difficult for instance to distinguish a village with 1 000 inhabitants
from a medium-sized town of 10 000 people.

Ideally, we would like the values x′ to be evenly distributed in [0, 1], to separate
as well as possible their embeddings. We achieve this with quantile normalization,
which maps numerical values to their quantile in the attribute distribution, using
an empirical estimate of the cumulative distribution function: x′ = CDF(x).

Fig 6 summarizes the complete picture of numerical value embedding with
KEN.

3.3 Representing tables as knowledge graphs

To create embeddings with rich semantics, the source data must contain as much
detail as possible about the entities under study. This often requires to leverage
data from different sources, for instance combining broad but shallow informa-
tion (e.g. city populations) from large knowledge graphs with more granular data

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Anchorage 0.29M Alaska

Input table

b) Head entities = Cities

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

California

Alaska

San Francisco

San Diego

Anchorage

Population

State

City-Population

State-Population

State-City

City-State

a) Head entities = All c) Head entities = Row IDs

Row IDs

R1

R2

R3

R1 0.87M

San Francisco

California

San Diego

1.4M

R2

R3

0.29M

Anchorage

Alaska

Population

City

State

Fig. 7 Representing tables with triples. For each row of the table, we generate triples
by linking its entries through different relations. The methods we present here differ on their
choice of head entities when building triples: a) using all discrete entries as heads b) using
only the entities of interest (generally from the same column) and c) introducing a “row id”
entity for each row and using it as head entity.

14 Alexis Cvetkov-Iliev et al.

City
Field of
activity

Number of
companies

A Tech 10

A Retail 1

B Tech 1

B Retail 10

b) Head entities = Cities

TechA
Row IDs

R1

R2

R3

R4

Retail

10
1

TechB
Retail

10
1

c) Head entities = Row IDs

A Tech
Retail

10
1B

R1

R2

R3

R4

a) Table with joint columns

Fig. 8 Capturing joint information across columns. a) A table describing cities with
two joint attributes that must be considered together to be meaningful. b) Using cities as head
entities encodes the two attributes separately, hence we cannot differentiate them from their
triples. c) Introducing row entities allows to capture all attributes jointly and distinguish the
two cities.

(e.g. recent house prices at the neighbourhood-level) from domain-specific tables.
Although our approach inputs knowledge graphs (i.e. triples (h, r, t)), this represen-
tation is general enough to easily encode information from other data structures.
We focus here on tabular data, and explore a few strategies to represent tables as
knowledge graphs.

The core idea to generate triples from tables is to link entities from the same
rows with different relations. For instance, an exhaustive strategy consists in build-
ing all possible triples from the table, linking all discrete entries to other entities or
numerical values from the same rows (Fig. 7a). One asset of this method is that it
produces good embeddings for all entities, as they are directly connected to their
attributes in the graph. But it generates a large number of triples: O(n2cols nrows),
which increases the training time of embeddings. If we know beforehand the en-
tities of interest, i.e. those used in the end task (e.g. cities), we can instead build
triples from these entities only (Fig. 7b). This greatly reduces the number of triples
to (ncols − 1)nrows (these entities generally come from a single column) and re-
turns embeddings tailored for the entities under study. However, this approach
neglects other entities: they are not directly connected to the entries of the row
and are thus likely to underperform in other applications. Finally, we consider a
third heuristic that assigns a row id to each row of the table, treats this row id as
an entity, and then links it to the various entries of the row (Fig. 7c). This method
combines benefits of the previous methods: it does not require any prior knowledge
of the downstream application and generates a light graph with ncols nrows triples.
Yet learning an additional embedding for each row also raises scalability issues if
there are much more rows than distinct entities to embed.

A desirable property of table-to-graph methods is their ability to represent
joint information across columns. For instance Fig. 8a considers two cities A,B
with their number of companies in different fields of activity. Taken alone, the two
columns are not very informative: what matters here is the number of companies in
a certain field of activity, which requires to consider both columns jointly. Methods
that build triples from table entries such as cities encode the attributes “field of
activity” and “number of companies“ independently, and thus cannot distinguish
A and B from their triples (Fig. 8b). In contrast, introducing row entities allows
to capture row data jointly and differentiate the two cities (Fig. 8c).

Relational Data Embeddings for Feature Enrichment with Background Information 15

Finally, if missing data are present in the table, we encode them with specific
entities (one for each column).

4 Empirical study

We compare our approach with automatic feature extraction techniques, such as
Deep Feature Synthesis (DFS) or RDF2vec, and focus on two criteria:

– the quality of the extracted features: how well do they improve performance in
downstream tasks?

– the scalability of the approach: time and space complexity, size of the feature
vectors

4.1 Downstream tasks

We evaluate our approach on 7 prediction tasks on various types of entities. In
each task, we extract features for the entities of interest (i.e. target entities) from
a source dataset, and add them to a target dataset containing the variable to pre-
dict. To showcase the versatility of our method, we consider tables and knowledge
graphs as source data. More details about the downstream tasks and datasets are
given in the appendix 8.1.

Tabular data We first consider two classification tasks: KDD14 (classification of
educational crowdfunding projects) and KDD15 (student dropout prediction in
MOOCs). For these tasks the source data consists of multiple tables describing
the target entities. To leverage this data in our approach, we represent it as a
knowledge graph by using target entities as head entities and linking them to
other entries from the same rows, similarly to Fig. 7b.

Knowledge graphs To support our claim that general-purpose embeddings can be
learned from large databases and used in various end tasks, we consider a more
challenging setup: enriching several downstream tasks with background informa-
tion from Wikipedia. To that end, we leverage YAGO3, a knowledge graph repre-
sentation of common knowledge, built from Wikipedia and other sources [28].

Our version of YAGO3 contains 2.8 million entities, described by 7.2 million
triples. We learn embeddings for various entities that are common in data sci-
ence problems (counties, cities, people, companies, movies...) and use them in 5
regression tasks on socio-economic topics4:

– Elections: predict the number of votes per party in 3000 US counties.
– Housing prices: predict the average housing price in 23000 US cities.
– Accidents: predict the number of accidents in 8500 US cities.
– Movie revenues: predict the box-office revenues of 4900 movies.
– Employees: predict the number of employees in 3000 companies.

Note that there exists a more recent version of YAGO [34], with a much greater
coverage of information: 64 million entities, with about 2 billion triples. However,
we could not include it in our empirical study as the DFS baseline was intractable
on such a large database.

4 Target entities for which we extract features from YAGO3 are underlined.

16 Alexis Cvetkov-Iliev et al.

4.2 Approaches considered for evaluation

We describe below the feature extraction approaches that we include in our em-
pirical study.

Our approach We implement KEN on top of 3 embedding algorithms: TransE [10],
the seminal work that introduced relations as translations of embeddings, DistMult
[49], with scoring function f(h, r, t) = h · (r� t), and MuRE [6] because it emerged
as a top-performing method in link prediction [3]. We learn 200-dimensional em-
beddings and keep all hyper-parameters constant, except for the number of epochs
∈ [2, 4, 8, 16, 24, 32, 40] that we tune (see the appendix 8.2 for the exact parameters
used). We base our implementations on PyKEEN [4], a Python library for learn-
ing knowledge graph embeddings. In addition, PyKEEN implements a version of
DistMult that leverages numerical values with LiteralE [21], which allows for a
comparison with KEN.

Deep Feature Synthesis We compare our embedding approach to Deep Feature Syn-
thesis (DFS, see Fig. 2). We use an implementation of DFS from the Python pack-
age featuretools and extract features at depths (0, 1, 2, 3) with the default aggre-
gation functions: MEAN, MIN, MAX, STD, SKEW, SUM for numerical features, MODE,

NUM UNIQUE for categorical features and COUNT for both. Categorical features are
one-hot encoded to their 10 most common categories. To apply DFS on YAGO3,
we convert it to tabular format by creating a table with two columns (head, tail)
for each forward/inverse relation.

