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Abstract

Context plays a crucial role in visual recognition as it provides complementary

clues for different learning tasks including image classification and annotation. As

the performances of these tasks are currently reaching a plateau, any extra knowl-

edge, including context, should be leveraged in order to seek significant leaps in

these performances. In the particular scenario of kernel machines, context-aware

kernel design aims at learning positive semi-definite similarity functions which

return high values not only when data share similar contents, but also similar

structures (a.k.a. contexts). However, the use of context in kernel design has not

been fully explored; indeed, context in these solutions is handcrafted instead of

being learned.

In this paper, we introduce a novel deep network architecture that learns con-

text in kernel design. This architecture is fully determined by the solution of an

objective function mixing a content term that captures the intrinsic similarity be-

tween data, a context criterion which models their structure and a regularization
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term that helps designing smooth kernel network representations. The solution

of this objective function defines a particular deep network architecture whose

parameters correspond to different variants of learned contexts including layer-

wise, stationary and classwise; larger values of these parameters correspond to the

most influencing contextual relationships between data. Extensive experiments

conducted on the challenging ImageCLEF Photo Annotation, Corel5k and NUS-

WIDE benchmarks show that our deep context networks are highly effective for

image classification and the learned contexts further enhance the performance of

image annotation.

Keywords: Deep kernel learning, context-aware kernel networks, deep learning,

image annotation

1. Introduction

Following the rapid development of electronic devices and social medias, there

is an exponential growth of image and video collections in the web and this makes

their manual annotation and search completely out of reach. This rapid growth

greatly motivates the need for automatic solutions that help analyzing and index-

ing these large collections [1, 2, 3, 4, 5, 6]. Among these solutions, image category

recognition is a major challenge, which aims at describing contents of images

with multiple semantic concepts (a.k.a. keywords, categories or classes) [7, 8],

for different use-cases including image retrieval, human-computer interaction, au-

tonomous driving, etc. Image annotation is challenging as concepts are usually

diverse ranging from simple objects, to abstract notions, through highly interact-

ing scene parts; hence, learning pure visual content models (without context) is

clearly insufficient [9].
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Most of the existing image annotation techniques are based on machine learn-

ing. These methods build decision functions that learn the intricate relationships

between images and their semantic concepts using variety of models including

Support Vector Machines (SVMs) [10, 11], Nearest Neighbor classifiers [12, 13],

deep networks[14, 15, 16, 17, 18, 19, 20, 21], etc. and the membership of images

to different semantic concepts is decided by the scores of these models. Among

the aforementioned machine learning techniques, SVMs are highly effective espe-

cially for tasks exhibiting scarce categories and training data. Their general prin-

ciple consists in mapping nonlinearly separable data from input spaces into high

(possibly infinite) dimensional spaces and finding hyperplanes that separate these

data while maximizing their margin. This mapping is achieved (either explicitly

or implicitly) using particular similarity functions referred to as kernels [22]. The

latter, defined as symmetric positive semi-definite (p.s.d) functions, should reserve

high values only when data share similar semantics and vice-versa. Several ker-

nels have been proposed in the literature including linear, polynomial and RBF

as well as histogram intersection [23, 24]. These functions can also be combined

in order to learn more relevant similarities using multiple [25], additive [26] and

deep kernels [27], as well as deep kernel map networks [28] which significantly

reduce their computational complexity. Nonetheless, standard kernels and their

combinations rely mainly on the visual content of images which is highly vari-

able and insufficient to capture the semantics of images especially when labeled

training data are scarce. Hence, context should also be leveraged in order to fur-

ther improve the discrimination power of the learned kernels. As shown through

this paper, context kernels should reserve high values not only when images share

similar content but also comparable context, and when the latter is learned, the
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accuracy of the resulting kernels is further improved.

Given an image as a lattice of cells, with each one being described with a fea-

ture vector, our goal is to design a kernel that captures the similarity between these

cells while modeling their context (see also [29, 30, 31, 32, 33]). Our design prin-

ciple is based on the minimization of an objective function mixing (i) a content

term that captures visual similarity, (ii) a context criterion which models image

structure, and (iii) a regularizer. The solution of this objective function defines

the architecture of a deep kernel network1 whose parameters correspond to the

learned context. Note that this formulation is different from [31, 32] as context

in this related work is handcrafted while in our proposed method, it is learned in

order to further enhance classification performances (see Section 3). Note also

that the approach proposed in this paper extends the preliminary work in [19] in

two aspects; on the one hand, different context settings are investigated including

stationary and classwise, both resulting into an extra gain in performances. On

the other hand, more comprehensive analysis and experiments are achieved using

diverse and larger benchmarks including ImageCLEF, Corel5k and NUS-WIDE.

Considering these issues, the main contributions of this paper include:

• A novel method that learns effective (context-aware) kernels using deep

networks. While the early formulation in [32, 31] relies on rigid (fixed)

contexts, the ones proposed in this paper are learned instead of being hand-

crafted. This is achieved as a part of an “end-to-end” training framework

which shows superior performances compared to handcrafted contexts.

1The advantage of this kernel network resides also in its computational complexity which

scales linearly w.r.t. the size of the data while in standard kernel-based methods, this complexity

is at least quadratic.
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• The study of different variants of contexts including layerwise, stationary

and classwise. Layerwise contexts are learned with different parameters

through the layers of our deep network while stationary ones assume shared

contextual relationships between all the layers and this reduces the actual

number of parameters. Besides, classwise contexts are also investigated in

order to build class-dependent parameters; this generates multiple branches

of contexts each one dedicated to a particular category in image classifica-

tion.

• All these statements are corroborated through extensive experiments in im-

age classification using the challenging ImageCLEF, Corel5k and NUS-

WIDE benchmarks.

The rest of this paper is organized as follows: first, we review the related work

about context learning in Section 2, and then we revisit our previous context-

aware kernel design [31] in Section 3. In Section 4, we introduce our two main

contributions: i) a deep network that learns explicit context-aware kernel repre-

sentations, and ii) different variants of context learning (including layerwise, sta-

tionary and classwise) which model context and further enhance the classification

performances. In particular, classwise context learning makes it possible to build

specific contexts for different classes. In Section 5, we show the performance and

comparison of our method on the ImageCLEF Photo Annotation, Corel5k and

NUS-WIDE benchmarks. Finally, we conclude the paper in Section 6 and we

provide possible extensions for a future work.
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2. Related work

Prior to detail our main contribution (in sections 3 and 4), we discuss in this

section the related work both in image annotation and context modeling.

2.1. Image annotation

State of the art in image annotation can be categorized into two major fam-

ilies of methods: discriminative and generative (see for instance [34, 35, 36,

37]). The latter aim at modeling the joint distribution between observed data and

their ground truth and use maximum a priori/posteriori to infer concepts on un-

seen data while the former seek to learn dependencies between images and their

classes through decision functions2 that map visual features into semantic con-

cepts. Amongst the models used for image category recognition, those based on

SVMs are particularly successful. In these methods, each concept is treated as an

independent class and a binary SVM is trained to predict the membership of its

underlying concept into a given test image [10, 41].

Different SVM-based solutions have been proposed in the literature in order

to further enhance the performance of image annotation. SVM ranking is used

in [38] to achieve image annotation where relevant concepts are ranked higher

than irrelevant ones while semi-supervised Laplacian SVM is considered in [42]

in order to propagate concepts from labeled to unlabeled images. SVMMN [43] is

also proposed in order to improve the accuracy of SVM-based image annotation;

it seeks to learn maximum margin classifiers with a minimum number of sam-

ples by modeling smoothness both at the sample and the concept levels together

with a correlation criterion across classes. Other methods proceed differently by

2e.g. SVMs [10, 38], decision trees [39], artificial neural networks [40], etc.
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learning discriminative kernels that improve the performance of binary SVMs;

for instance, shallow and deep multiple kernel learning [27] are proposed for im-

age annotation in order to combine different standard kernels. Context-dependent

kernels [32] are also proposed for multi-class image annotation; a variant of this

method in [31] makes it possible to learn explicit representations of these kernels

while being highly efficient. Our proposed method, in this paper, follows this line

and allows learning kernel representations together with their geometric contex-

tual relationships using deep parametric networks. The learned representations

of these networks also preserve the similarity of the original kernels while being

highly efficient and effective.