Manual feature engineering Besides DFS, we include manual feature engineering
to our empirical study. The objective is to estimate how well an analyst would
perform given a time budget of 1-2 hours per dataset. Results obviously depend
on the analyst and could be improved with more effort, but they provide a simple
baseline for a time-constrained analysis. See appendix 8.2 for a description of the
handcrafted features we used.

RDF2vec Finally, we also compare our approach to RDF2vec, traditionally used
to extract features for downstream tasks. For each entity under study, we generate
all possible walks of depth 2, going through forward and backward relations (as
in Fig. 3). However, as the number of walks can be very high for certain entities
(e.g. tens of millions), we cap this number to 10000, and checked empirically that
this value is large enough to impact only a small fraction of entities. We then feed
these sequences to a SGNS model with embedding dimension = 200, window size
= 4 (which allows to capture 1-hop and 2-hop neighborhoods), and pick the epoch
∈ [1, 5, 10, 20] that performs best. We used the pyRDF2Vec package [45] to run
the experiments.

4.3 Quality of the extracted features

Methodology We first study how well feature vectors created from a source database
can improve performance in data-science tasks. For this, we consider the prediction

Relational Data Embeddings for Feature Enrichment with Background Information 17

Table 1 Quality of the extracted features: Cross-validation scores on target datasets
using either embeddings, deep feature synthesis, or manually handcrafted vectors as features.
The scoring metrics are: average precision (KDD14), AUC (KDD15) and R2 for the remain-
ing datasets. Bold and underlined scores correspond to the first and second best-performing
approaches. Grayed cells indicate when MuRE + KEN outperforms deep feature synthesis.
Results with standard deviations are given in the appendix (Table 11).

Feature enrichment
from domain-
specific tables

Feature enrichment from a
general-purpose

knowledge graph, YAGO3

Approach K
D
D
14

K
D
D
15

E
le
ct

io
ns

H
ou

si
ng

pr
ic
es

A
cc

id
en

ts

M
ov

ie

re
ve

nu
es

E
m

pl
oy

ee
s

Advanced analytic models: gradient boosted trees

Feature vectors tailored for target entities
Manual feature
handcrafting

0.267 0.869 0.955 0.273 0.360 0.141 0.367

DFS, depth 0 0.158 0.584 0.836 0.165 0.162 0.016 0.126
DFS, depth 1 0.461 0.880 0.960 0.369 0.423 0.153 0.382
DFS, depth 2 0.463 0.880 0.964 0.605 0.570 0.163 0.384
DFS, depth 3 0.499 0.881 0.969 0.683 0.590 0.189 0.381
DFS, depth 3 + ontology 0.958 0.686 0.589 0.259 0.390
RDF2vec 0.173 0.849 0.873 0.355 0.236 0.074 0.380

General-purpose feature vectors
TransE 0.242 0.854 0.899 0.321 0.256 0.092 0.003
TransE + KEN 0.334 0.875 0.939 0.447 0.381 0.095 0.214
DistMult 0.264 0.859 0.916 0.525 0.454 0.145 0.117
DistMult + LiteralE 0.286 0.870 0.841 0.484 0.443 0.110 0.227
DistMult + KEN 0.386 0.879 0.921 0.542 0.486 0.162 0.242
MuRE 0.287 0.863 0.945 0.571 0.461 0.165 0.109
MuRE + KEN 0.443 0.883 0.966 0.604 0.524 0.175 0.313
MuRE + KEN + ontology 0.957 0.602 0.541 0.266 0.345

Simple analytic models: K-Nearest Neighbors
DFS, depth 0 0.078 0.504 0.742 0.004 0.130 -0.026 0.004
DFS, depth 1 0.110 0.821 0.715 0.297 0.320 0.121 0.144
DFS, depth 2 0.107 0.821 0.763 0.395 0.349 0.119 0.086
DFS, depth 3 0.142 0.816 0.618 0.503 0.361 0.043 0.025
MuRE + KEN 0.205 0.830 0.936 0.536 0.488 0.136 0.273

problems introduced in section 4.1 and the feature extraction approaches presented
in section 4.2: TransE, DistMult and MuRE with and without KEN; Deep Feature
Synthesis; manual feature engineering; and RDF2vec.

We measure performance with cross-validation scores, and only use entity rep-
resentations to predict the target values 5. For regression and classification, we use
two analytic models from the scikit-learn library: k-nearest neighbors and gradi-
ent boosted trees, whose hyper-parameters are tuned. We report in Table 1 5-fold
cross-validation scores, averaged over multiple seeds for shuffling the data and
training the embedding models. See appendix 8.3 for a more detailed description
of the experimental setup.

5 Except in the Elections dataset, where we also include the political party when predicting
the number of votes.

18 Alexis Cvetkov-Iliev et al.

Results When using entity-embeddings as feature vectors, DistMult and MuRE
overall outperform RDF2vec by a wide margin (except on the Employees dataset,
where RDF2vec gets surprisingly good results), with MuRE appearing as the best
approach. We explain this gap by their ability to capture well relational informa-
tion. In particular, MuRE is more expressive than TransE and DistMult (their
scoring functions can be seen as special cases of MuRE) and thus better model
complex relations. In contrast, TransE does not model well many-to-one relation-
ships: if we have (h, r, t) and (h′, r, t), then h and h′ are forced to have very close
embeddings h = h′ = t−r. Similarly, the scoring function of DistMult is symmet-
rical, i.e. f(h, r, t) = f(t, r, h), which is not suited for non symmetrical relations like
locatedIn. We can also see from Table 1 that leveraging numerical attributes with
KEN always improves performance in TransE, DistMult and MuRE, and that it
is superior to LiteralE in DistMult.

We now compare the performance of MuRE + KEN (the best embedding
approach) to manual and automatic feature engineering methods. When using
powerful prediction models (gradient boosted trees), MuRE + KEN does not con-
sistently outperforms DFS, but is often competitive for depths ≤ 2, and almost
always outperforms manual feature engineering. However, when using simpler pre-
diction models (K-Nearest Neighbors), MuRE + KEN significantly outperforms
DFS for all depths. Indeed, embeddings tend to be well structured (as induced by
the scoring function) and have homogeneous coefficients with similar distributions,
which facilitates the downstream learning. In contrast, DFS creates a huge number
of heterogeneous features, which even after scaling are hard to leverage by simple
models.

We also study whether injecting taxonomic information into embedding models
improves performance. Following [15], we augment YAGO3 with triples describing
its ontology, such as entity types and their relations (subClassOf and disjointWith).
We apply MuRE + KEN on this augmented version of YAGO3 and observe that
it generally improves prediction performance and reduces the gap with DFS.

Capturing entity types Finally, we investigate whether knowledge graph embed-
dings capture entity types, for instance differentiating cities from movies or coun-
ties. Such information can be useful in certain tasks that we did not consider in
our previous experiments, e.g. clustering. To evaluate this, we take many entities
of various types (cities, counties, movies, companies) from our previous tasks on
YAGO3, and measure how well entity types can be predicted from their MuRE +
KEN embeddings. We use a simple K-Nearest Neighbor model, whose number of
neighbors is tuned and obtain a ROC AUC score of 0.996, showing that knowledge
graph embeddings indeed capture entity types. We detail the experimental setup
in appendix 8.3.

4.4 Scalability concerns

Large databases, such as YAGO3, bear promises to provide general-purpose feature
enrichment. For this, the scalability of features extraction methods is crucial. To
that end, we compare in Table 2 the scalability of various approaches: Deep Feature
Synthesis (for 0 ≤ depth ≤ 3), RDF2vec and MuRE (with and without KEN).

Relational Data Embeddings for Feature Enrichment with Background Information 19

Methodology We quantify computational scalability with several metrics capturing:

1) the scalability of feature extraction: duration and RAM usage when com-
puting the feature vectors.

2) the scalability of feature usage: dimension of the feature vectors, disk mem-
ory needed to store them, and duration of cross-validated evaluation in predic-
tion tasks (using gradient boosted trees).

A benefit of knowledge graph embedding models is that they learn representations
for all entities at once (e.g. cities, counties, movies in YAGO3). This is unlike
DFS and RDF2vec which typically extracts feature vectors for target entities only.
Given our objective to provide representations for many different entities, we thus
benchmark DFS and RDF2vec when extracting features for all entities.

In some cases (KDD14 with depth 3 and YAGO3 with depth 2/3), DFS breaks
the RAM capacity of our machine (400 GB) and does not terminate, even when
splitting entities into 1000 chunks to lower the RAM usage. For these cases, we
extrapolate the total duration based on the duration for a subset of entities, and
the disk memory required to store features based on the memory it takes for a
smaller number of features.

Similarly, we were not able to learn RDF2vec embeddings for all YAGO3 en-
tities due to memory overflow. We tried limiting the number of walks to 100 per
entity, and only generating them from the 1% most frequent ones, but we still could
not compute them in less than a day, even with parallelization over 40 CPUs. We
thus interrupted the process, and measured the duration and RAM usage just
before stopping.

Results We report in Table 2 the scalability metrics described above. As expected,
DFS quickly becomes intractable on large databases: it requires huge amounts of
time and RAM to run, and returns very high-dimensional feature vectors that
need a lot of memory to be stored and a lot of time to be leveraged by machine-
learning models. Interestingly, we saw in Table 1 that DFS must be computed
at a depth of 2 or more to outperform MuRE + KEN (using powerful gradient
boosted tree models). Yet based on this scalability study, this is already too deep
to run DFS for all entities in YAGO3, due to memory issues. In the end, DFS
produces high-performance features, but its usage is limited to small databases,
or when the downstream task is known beforehand so as to extract features for a
subset of entities only. Unlike knowledge graph embedding models, it cannot be
used to create general-purpose feature vectors from large databases with millions
of entities.

We observe similar trends with RDF2vec: feature extraction for all entities
overall requires much more time and memory than MuRE. Actually, even creating
feature vectors for target entities only with RDF2vec can take more time (e.g. 9300s
for 23000 cities in Housing prices) than applying MuRE to all YAGO3 entities,
and must be repeated for every new downstream task.

4.5 KEN helps embeddings capture numerical attributes

As visible on Figure 9, KEN provides embeddings that represent in a much simpler
way the numerical information associated with entities. When embedding counties

20 Alexis Cvetkov-Iliev et al.

Table 2 Scalability of feature extraction methods: Computational scalability of em-
bedding models versus deep feature synthesis. Grayed-out cells indicate models which are less
tractable than MuRE + KEN. Red text indicates when DFS breaks the RAM capacity of our
machine (400 GB).

Scalability
metrics

Dataset
Deep Feature Synthesis

MuRE
MuRE
+ KEN

RDF
2vecDepth 1 Depth 2 Depth 3

Extracting feature vectors for all entities

Duration (s)
KDD14 1014 11123 '110K 2146 6708 52000
KDD15 170 489 5107 3023 3566 1710
YAGO3 690 '33K '8.5M 1108 1762 ≥ 100K

RAM usage
(GB)

KDD14 10.5 48 ≥400 13.2 18.6 240
KDD15 4.9 8.2 57.7 14.8 18.8 95
YAGO3 40.1 ≥400 ≥400 15.9 16.1 ≥ 30

Using feature vectors in downstream tasks

Dimension of
feature vectors

KDD14 372 2202 19379 200 200 200
KDD15 163 277 1870 200 200 200
YAGO3 271 10281 141K 200 200 200

Disk memory
needed to store
features (GB)

YAGO3 2.8 107 1471 2.1 2.1 2.1

Duration of
cross-validated
evaluation (s)

KDD14 48 91 1684 103 103 103
KDD15 4 4 9.9 19 19 19

Elections 100 276 8989 176 176 176
Housing prices 89 330 11589 145 145 145

Accidents 92 317 11496 146 146 146
Movie revenues 56 356 14988 132 132 132

Employees 72 449 15762 88 88 88

from YAGO3, the structure of KEN embeddings reflects well the population den-
sity, with a direction grouping together metropolitan areas such as Chicago (Cook
county), Los Angeles (Orange County), Houston (Harris county), and Phoenix
(Maricopa county), well separated from rural counties. On the other hand, this
information is more diluted in standard MuRE embeddings.

Methodology To evaluate quantitatively the ability of embeddings to capture nu-
merical information, we compare the performance of simple supervised models to
predict the numerical attributes of entities (e.g. county populations) from their em-
beddings. In practice we use K-Nearest Neighbors models (whose hyper-parameters

Table 3 Reconstructing numerical attributes - Cross-validation scores (R2) of simple
nearest-neighbour models predicting the numerical attributes associated to an entity from its
embedding.

Target DistMult
DistMult

+ LiteralE
DistMult
+ KEN

MuRE
MuRE
+ KEN

Donation
amount

(KDD14)

Mean 0.20±0.05 0.58±0.14 0.62±0.12 0.22±0.06 0.66±0.12
1st quartile 0.34±0.05 0.46±0.05 0.67±0.10 0.34±0.06 0.72±0.12
3rd quartile 0.33±0.05 0.48±0.05 0.57±0.10 0.33±0.05 0.59±0.09

Connection
time

(KDD15)

Mean 0.09±0.01 0.33±0.01 0.92±0.01 0.10±0.02 0.97±0.01
1st quartile 0.15±0.01 0.27±0.01 0.78±0.01 0.15±0.01 0.82±0.01
3rd quartile 0.39±0.02 0.45±0.01 0.74±0.01 0.39±0.02 0.84±0.01

County
attributes
(YAGO3)

Population 0.73±0.17 0.71±0.22 0.73±0.15 0.32±0.08 0.51±0.16
Latitude 0.92±0.01 0.72±0.03 0.93±0.01 0.72±0.03 0.91±0.01

Longitude 0.83±0.07 0.72±0.05 0.90±0.07 0.64±0.06 0.81±0.06

Relational Data Embeddings for Feature Enrichment with Background Information 21

Orange,
California
Maricopa,
Arizona

Harris,
Texas Cook,

Illinois

King, Texas

Hardeman, Texas

Sierra, California

Pope, Illinois

Calhoun, Illinois

County embeddings
using MuRE

Co
un

ty
 p

op
ul

at
io

n

Orange,
California

Maricopa, Arizona

Harris,
Texas

Cook,
Illinois

King,
Texas

Hardeman,
Texas

Sierra, CaliforniaPope, Illinois
Calhoun, Illinois

County embeddings
using MuRE + KEN

Co
un

ty
 p

op
ul

at
io

n

County Pop

King, Texas 286
Sierra, California 3 240
Hardeman, Texas 4 432
Pope, Illinois 4 442
Calhoun, Illinois 5 087
Orange, California 3 010 232
Maricopa, Arizona 3 942 169
Harris, Texas 4 173 079
Cook, Illinois 5 206 862

Fig. 9 Embeddings of counties using only categorical attributes (MuRE) or all attributes
(KEN-E) from YAGO3: PCA projection of the 200-dimension embeddings in 2D. The color
represents the county population and the symbols the state of the county. We randomly draw
high and low population counties in the same state. Cook, Orange, Harris, and Maricopa
counties correspond to major cities: Chicago, Los Angeles, Houston, and Phoenix. The global
structure of MuRE + KEN embeddings better reflects the population of the counties, in partic-
ular separating the rural counties from those related to major cities. A simple linear projection
of the MuRE + KEN embeddings suffices to roughly capture the rural-urban gradients, while
it is less clear on MuRE embeddings.