With the resurgence of deep convolutional neural networks (CNNs) [44, 45],

a further “impressive” progress has recently been observed in the aforementioned

image classification methods. This gain comes essentially from the high accu-

racy of the learned CNNs that capture the visual content of images better than

the widely used handcrafted representations [46]. The common aspect of these

techniques consists in revisiting and rebuilding annotation methods by learning

classifiers3 on top of CNN representations instead of handcrafted ones (see for

instance [47, 48, 49]). Other more recent work encodes structural semantic in-

formation to produce sequential labels by combining CNNs with recurrent neu-

ral networks (RNNs) [50] through semantically regularized layers [51], semantic

graph embedding [52], dynamic LSTM label ordering [53], as well as label trans-

fer in latent semantic spaces [54]. Similarly to this related work, our proposed

framework is also built on top of CNNs but seeks to design representations by

3These classifiers include SVMs, voting, K-nearest neighbors, self-defined Bayesian models,

etc.
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integrating and learning context in deep kernel networks.

2.2. Context modeling

Context, as a complementary clue, has attracted a lot of interest in different

computer vision applications ranging from 3D scene understanding [55], to scene

parsing [56], through object and person re-identification [1], etc. Early work in-

cludes “shape context” [57] which models the spatial relationships between image

primitives (mainly interest points) in order to design handcrafted shape represen-

tations. Later, the pyramid matching kernel, introduced in [58], models similari-

ties between multi-layout feature representations and the context-aware keypoint

extractor (CAKE), in [2], makes it possible to describe and retrieve keypoints

which are representative within a certain image context. A priori knowledge of

human part relationships have also been leveraged into CNNs in order to design

a spatially-constrained deep learning framework [33] that captures more discrim-

inative features for part segmentation. Context-aware kernel and its deep map

variants [31, 32] are proposed in order to design kernels accounting for “image-

image” relationships. In these works, handcrafted contexts are combined with

different models but their design is not end-to-end, which results into sub-optimal

contexts.

In context learning, most of the related work models image relationships us-

ing K-nearest neighbors (KNNs), where nearest neighbors depend on a learned

similarity between images and their labels, such as TagProp [12], 2PKNN [13],

etc. Our approach differs from this related work in that we aim to learn structures

within images rather than between images. Other related work, based on atten-

tion [59, 60], seeks to learn the most prominent areas in images for classification

or graph neural networks (GNNs) [61, 62, 63]. This is achieved in order to ex-
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plicitly learn graph relationships; for instance, multiple laplacians over skeleton

graphs [64] are learned in GNNs for human action recognition, hierarchical multi-

graphs [65] are learned in graph convolutional networks (GCNs) for image clas-

sification, as well as semantic-specific graphs [66] which are learned using GNNs

for multi-label image recognition, where each node corresponds to a salient area

endowed with a semantic label. In our proposed method, we design context-aware

kernel representations by modeling not only image content but also context which

is learned as a part of kernel network design instead of being handcrafted.

In the particular scenario of image annotation, several other methods, leverag-

ing contextual information, have been proposed in the literature. Authors in [3]

consider undirected graphical models that jointly exploit low-level features and

contextual information (as concept co-occurrences and spatial correlation statis-

tics) to classify local image blocks into predefined concepts. Zhang et al. [4]

propose a region annotation framework that exploits the semantic correlation of

segmented image regions; this method assigns each segmented region to one con-

cept and learns the relationships between labels and region locations using PSA.

A hybrid annotation approach based on visual attention mechanism and condi-

tional random fields is proposed in [5] in order to pay more attention to the salient

regions during the annotation process. A tri-relational graph-based method (in-

cluding image and region as well as label graphs) is proposed for web image an-

notation [6], and a spatial regularization network is introduced in [67] in order to

exploit both semantic and spatial relationships between labels using image-level

supervision only.

As stated earlier, our contribution is different from the aforementioned related

work in the way context is learned as a part of deep kernel network design. From
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the methodological point of view, our work is rather related to Convolutional Ker-

nel Networks (CKN) [68] which explicitly learn kernel maps for gaussian func-

tions using convolutional networks. However, our work is conceptually different

from CKN: on the one hand, our approach is not restricted to gaussian kernels

and is capable of learning a more general class of kernels. On the other hand, no

context is considered in CKN while our method incorporates contexts explicitly

in kernel design.

3. Context-aware kernel representations

In this section, we briefly describe the preliminary work about context-aware

kernels as well as its explicit map network. A context-aware kernel models the

similarity between images using not only their content but also their context. The

latter is relevant especially when the visual content of images with the same se-

mantic concepts is noisy and highly variable.