Table 4 Ablation study - Drop in cross-validation scores of variants of MuRE + KEN
and binning, relatively to the original MuRE + KEN. Scoring metrics are: average precision
(KDD14), AUC (KDD15) and R2 for other datasets.

Dataset Binning
Variants of MuRE + KEN
No quantile
normalization

No ReLU
activation

KDD14 -0.044 -0.068 -0.045
KDD15 -0.002 0 -0.001

Elections -0.008 -0.020 -0.004
Housing prices -0.091 -0.023 -0.021

Accidents -0.063 -0.037 -0.010
Movie revenues -0.015 -0.112 -0.030

Employees -0.011 -0.007 0.002
Average across datasets -0.038 -0.047 -0.016

are tuned) and aim to predict statistics about donations to projects in KDD14,
students connections to MOOCs in KDD15 and county attributes in YAGO3. We
measure performance with cross-validation scores. See appendix 8.4 for the exact
evaluation setup.

Results The scores reported in Table 3 confirms that adding KEN significantly
improves the ability to capture numerical information related to the entities: in all
settings adding KEN leads to better reconstruction of numerical attributes, and
also outperforms LiteralE by a wide margin. In addition, results show that these
embeddings capture to some extent the whole distribution of numerical attributes:
their mean, but also their quantiles.

22 Alexis Cvetkov-Iliev et al.

Table 5 Embedding can capture deep features: Cross-validation scores (R2) of gradient
boosted tree models using as features either embeddings trained on the full YAGO3 dataset,
or on a subset of YAGO3 containing only the triples related to the target entities.

Dataset YAGO3 TransE
TransE
+ KEN

MuRE
MuRE
+ KEN

Elections
subset 0.846 0.854 0.837 0.926

full 0.899 0.939 0.945 0.966
Housing
prices

subset 0.079 0.203 0.231 0.338
full 0.321 0.447 0.571 0.604

Accidents
subset 0.117 0.170 0.243 0.345

full 0.256 0.381 0.461 0.524
Movie

revenues
subset -0.003 -0.004 0.052 0.064

full 0.092 0.095 0.165 0.175

Employees
subset -0.015 0.071 0.087 0.297

full 0.003 0.214 0.109 0.313

4.6 Ablation study

We study in this section the influence of two ingredients of KEN on the quality of
entity-embeddings: 1) the quantile normalization of numerical values at the input,
and 2) the presence of a ReLU activation function at the output (Fig. 6).

Methodology We measure the drop in performance relative to the original MuRE +
KEN when: 1) replacing the quantile normalization by a min-max normalization
x′ = x−xmin

xmax−xmin
and 2) removing the ReLU activation. We also compare KEN

to a standard binning practice, where numerical values are divided into bins and
an embedding is learned for each bin. In practice we use 20 bins and split values
evenly across bins to be robust to fat-tailed distributions: the first bin corresponds
to values in the top 5%, the second bin to values in the range 5%-10%, and so
on... We use gradient boosted tree models for prediction, and the same setup as
in Table 1.

Results Table 4 shows that all ingredients of KEN are important, especially the
quantile normalization, and confirms that KEN leads to markedly better features
than binning.

4.7 Capturing deep features with embeddings

Methodology We want to determine if embeddings can capture information deep in
the knowledge graph, indirectly chaining relations as in Deep Feature Synthesis.
For this purpose, we compare in Table 5 cross-validation scores of gradient boosted
tree models with embeddings trained either on the full YAGO3 database, or on
a subset of YAGO3 containing only the triples related to the target entities. For
example, a subset with city-related triples would contain direct information about
cities (e.g. the state in which they belong), but no information about the states
themselves. Such “deep” information can however be helpful for analytical tasks,
and should be captured by embeddings models. The evaluation setup is the same
as in Table 1.

Relational Data Embeddings for Feature Enrichment with Background Information 23

Results Table 5 shows that adding triples indirectly related to the target entities
improves the quality of their embeddings; hence embedding models do capture
deep information.

4.8 Influence of table representations

Methodology When the source data consists of tables, it must be represented as a
knowledge graph to be leveraged by our approach. We introduced in section 3.3
three table-to-graph strategies, which differ on which entities are used as heads
when generating triples (Fig. 7). We either use: 1) all entities, 2) only target entities
(which require some prior knowledge of the downstream application) or 3) row
ids. We evaluate the performance of these strategies with cross-validation scores
on KDD14 and KDD15, using gradient boosted tree models for prediction (as in
Table 1). To show the importance of choosing well the column with the target
entities in the second approach, we also evaluate a simple baseline taking entities
from another column.

Results Based on Table 6, the top performing table-to-graph strategy consists in
generating triples from target entities. Indeed, the resulting graph directly con-
nects them to their attributes, which facilitates the learning of embeddings. This
intuition is confirmed when taking instead entities from another column, as we
observe a sharp drop in performance. Interestingly, using all entities or row ids
as head entities return embeddings that perform reasonably well without being
tailored for the specific task at hand. These methods can provide general-purpose
embeddings that perform well for various entities and applications. However, they
either increase the number of triples (and thus the training time of embeddings)
or the number of entities.

Table 6 Influence of table representations: Cross-validation scores of different strategies
to represent tables as a knowledge graph. Scoring metrics are average precision (KDD14) and
AUC (KDD15). We also report the number of entities and triples in the graph from each
method.

Head entities in
generated triples

KDD14 KDD15 # triples
(KDD14,
KDD15)

entities
(KDD14,
KDD15)

MuRE
MuRE
+ KEN

MuRE
MuRE
+ KEN

Embeddings tailored for specific entities
Target entities 0.287 0.443 0.863 0.883 44M 33M 0.94M 0.27M
Entities from
another column

0.227 0.233 0.861 0.863 44M 33M 0.94M 0.27M

General-purpose embeddings
All entities 0.289 0.406 0.864 0.883 155M 66M 0.94M 0.27M
Row IDs 0.282 0.409 0.856 0.878 51M 41M 8.4M 8.5M

24 Alexis Cvetkov-Iliev et al.

5 Discussion

5.1 Embeddings capturing numerical information can provide feature enrichment

By relying on entity embeddings, our feature-synthesis pipeline departs strongly
from the standard approach of feature engineering in databases. Our extensive
experiments confirm that features created via knowledge graph embedding do
capture the information needed for a statistical task. Embedding models coupled
with KEN improve over manual feature engineering on almost all tasks.

We observe clear trends in the experimental results: Table 1 reveals the impor-
tance of capturing well 1) the numerical attributes and 2) relational, rather than
contextual information. Indeed, across all analytic tasks and embedding methods
explored, adding KEN leads to features that better capture numerical attributes
and improve the downstream analytic task (Tables 3 and 1). It also improves over
binning and LiteralE by a large margin. The ingredients that we introduced in
KEN, such as the quantile normalization to account for the distribution of numer-
ical attributes significantly improves performance (Table 4). Improving models of
relations makes a strong difference in how useful the resulting features are for
downstream tasks: there are notable improvements from RDF2vec –no explicit
model of the relation– to MuRE (Table 1).

5.2 Deep Feature Synthesis cannot go so deep

Automated feature-engineering methods like Deep Feature Synthesis greatly re-
duce the human cost of manually handcrafting features across tables, while achiev-
ing excellent results on all datasets. With deep-enough features, DFS performs
consistently better than manual feature engineering and often slightly better that
MuRE + KEN (Table 1).

But this ability to generate good features comes at the price of scalability.
Since DFS combines aggregation functions and features at each depth, the time
and space complexity, as well as the number of created features grow exponentially
(Table 2). Even on relatively small databases like KDD14 or YAGO3, building
features for all entities with DFS at a depth of 2 or 3 becomes intractable, with the
memory requirements greatly exceeding our machine capacity (400 GB). Besides
memory limitations, the number of features quickly reaches tens or hundreds of
thousands, making statistical models harder and slower to train (e.g. 180x longer
on Employees), and reducing feature interpretability.