Following this goal, considering {Ip}p as a collection of images, a kernel

function κ (whose associated gram matrix denoted as K with KIp,Iq = κ(Ip, Iq))

is learned by minimizing the objective function [31]

min
K

tr(−KS′)− α
C∑
c=1

tr(KPcK
′P
′

c) +
β

2
||K||22, (1)

here β > 0, α ≥ 0, ′ and tr(.) stand for matrix transpose and trace operator re-

spectively, S refers to a context-free kernel matrix between data in X (e.g., linear

kernel, RBF kernel, etc.) while {Pc}Cc=1 denotes C intrinsic adjacency matrices

that capture different spatial relationships among images. The left-hand side term

of Eq. (1) is a fidelity criterion that encourages high kernel values for visually sim-

ilar pairs {(Ip, Iq)}Ip,Iq while the second term makes the kernel values between
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these pairs stronger or weaker depending on the similarity of their neighbors. Fi-

nally, the right-hand side term acts as a regularizer that controls the smoothness

of the learned kernel solution.

The optimization problem in Eq. (1) admits the closed-form kernel solution

K(t+1) = S + γ
C∑
c=1

PcK
(t)P

′

c, (2)

with K(0) = S, γ = α/β and t being an iteration number. In this solution,

γ controls the influence of the context and in practice it is chosen in order to

guarantee the convergence of the kernel solution to a fixed point (see more details

in [31]). Resulting from the p.s.d of S and the closure of the p.s.d with respect

to the sum and the product, all the kernel matrices {K(t)}t defined in Eq. (2) are

also p.s.d. Therefore, each kernel solution can be expressed as an inner product

K(t) = Φ(t)′Φ(t), with Φ(t) being an explicit feature map that takes data in X

from an input space into a high dimensional Hilbert space, then Eq. (2) can be

equivalently rewritten as

Φ(t+1) =
(
Φ
′(0) γ

1
2 P1Φ

′(t) . . . γ
1
2 PCΦ

′(t)
)′
. (3)

From Eq. (3), it is clear that the dimensionality of Φ(t) is not constant and

increases as t evolves. However, when γ is properly upper-bounded, the inner

product Φ
′(t)Φ(t) is guaranteed to converge to a fixed-point provided that T (with

t ≤ T ) is sufficiently (but not very) large. Now considering the adjacency matrices

{Pc}c and a fixed T for all images, one may update the explicit kernel maps

{Φ(t)
I }t,I recursively “image-by-image”; this makes the kernel map evaluation

inductive and efficiently extendable to any image.

As shown through this paper, our proposed method differs from [31] in multi-

ple aspects. Firstly, context is defined within images rather than between images.
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Secondly, in contrast to [31] (which considers instead fixed handcrafted adjacency

matrices), context is learned using deep kernel networks that fit a given image an-

notation task. Finally, different types of contexts (layerwise vs stationary, global

vs classwise) are considered in order to mitigate the growth of the actual number

of training parameters and to further enhance generalization.

4. Context Learning with Deep Networks

The method described in Section 3 leverages context in kernel design and is

totally unsupervised as ground truth is not employed neither in kernel design nor

in context definition. In order to further explore the potential of this method, we

consider a supervised setting that allows us to learn more discriminating contexts

as a part of kernel network design and this turns out to be more effective as shown

later in experiments.

4.1. From context-aware kernels to deep context networks

Considering Sp = {xp1, . . . ,xpn} as a set of non-overlapping cells taken from

a regular grid in the image Ip (see Fig. 1) and X = ∪pSp as the cells from all

the images; without a loss of generality, n is assumed constant for all images.

We measure the similarity between any two images Ip and Iq using the convo-

lution kernel defined as K(Ip, Iq) =
∑

i,j κ(x
p
i ,x

q
j) over the elementary kernel κ

(e.g. linear, polynomial, RBF kernel, etc.). Since κ is a p.s.d function, K is also

p.s.d. Note that K captures the similarity between two images without necessarily

aligning their cells, and this makes K translation and deformation resilient. How-

ever, most of elementary kernels focus mainly on the visual content of primitives

and ignore their contextual relationships. A more relevant kernel κ should provide

12



Figure 1: This figure shows the handcrafted neighborhood system with four orientations to build

the context-aware kernels. Red cross in the center means a particular cell in the regular grid, and

colored circles around it within a radius of 3 stand for its 4 different sectors of neighbors (i.e.

C = 4).

high similarity values not only when primitives share close visual content but also

similar context.

In order to define context between image cells, we consider {Pc}4c=1 as a typed

neighborhood system that captures spatial relationships through four different rel-

ative cell locations (namely “above”, “below”, “left” and “right”; see also Fig. 1).