Yet, the databases that we have explored are smaller than the latest repositories
of general knowledge: YAGO3 is 50 times smaller than YAGO4 [34]. Progress in
linked open data is continuously increasing the amount of information available in
a consistent representation: DBPedia [27] currently contains 900 millions triplets,
and growth by a factor of 1.5 to 2 every two years [1]. For instance, we could not
run DFS, even with a depth of 1, on YAGO4. Even if it could run, it would provide
a huge number of features, hard to leverage.

Embeddings, on the opposite, readily provide low-dimension representations
(p = 200) which are able to capture “deep” information, indirectly chaining rela-
tions (Table 5). Finally, knowledge graph embedding methods are very scalable:
embeddings are optimized with stochastic gradient descent (O(#triplets)), and can

Relational Data Embeddings for Feature Enrichment with Background Information 25

be trained on huge amounts of data. Further optimizations can make embedding
techniques 2− 5× faster than the implementations that we used [51].

Knowledge graph embedding models are also naturally suited to capture com-
plex relational patterns between discrete elements. This is unlike DFS, which
struggles to encode categorical features: ensembles of discrete entities (e.g. the
cities located in a county) are aggregated by their most common element and then
one-hot encoded, discarding a lot of information in the process.

5.3 Current limitations call for further work

Interpretability The biggest drawback of automatic feature generation is that it
leads to models harder to interpret. Indeed, features are often manually crafted to
capture a quantity of interest, such as wealth of a locality. Data scientists can then
reason about the role of the corresponding quantity, for instance the impact of local
wealth on housing prices. A challenge to these interpretations is that the crafted
feature must represent well the quantity, but for this the burden is on the analyst
and not the tool. With automatically generated features, the quantities of interest
must be identified from the features. This is typically hard: even in DFS where
features are associated with descriptive labels, we may have to distinguish between
many partly redundant features. This is even harder in embedding models, which
are black-box and do not associate human-understandable labels to individual
features.

Matching and out-of-vocabulary The target data may come with different naming
conventions as the source, for instance county names in the Elections dataset
are written differently than in YAGO3. In such case, a form of matching must
be performed (e.g. Cook County → Cook, Illinois). This is often done manually
using domain-knowledge. Further work should explore automated techniques, for
instance using fuzzy or similarity joins [29,42], or adapting NLP techniques used
to create embeddings robust to out-of-vocabulary entities [8,35,12].

6 Conclusion

We have shown how turn-key extraction of embeddings from relational data can
distill valuable information from a database, synthesizing feature vectors for data
enrichment in downstream analytic tasks. For these feature vectors to be most use-
ful in the analytic tasks, experiments show that embedding methods must model
well the different relations between entities, and capture their numerical attributes.
For this, we proposed to use knowledge graph embedding models designed for link
prediction, and extended them to numerical attribute with KEN. Our extensive
experiments show that these embeddings improve markedly upon manual feature
engineering and embedding methods traditionally used for feature extraction such
as RDF2vec. They are also competitive with automatic feature engineering meth-
ods based on systematic denormalizations like Deep Feature Synthesis, but do not
face the same scalability challenges.

26 Alexis Cvetkov-Iliev et al.

A pipeline to minimize human effort Our pipeline is designed to facilitate data
preparation. Not only does it circumvent the human labor of designing manual
features, but also is minimizes data integration and wrangling challenges. Operat-
ing on a triple representation –sometimes automatically built from tables– removes
many tedious aspects of data input. For instance it works well on tables in “long”
or “wide” formats. It also allows to capture and mix information from various data
structures: tables, knowledge graphs... Yet, richer representations may be useful
in the long run to better capture complex relationships within the data, such as
temporal dependencies [5].

Towards general-purpose feature enrichment The scalability of our approach enabled
to easily extract embeddings from YAGO3, capturing the corresponding informa-
tion drawn from Wikipedia. These could readily be used as feature enrichment to
improve statistical analysis on 5 different socio-economic datasets we investigated.
Our work thus opens a path to capturing the large and complex stores of general
information into feature vectors easy to integrate into any analysis. As such it
contributes a major step towards facilitating data science with less manual data
preparation.

7 Declarations

Funding The research leading to these results received funding from the french
Agence Nationale de la Recherche, under Grant Agreement ANR-17-CE23-0018.

Conflicts of interest The authors have no relevant financial or non-financial inter-
ests to disclose.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Availability of data and material The data used to produce these results can be
downloaded at https://drive.google.com/file/d/1v4twxrOe_I9GSY9Xd7GEqnGLh3-4cGxn/
view?usp=sharing.

Code availability The code used to produce these results can be found at
https://github.com/alexis-cvetkov/KEN

Authors’ contributions Alexis Cvetkov-Iliev and Gaël Varoquaux conceived of the
presented idea. Alexis Cvetkov-Iliev implemented the approach and carried out the
experiments. Gaël Varoquaux and Alexandre Allauzen were involved in supervising
the project and helped designing the experiments. All authors discussed the results
and contributed to the final manuscript.

https://drive.google.com/file/d/1v4twxrOe_I9GSY9Xd7GEqnGLh3-4cGxn/view?usp=sharing
https://drive.google.com/file/d/1v4twxrOe_I9GSY9Xd7GEqnGLh3-4cGxn/view?usp=sharing
https://github.com/alexis-cvetkov/KEN

Relational Data Embeddings for Feature Enrichment with Background Information 27

References

1. DBPedia web page. https://www.dbpedia.org/resources/latest-core. Accessed: 2021-11-
18.

2. Kaggle industry survey, 2018.
3. Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sa-

hand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light into
the dark: A large-scale evaluation of knowledge graph embedding models under a unified
framework. arXiv preprint arXiv:2006.13365, 2020.

4. Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifzadeh,
Volker Tresp, and Jens Lehmann. Pykeen 1.0: A python library for training and evaluating
knowledge graph embeddings. Journal of Machine Learning Research, 22(82):1–6, 2021.

5. Siddhant Arora and Srikanta Bedathur. On embeddings in relational databases, 2020.
6. Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph

embeddings. Neural Information Processing Systems, 32:4463, 2019.
7. Florian Bauer and Martin Kaltenböck. Linked open data: The essentials. Edition

mono/monochrom, Vienna, 710, 2011.
8. Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching word

vectors with subword information. CoRR, abs/1607.04606, 2016.
9. Rajesh Bordawekar and Oded Shmueli. Using word embedding to enable semantic queries

in relational databases. In Proceedings of the 1st Workshop on Data Management for
End-to-End Machine Learning, DEEM, 2017.

10. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Neural In-
formation Processing Systems, page 2787, 2013.

11. Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating embed-
dings of heterogeneous relational datasets for data integration tasks. In SIGMOD, page
1335, 2020.

12. Lihu Chen, Gaël Varoquaux, and Fabian Suchanek. Imputing out-of-vocabulary embed-
dings with love makes language models robust with little cost. In ACL 2022-60th Annual
Meeting of the Association for Computational Linguistics, 2022.

13. Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto, and Heiko Paulheim. Global
rdf vector space embeddings. In International Semantic Web Conference, pages 190–207.
Springer, 2017.

14. CrowdFlower. Data science report, 2016.
15. Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting background knowl-

edge into embedding models for predictive tasks on knowledge graphs. In Eighteenth
Extended Semantic Web Conference - Research Track, 2021.

16. Shusaku Egami, Satoshi Nishimura, and Ken Fukuda. A framework for constructing and
augmenting knowledge graphs using virtual space: Towards analysis of daily activities. In
2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI),
pages 1226–1230, 2021.

17. Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. A survey on knowl-
edge graph embeddings with literals: Which model links better literal-ly? Semantic Web,
page 617, 2021.

18. Martin Grohe. Word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector em-
beddings of structured data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS’20, 2020.

19. James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards au-
tomating data science endeavors. In IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 1–10, 2015.

20. Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization Approaches to Rela-
tional Data Mining, page 262286. Springer-Verlag, Berlin, Heidelberg, 2001.

21. Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann, and Asja
Fischer. Incorporating literals into knowledge graph embeddings, 2019.

22. MIT Election Data Science Lab. County Presidential Election Returns 2000-2020, 2018.
23. Hoang Thanh Lam, Beat Buesser, Hong Min, Tran Ngoc Minh, Martin Wistuba, Udayan

Khurana, Gregory Bramble, Theodoros Salonidis, Dakuo Wang, and Horst Samulowitz.
Automated data science for relational data. In International Conference on Data Engi-
neering (ICDE), page 2689. IEEE, 2021.

28 Alexis Cvetkov-Iliev et al.

24. Hoang Thanh Lam, Tran Ngoc Minh, Mathieu Sinn, Beat Buesser, and Martin Wistuba.
Neural feature learning from relational database, 2019.

25. Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and
Oznur Alkan. One button machine for automating feature engineering in relational
databases, 2017.

26. Nada Lavrač, Blaž Škrlj, and Marko Robnik-Šikonja. Propositionalization and embed-
dings: two sides of the same coin. Machine Learning, 109(7):1465–1507, 2020.

27. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören Auer, et al.
Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semantic
web, 6:167, 2015.

28. Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A Knowledge
Base from Multilingual Wikipedias. In CIDR, Asilomar, United States, January 2013.

29. Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An empirical evaluation of set
similarity join techniques. Proceedings of the VLDB Endowment, 9:636, 2016.

30. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, page 3111. 2013.

31. Sobhan Moosavi, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, and Rajiv
Ramnath. A countrywide traffic accident dataset, 2019.

32. Heiko Paulheim. Exploiting linked open data as background knowledge in data mining.
In Proceedings of the 2013 International Conference on Data Mining on Linked Data,
DMoLD’13, page 110, 2013.

33. Heiko Paulheim and Johannes Fümkranz. Unsupervised generation of data mining fea-
tures from linked open data. In Proceedings of the 2nd International Conference on Web
Intelligence, Mining and Semantics, WIMS ’12, 2012.

34. Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. Yago 4: A reason-able
knowledge base. In Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko
Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez, editors, The
Semantic Web, pages 583–596. Springer International Publishing, 2020.

35. Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. Mimicking word embeddings using
subword rnns, 2017.

36. Jan Portisch, Nicolas Heist, and Heiko Paulheim. Knowledge graph embedding for data
mining vs. knowledge graph embedding for link prediction two sides of the same coin?
Semantic Web, pages 1–24, 01 2022.

37. Petar Ristoski and Heiko Paulheim. A comparison of propositionalization strategies for
creating features from linked open data. volume 1232, 09 2014.

38. Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data mining. In
SEMWEB, 2016.

39. Petar Ristoski and Heiko Paulheim. Semantic web in data mining and knowledge discovery:
A comprehensive survey. J. Web Semant., 36:1–22, 2016.

40. Petar Ristoski, Jessica Rosati, T. D. Noia, Renato De Leone, and Heiko Paulheim. Rdf2vec:
Rdf graph embeddings and their applications. Semantic Web, 10:721, 2019.

41. Muhammad Rizwan Saeed and Viktor K. Prasanna. Extracting entity-specific substruc-
tures for rdf graph embedding. In 2018 IEEE International Conference on Information
Reuse and Integration (IRI), pages 378–385, 2018.

42. Yasin N Silva, Walid G Aref, and Mohamed H Ali. The similarity join database operator.
In International Conference on Data Engineering (ICDE), page 892. IEEE, 2010.

43. Rita Sousa, Sara Silva, and Catia Pesquita. Evolving knowledge graph similarity for
supervised learning in complex biomedical domains. BMC Bioinformatics, 21, 01 2020.

44. Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space, 2019.

45. Gilles Vandewiele, Bram Steenwinckel, Terencio Agozzino, and Femke Ongenae. pyrdf2vec:
A python implementation and extension of rdf2vec. 2022.

46. Gilles Vandewiele, Bram Steenwinckel, Pieter Bonte, Michael Weyns, Heiko Paulheim,
Petar Ristoski, Filip De Turck, and Femke Ongenae. Walk extraction strategies for node
embeddings with rdf2vec in knowledge graphs, 2020.

47. Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A
survey of approaches and applications. IEEE Transactions on Knowledge and Data En-
gineering, 29:2724, 2017.

Relational Data Embeddings for Feature Enrichment with Background Information 29

48. Yanrong Wu and Zhichun Wang. Knowledge graph embedding with numeric attributes of
entities. In Workshop on Representation Learning for NLP, page 132, 2018.

49. Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. ICLR, 2015.

50. Li Zhang, Shuo Zhang, and Krisztian Balog. Table2vec: Neural word and entity embed-
dings for table population and retrieval. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, page 1029,
2019.

51. Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng
Zhang, and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 739–748, 2020.

52. Zillow. Home value index, 2021.

30 Alexis Cvetkov-Iliev et al.

8 Appendix

8.1 Downstream tasks

Tabular data

– The KDD14 competition aims to predict “exciting” educational projects on
a crowdfunding platform (binary target). The source data consists of three
tables describing the projects, the donations they received, and the resources
they need. The exact columns used in our experiments are described in Table
7. Since embedding models with KEN are designed for discrete entities or
numerical values, we perform minimal preprocessing on a few columns with
different data types. For instance, we encode donations message (free text) by
their length. Temporal data, such as donation timestamp are converted to a
number of days after the project posting date. We also convert date posted to
a number of days after an arbitrary reference date. For a fair comparison, we
use the same preprocessed features when running DFS.

– The KDD15 challenge aims to predict student dropout prediction in MOOCs
(binary target), using as source data 4 tables that contain information about
the courses and how often students interacted with them (see Table 8). To
account for the temporal information in KDD15, we replace logs times (date) by
numbers in [0, 1], describing when they occur relatively to the courses start/end
dates. We also replace the courses starting dates by a number of days after a
reference date, and drop the ending dates as all courses have the same duration
(29 days), making this feature uninformative.

Datasets augmented with YAGO3 embeddings

– Elections - We consider voting statistics in the 2020 presidential election, and
aim to predict the number of votes per party in 3000 US counties. As the

Table 7 Description of the KDD14 dataset. The outcomes table contains the target enti-
ties project id for which we want to create feature vectors, and the binary value to predict
is exciting. We always use project id as the head column when building the graph.

outcomes projects
project id (str) project id (str)

is exciting (target) teacher id (str)
school id (str)

donations school city (str)
project id (str) school state (str)
donor city (str) primary focus subject (str)
donor state (str) primary focus area (str)

is teacher acct (bool) secondary focus subject (str)
donation timestamp (date) secondary focus area (str)
donation to project (float) resource type (str)

donation optional support (float) poverty level (str)
donation message (text) grade level (str)

eligible double your impact match (bool)
resources eligible almost home match (bool)

project id (str) total price excluding optional support (float)
project resource type (str) total price including optional support (float)

item unit price (float) students reached (float)
item quantity (int) date posted (date)

Relational Data Embeddings for Feature Enrichment with Background Information 31

Table 8 Description of the KDD15 dataset. The outcomes table contains the target entities
enrollment id for which we want to create feature vectors, and the binary value to predict
dropout. We use the first column of each table as head column when building the graph.

outcomes objects (course modules)
enrollment id (str) module id (str) — A module of a course
dropout (target) course id (str)

category (str)
enrollments

enrollment id (str) logs (student interactions with courses)
student id (str) enrollment id (str)
course id (str) event (str) — Type of interaction

source (str) — Event source
dates object (str) — Module being interacted with

course id (str) time (date) — Time of the event
from (date) — Course starting date

to (date) — Course ending date

original data [22] come with no general information about counties, we enrich
them with county embeddings learned on YAGO3

– Housing prices - We want to predict the typical housing price in 23000 US
cities using their YAGO3 embeddings. We take target estimates from the Zillow
group [52].