Given a reference cell x; if x′ is within a predefined range from x and with a

relative position typed as c then Pc,x,x′ ← 1; otherwise Pc,x,x′ ← 0. This neigh-

borhood system can also be made invariant to different rigid transformations in-

cluding rotation and scaling4.

Given two cells x, x′ in X and following Eqs. (2) and (3), one may rewrite the

kernel definition K
(t)
x,x′ at iteration t as

K
(t)
x,x′ = φt(φt−1(...φ1(φ0(x)))).φt(φt−1(...φ1(φ0(x

′)))), (4)

with φt(x) = Φ
(t)
x . According to the definition of the convolution kernel K, the

4One may estimate a “characteristic” orientation and scale of a given cell using the SIFT de-

scriptor [69], and thereby make the typed adjacency matrices of the neighborhood system {Pc}c
rotation, scale and also translation invariant.
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∑

P
(1)
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P
(t−1)
c

P
(0)
c

Figure 2: This figure shows the “unfolded” multi-layered kernel map network with increasing

dimensionality that captures larger and more influencing contexts.

similarity between two images Ip, Iq can be rewritten as

K(Ip, Iq) =
∑
x∈Sp

∑
x′∈Sq

K
(t)
x,x′

=
∑
x∈Sp

φt(φt−1(...φ1(φ0(x))))

.
∑
x′∈Sq

φt(φt−1(...φ1(φ0(x
′)))).

(5)

Eq. (5) defines an inner product between two recursive kernel maps. Each one

corresponds to a multi-layered neural network (see Fig. 2) whose layers deliver

feature maps with increasing dimensionalities that correspond to larger and more

influencing contexts; a final layer is added in order to pool these feature maps

through all the cells of a given image. It is easy to see that the architecture in

Fig. 2 is similar to the ones widely used in deep learning with some differences;

on the one hand, as discussed earlier, the number of units and the depth are respec-

tively determined by (i) the dimensionality of the kernel maps {Φ(t)
x }t and (ii) the

asymptotic behavior of our kernel solution; in other words, by the maximum num-

ber of iterations that guarantees the convergence of Eq. (2). In practice, we found

that T -layers (with T = 5) are enough in order to observe this convergence on the
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Figure 3: This figure shows the whole architecture and flowchart of our deep context learning.

Given an input image (divided into cells), cells are first described using the pre-trained VGG-net.

Afterwards, the context-based kernel map of a given cell (for instance cell 0), at a given iteration,

is obtained by combining the kernel maps of its neighboring cells (namely cells 1, 2, 3 and 4),

obtained at the previous iteration, as shown in the red dashed rectangle and also in Eq. (3). At

the end of this iterative process, the kernel maps of all the cells are pooled together in order to

obtain the global representation of the input image, prior to achieve its classification. Note that

the network shown in the red rectangle, together with the pooling layer, correspond to the deep net

shown in Fig. 2.
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images. On the other hand, the parameters of this deep network correspond to the

entries of the neighborhood system {Pc}c and the largest parameters capture the

most influencing contextual relationships.

Considering the limit of Eq. (2) as K̃ and the underlying map in Eq. (3) as Φ̃,

the convolution kernel K between two given images Ip and Iq can be written as

K(Ip, Iq) = 〈φK(Sp), φK(Sq)〉, (6)

with

φK(Sp) =
∑
x∈Sp

Φ̃x, (7)

so each constellation of cells in an image Ip can be represented by a deep ex-

plicit kernel map φK(Sp). It is worth noticing that the maps in Eqs. (3) and (7)

rely on the initial setting of {Φ(t)}t (i.e., when t = 0). The latter could be ob-

tained exactly for some kernels (including polynomial and histogram intersection)

or approximated for others (such as RBF) using kernel principal component anal-

ysis [31].

In order to fully investigate the potential of the feature maps in Eq. (7), we

consider in the subsequent section an “end-to-end” framework that learns the

neighborhood system {Pc}c. The underlying context network is learned on top

of another pre-trained CNN; as shown later in Section 5, this context learning

process enhances further the performance of image annotation.