– Accidents - We aim to predict the number of accidents in 8500 US cities
between 2016 and 2020 using their YAGO3 embeddings. We use data described
in [31].

– Movie revenues - We aim to predict the box-office revenues of 4900 movies
using their YAGO3 embeddings. We used data from: https://www.kaggle.com/
rounakbanik/the-movies-dataset.

– Employees - We aim to predict the number of employees in 3000 companies
using their YAGO3 embeddings. We used data from: https://www.kaggle.com/
peopledatalabssf/free-7-million-company-dataset

Since all these targets span over several orders of magnitude. We predict log(target)
instead of the target in our experiments.

Statistics on source datasets We give in Table 9 the number of entities, relations
and triples in the knowledge graph representations of the source data used to learn
entity-embeddings.

Table 9 Statistics of the knowledge graphs representations for the data used to train
embeddings in our experiments. Numbers in parenthesis describe the part of numerical relations
and triplets in the total.

Source data Entities Relations Triples
KDD14 945k 27 (10) 44M (22.3M)
KDD15 227k 9 (2) 33M (8.2M)
YAGO3 2.8M 58 (21) 7.2M (1.6M)

32 Alexis Cvetkov-Iliev et al.

8.2 Approaches considered for evaluation

Our approach When training embedding models (MuRE, DistMult and TransE),
we do not tune hyper-parameters and use the following values in all experiments:

– embedding dimension = 200
– distance in scoring function: `2 norm for MuRE, `1 norm for TransE and Dist-

Mult
– batch size = 105

– optimizer: Adam with learning rate = 10−3.
– loss function: margin loss with γ = 4 in TransE, and a softplus loss for MuRE

and DistMult
– negative sampling: for each positive triple (h, r, t), we generate 10 negative

samples by replacing the head h by a random entity h′ that co-occurs with the
relation r. Doing so provides harder negative triples and improves the results.

We then train each model for 40 epochs, and pick the epoch ∈ [2, 4, 8, 16, 24, 32, 40]
that leads to the best cross-validation scores in downstream tasks.

A technical subtlety with MuRE is that we must define biases bt(x) for numer-
ical values x. We do so by learning a constant bias br for each numerical attribute
r: ∀x, bt(x) = br.

Manual feature engineering We describe below the typical feature engineering steps
that we performed. See Table 10 for the exact list of handcrafted features.

– identifying relevant features
– building features using joins and simple aggregation functions (mean, counts)
– one-hot encoding of low-cardinality categorical features
– removing irrelevant, redundant, or hard to encode features (e.g. with high

cardinality)

Relational Data Embeddings for Feature Enrichment with Background Information 33

Table 10 Manually handcrafted features for each dataset.

Dataset Handcrafted features
Numerical Categorical (one-hot encoded)

KDD14

– donation to project (mean, counts)
– length donation message (mean)
– students reached
– total price excluding optional support
– total price including optional support
– eligible double your impact match
– eligible almost home match

– primary focus subject
– primary focus area
– resource type
– poverty level
– grade level

KDD15

– # of interactions (events) with courses
– mean event time (relative to the course
starting/ending dates)
– course starting date
– # of modules per course

– course id

Elections
county population, latitude, longitude,
area, population density

Housing prices
city population, latitude, longitude,
area, population density

Accidents
city population, latitude, longitude,
area, population density

Movie revenues
– duration of the movie
– number of actors, creators,
editors, directors, music writers

– country of production

Employees

– mean value of all numerical attributes
that exist for at least 5% of the companies
– counts of all non-numerical attributes
that exist for at least 5% of the companies

8.3 Quality of the extracted features

When using gradient boosted tree models (which offer native support for miss-
ing values), we use the default parameters from sklearn, except on the smaller
datasets using YAGO3 embeddings. For these datasets, we tune the following
model parameters with a cross-validated grid search: max depth ∈ [2, 4, 6, None]
and min samples leaf ∈ [4, 6, 10, 20].
When using KNNs, we tune the number of neighbors ∈ [1, 3, 5, 10, 30], except
on KDD14/15. We also impute missing values (common in DFS) with the median
of each feature, and then normalize feature values between 0 and 1 with min-max
scaling.

We report in Table 1 5-fold cross-validation scores, averaged across 5 random
shuffles of the data (3 for KDD14/15) and over 3 different seeds for training the
RDF2vec and knowledge graph embeddings (1 for KDD14/15). We also provide
in Table the standard deviations across train-test splits associated to these scores.

To evaluate the ability of knowledge graph embedding models to capture entity
types, we sample 1000 entities from the following datasets: Elections (counties),
Housing prices (cities), Movie revenues (movies), Employees (companies), for a
total of 4000 entities. When then measure with cross-validation how well MuRE +
KEN embeddings predict entity types, using a simple KNN model whose number
of neighbors ∈ [1, 3, 5, 10, 30] is tuned. The cross-validation parameters are the
same as above.

34 Alexis Cvetkov-Iliev et al.

T
a
b

le
1
1

Q
u

a
li

ty
o
f

th
e

e
x
tr

a
c
te

d
fe

a
tu

r
e
s:

C
ro

ss
-v

a
li
d

a
ti

o
n

sc
o
re

s
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
o
n

ta
rg

et
d

a
ta

se
ts

u
si

n
g

ei
th

er
em

b
ed

d
in

g
s,

d
ee

p
fe

a
tu

re
sy

n
th

es
is

,
o
r

m
a
n
u

a
ll
y

h
a
n

d
cr

a
ft

ed
v
ec

to
rs

a
s

fe
a
tu

re
s.

F
ea

tu
re

en
ri

ch
m

en
t

fr
o

m
d

o
m

a
in

-s
pe

ci
fi

c
ta

bl
es

F
ea

tu
re

en
ri

ch
m

en
t

fr
o

m
a

ge
n

er
a

l-
p

u
rp

o
se

kn
o

w
le

d
ge

gr
a

p
h

,
Y

A
G

O
3

A
p

p
r
o
a
c
h

K
D

D
1
4

K
D

D
1
5

E
le

c
ti

o
n

s
H

o
u

si
n

g
p

r
ic

e
s

A
c
c
id

e
n
ts

M
o
v
ie

r
e
v
e
n
u

e
s

E
m

p
lo

y
e
e
s

A
d

v
a
n

c
e
d

a
n

a
ly

ti
c

m
o
d

e
ls

:
g
r
a
d

ie
n
t

b
o
o
st

e
d

tr
e
e
s

F
ea

tu
re

ve
ct

or
s

ta
il
or

ed
fo

r
ta

rg
et

en
ti

ti
es

M
a
n
u

a
l

fe
a
tu

re
h

a
n

d
cr

a
ft

in
g

0
.2

6
7
±

0
.0

0
4

0
.8

6
9
±

0
.0

0
2

0
.9

5
5
±

0
.0

0
3

0
.2

7
3
±

0
.0

1
1

0
.3

6
0
±

0
.0

2
1

0
.1

4
1
±

0
.0

1
7

0
.3

6
7
±

0
.0

3
5

D
F

S
,

d
ep

th
0

0
.1

5
8
±

0
.0

0
2

0
.5

8
4
±

0
.0

0
5

0
.8

3
6
±

0
.0

0
7

0
.1

6
5
±

0
.0

1
0

0
.1

6
2
±

0
.0

1
6

0
.0

1
6
±

0
.0

1
0

0
.1

2
6
±

0
.0

3
6

D
F

S
,

d
ep

th
1

0
.4

6
1
±

0
.0

0
6

0
.8

8
0
±

0
.0

0
3

0
.9

6
0
±

0
.0

0
3

0
.3

6
9
±

0
.0

1
4

0
.4

2
3
±

0
.0

2
0

0
.1

5
3
±

0
.0

1
9

0
.3

8
2
±

0
.0

3
5

D
F

S
,

d
ep

th
2

0
.4

6
3
±

0
.0

0
6

0
.8

8
0
±

0
.0

0
3

0
.9

6
4
±

0
.0

0
3

0
.6

0
5
±

0
.0

2
9

0
.5

7
0
±

0
.0

1
6

0
.1

6
3
±

0
.0

1
9

0
.3

8
4
±

0
.0

3
5

D
F

S
,

d
ep

th
3

0
.4

9
9
±

0
.0

0
7

0
.8

8
1
±

0
.0

0
3

0
.9

6
9
±

0
.0

0
2

0
.6

8
3
±

0
.0

1
9

0
.5

9
0
±

0
.0

1
4

0
.1

8
9
±

0
.0

2
3

0
.3

8
1
±

0
.0

3
3

D
F

S
,

d
ep

th
3

+
o
n
to

lo
g
y

0
.9

5
8
±

0
.0

0
5

0
.6

8
6
±

0
.0

1
9

0
.5

8
9
±

0
.0

1
5

0
.2

5
9
±

0
.0

2
3

0
.3

9
0
±

0
.0

3
1

R
D

F
2
v
ec

0
.1

7
3
±

0
.0

0
3

0
.8

4
9
±

0
.0

0
3

0
.8

7
3
±

0
.0

0
9

0
.3

5
5
±

0
.0

2
9

0
.2

3
6
±

0
.0

1
9

0
.0

7
4
±

0
.0

1
4

0
.3

8
0
±

0
.0

4
7

G
en

er
a

l-
p

u
rp

o
se

fe
a

tu
re

ve
ct

or
s

T
ra

n
sE

0
.2

4
2
±

0
.0

0
4

0
.8

5
4
±

0
.0

0
3

0
.8

9
9
±

0
.0

0
5

0
.3

2
1
±

0
.0

4
6

0
.2

5
6
±

0
.0

1
9

0
.0

9
2
±

0
.0

1
6

0
.0

0
3
±

0
.0

1
6

T
ra

n
sE

+
K

E
N

0
.3

3
4
±

0
.0

0
4

0
.8

7
5
±

0
.0

0
3

0
.9

3
9
±

0
.0

0
6

0
.4

4
7
±

0
.0

3
0

0
.3

8
1
±

0
.0

2
0

0
.0

9
5
±

0
.0

1
8

0
.2

1
4
±

0
.0

3
1

D
is

tM
u

lt
0
.2

6
4
±

0
.0

0
4

0
.8

5
9
±

0
.0

0
3

0
.9

1
6
±

0
.0

4
3

0
.5

2
5
±

0
.0

2
2

0
.4

5
4
±

0
.0

2
3

0
.1

4
5
±

0
.0

1
9

0
.1

1
7
±

0
.0

3
2

D
is

tM
u

lt
+

L
it

er
a
lE

0
.2

8
6
±

0
.0

0
5

0
.8

7
0
±

0
.0

0
3

0
.8

4
1
±

0
.0

3
8

0
.4

8
4
±

0
.0

1
3

0
.4

4
3
±

0
.0

2
2

0
.1

1
0
±

0
.0

2
1

0
.2

2
7
±

0
.0

2
9

D
is

tM
u

lt
+

K
E

N
0
.3

8
6
±

0
.0

0
7

0
.8

7
9
±

0
.0

0
3

0
.9

2
1
±

0
.0

5
3

0
.5

4
2
±

0
.0

2
0

0
.4

8
6
±

0
.0

2
2

0
.1

6
2
±

0
.0

2
1

0
.2

4
2
±

0
.0

3
4

M
u

R
E

0
.2

8
7
±

0
.0

0
5

0
.8

6
3
±

0
.0

0
3

0
.9

4
5
±

0
.0

1
5

0
.5

7
1
±

0
.0

3
0

0
.4

6
1
±

0
.0

2
1

0
.1

6
5
±

0
.0

2
2

0
.1

0
9
±

0
.0

3
8

M
u

R
E

+
K

E
N

0
.4

4
3
±

0
.0

0
6

0
.8

8
3
±

0
.0

0
3

0
.9

6
6
±

0
.0

0
5

0
.6

0
4
±

0
.0

2
0

0
.5

2
4
±

0
.0

2
0

0
.1

7
5
±

0
.0

2
5

0
.3

1
3
±

0
.0

3
9

M
u

R
E

+
K

E
N

+
o
n
to

lo
g
y

0
.9

5
7
±

0
.0

1
4

0
.6

0
2
±

0
.0

2
8

0
.5

4
1
±

0
.0

2
2

0
.2

6
6
±

0
.0

3
0

0
.3

4
5
±

0
.0

4
0

S
im

p
le

a
n

a
ly

ti
c

m
o
d

e
ls

:
K

-N
e
a
r
e
st

N
e
ig

h
b

o
r
s

D
F

S
,

d
ep

th
0

0
.0

7
8
±

0
.0

0
1

0
.5

0
4
±

0
.0

3
0

0
.7

4
2
±

0
.0

2
4

0
.0

0
4
±

0
.0

2
7

0
.1

3
0
±

0
.0

2
1

-0
.0

2
6
±

0
.0

6
1

0
.0

0
4
±

0
.1

4
0

D
F

S
,

d
ep

th
1

0
.1

1
0
±

0
.0

0
2

0
.8

2
1
±

0
.0

0
4

0
.7

1
5
±

0
.0

1
9

0
.2

9
7
±

0
.0

1
5

0
.3

2
0
±

0
.0

2
3

0
.1

2
1
±

0
.0

2
1

0
.1

4
4
±

0
.0

2
0

D
F

S
,

d
ep

th
2

0
.1

0
7
±

0
.0

0
1

0
.8

2
1
±

0
.0

0
4

0
.7

6
3
±

0
.0

1
5

0
.3

9
5
±

0
.0

1
0

0
.3

4
9
±

0
.0

2
0

0
.1

1
9
±

0
.0

2
2

0
.0

8
6
±

0
.0

2
8

D
F

S
,

d
ep

th
3

0
.1

4
2
±

0
.0

0
2

0
.8

1
6
±

0
.0

0
3

0
.6

1
8
±

0
.0

5
0

0
.5

0
3
±

0
.0

1
1

0
.3

6
1
±

0
.0

2
1

0
.0

4
3
±

0
.0

3
7

0
.0

2
5
±

0
.0

2
2

M
u

R
E

+
K

E
N

0
.2

0
5
±

0
.0

0
3

0
.8

3
0
±

0
.0

0
3

0
.9

3
6
±

0
.0

1
7

0
.5

3
6
±

0
.0

1
3

0
.4

8
8
±

0
.0

2
1

0
.1

3
6
±

0
.0

2
4

0
.2

7
3
±

0
.0

3
4

Relational Data Embeddings for Feature Enrichment with Background Information 35

8.4 KEN helps embeddings capture numerical attributes

We obtain the results from Table 3 by predicting certain numerical attributes of
entities from their embeddings, using simple K-Nearest Neighbors models. For the
embeddings, we kept those from Table 1. We also tuned the hyper-parameters
of nearest neighbors models to maximize prediction performance, using a cross-
validated grid search over the following parameters:

– number of neighbors ∈ [1, 2, 3, 4, 8, 16]
– distance: `1 or `2 norm
– weighting of the neighbors: uniform or proportional to the distance with the

target entity

The final scores are then obtained with 5-fold cross-validation, averaged over 5
repeats.

	Introduction
	Related work: extracting features from relational data
	Contribution: multi-relational embeddings that capture numbers
	Empirical study
	Discussion
	Conclusion
	Declarations
	Appendix