4.2. Deep context learning

In this section, we extend the approach described earlier in order to learn con-

text. ConsideringN training images {Ip}Np=1 belonging toK different classes, we

define Yp
k (k ∈ {1, . . . , K}) as the class membership of a given image Ip: here
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Yp
k = +1 iff Ip belongs to the class k and Yp

k = −1 otherwise. For each class

k, we train a binary SVM on top of the deep context network in order to decide

about the membership of k into test images. The objective function associated to

these multi-class SVMs (shown subsequently) makes it possible to define an “end-

to-end” framework that learns not only the SVM parameters but also the weights

associated to the neighborhood system {Pc}c.

Considering the pairs of training images and their labels {(φK(Sp),Yp
k)}p, the

loss associated to the multi-class SVMs is defined as

min
{wk}k,{Pc}c

K∑
k=1

1

2
||wk||2 + Ck

N∑
p=1

max
(
0, 1−Yp

kfk(Sp)
)
, (8)

with Ck > 0, fk(Sp) = w′kφK(Sp) and wk the training parameters of fk. The first

term, of the above objective function, is an `2 regularization that seeks to maxi-

mize the margins of {fk}k while the second criterion corresponds to the hing loss.

Eq. (8) makes it possible to learn at least two variants of contexts {Pc}c: global

and classwise. In what follows, we first describe how to learn global contexts

and then we update our scheme in section 4.4 in order to make these contexts

class-dependent.

As it is difficult to jointly optimize the two sets of parameters {wk}k, {Pc}c, we

adopt an alternating optimization procedure: at each iteration, we fix {Pc}c and

we learn {wk}k and then vice-versa. When fixing {wk}k, the parameters {Pc}c
are learned using backpropagation and gradient descent. Let 1{} denote the in-

dicator function; considering the kernel maps {φK(Sp)}p of training images and

the gradient of the loss (8) — also denoted as E — w.r.t the output of the context

network
∂E

∂φK
= −

N∑
p=1

K∑
k=1

CkY
p
kwk1{1−Yp

kw
′
kφK(Sp)}, (9)
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we apply (i) the chain rule in order to backpropagate { ∂E
∂Pc
}c and then (ii) gradi-

ent descent to update the neighborhood system {Pc}c. When fixing {Pc}c, the

parameters {wk}k of the primal form of {fk}k are given by

wk =
N∑
p=1

Yp
kα

p
kφK(Sp), (10)

here {αpk} correspond to the parameters of the dual form of Eq. (8) trained using

LIBSVM [70]. Note that this iterative optimization procedure is performed till

convergence, i.e., when the values of the two sets of parameters {wk}k, {Pc}c
remain stable through iterations and this is observed in less than 100 iterations in

practice.

4.3. Layerwise vs stationary contexts

In Section 4.2, context matrices {Pc}c are layerwise learned and this increases

the total number of training parameters. Actually, layerwise contexts are not to-

tally independent; for instance, one may infer, using transitive closure, high-order

contexts from low-order ones. Considering stationary context matrices {Pc}c
through all the layers (written for short as P), the underlying gradient is obtained

using the chain rule as
∂E

∂P
=

∂E

∂φK

∂φK
∂P

, (11)

with the left-hand side term being defined in Eq. (9). For stationary P, the right-

hand side term can be expanded by averaging (or equivalently summing) the gra-

dients of all the instances of P through layers t ∈ {1, . . . , T}, and using again the

chain rule, as

∂φK
∂P

=
T∑
t=1

∂φK
∂φT

(
∂φT
∂φT−1

. . .
∂φt+1

∂φt

)
∂φt
∂P

. (12)
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It is easy to see that the general form of the “between parentheses” term in Eq. (12)

reduces to 1 when t = T and ∂φT
∂φT−1

when t = T − 1. Since
(

∂φT
∂φT−1

. . . ∂φt+1

∂φt

)
vanishes very quickly as T increases, we add skip connections between each layer

and the ouput of our deep network. With this slight update of the architecture, the

gradient flies back from the output to each layer t, not only through the interme-

diate layers but also directly. Hence

∂φK
∂P

=
T∑
t=1

∂φK
∂φT

(
∂φT
∂φT−1

. . .
∂φt+1

∂φt

)
∂φt
∂P

+
∂φK
∂φt

∂φt
∂P

. (13)

In practice, as the right-hand side term in Eq. (13) is equivalent to the left-hand

side one (when t reaches T ) and is several orders of magnitude larger (when t <

T ), we consider a surrogate form which keeps only the dominant direction of the

gradient in Eq. (13), i.e.,

∂φK
∂P
≈

T∑
t=1

∂φK
∂φt

∂φt
∂P

. (14)

Finally, context parameters are updated by gradient descent using the shared

gradients in Eqs. (11) and (14) for all the instances of P through all the layers; note

that the initial values in P are also shared through all the layers so maintaining

shared gradients, across epochs, guarantees stationary context at convergence and

reduces the actual number of training parameters.

4.4. Global vs classwise contexts

As shown subsequently in experiments (see section 5), the impact of context

learning is already well established with a global neighborhood system. However,

this gain could further be enhanced if one considers instead a classwise context.

Indeed, the rational resides in the fact that scenes may have different structures de-

pending on their concepts. Generally speaking, the notion of sharing intermediate
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representations in deep nets is highly valid when considering the shared intrinsic

properties of the learned object categories, however, context is extrinsic, so mak-

ing the latter class-dependent is complementary and rather more appropriate.

In order to investigate the validity of this conjecture, we update the model

slightly: as the objective function E can be written as the sum of classwise losses,

one may split its gradient into K terms each one corresponding to a particular

class. Then, using theseK gradients, we update the underlying neighborhood sys-

tems (now indexed by their classes and denoted as {Pk
c}c,k). This results into K

different context network maps5 {φkK(.)}k used to evaluate the underlying SVMs.

Note that during the learning process, we adopt a warm-start in order to accel-

erate the convergence of our iterative algorithm. Indeed, the learned parameters

{Pk
c}c,k are initially set using the global learned context {Pc}c and updated at each

iteration in K-steps; each step includes (i) a backpropagation of { ∂E
∂Pk

c
}c through

the layers of the kth deep context network using the chain rule and (ii) a gradient

descent in order to update the underlying classwise neighborhood system {Pk
c}c.

Once all these contexts learned (and fixed), the parameters {wk}k are updated as

shown earlier, in section 4.2, with the only difference that maps used in Eq. (10)

are now class-dependent.

5. Experimental Results

In this section, we evaluate the performance of our deep context-aware kernel

network on image annotation, using different variants of contexts. Image annota-

tion is a multi-task classification problem; given an image I, the goal is to assign

5also indexed by their classes.
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a list of concepts (a.k.a. keywords) to I depending on the values of the underlying

classifiers. We conducted the experiments on three challenging image annotation

benchmark as follows:

• ImageCLEF [71]: it consists of more than 250k images belonging to 95

concepts and is split into training, dev and test data; we only consider the

dev set, which includes 1,000 images equally split between training and

testing, as the ground-truth is released on this dev set only.

• Corel5k [72]: it consists of 4,999 annotated images with a vocabulary of up

to 200 concepts and is split into two subsets: 4,500 images for training and

the rest for testing. Following the standard protocol in [72], each test image

is annotated with up to 5 keywords.

• NUSWIDE [73]: it includes 269,648 images collected from Flickr, and

most of them are manually annotated with an average of 2.4 keywords taken

from 81 concepts in total. Following [74], 150k images are used for training

(among them 10% for validation), and the remaining for testing. Each test

image is annotated with at most 3 keywords.

Performances are measured using the mean precision and recall over keywords

(respectively denoted as P and R), the F-scores (referred to as F) and the number

of keywords with non-zero recall (denoted as N+) both at the sample and concept

levels (denoted respectively as MF-S and MF-C) as well as the mean Average

Precision (mAP) for ImageCLEF; higher values of these measures imply better

performances. In what follows, we first study the impact of the proposed network

w.r.t. different settings on ImageCLEF, then we compare the optimal setting of

our network architecture against the related work.
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5.1. Network analysis on ImageCLEF

In order to study the impact of the proposed network architecture w.r.t. dif-

ferent settings, we show experiments on ImageCLEF. Images in this dataset are

rescaled to their median dimension (of 400×500 pixels), and then partitioned into

regular grids of W ×H cells6. Each cell is encoded using two types of features:

handcrafted and learned; the former include the bag-of-word (BoW) histogram

(evaluated on dense SIFT features and a code-book of 500 words) while the latter

include deep VGG-net features. More precisely, the used VGG-net corresponds to

“imagenet-vgg-m-1024” [75]; this model is pretrained on ImageNet and consists

in five convolutional and three fully-connected layers. The outputs of the second

fully-connected layer are used to describe the content of the cells in the regular

grids.

In order to learn the context-aware kernel networks, we consider four different

types of geometric relationships (see Fig. 1) and different context-free kernel maps

including linear (LIN), polynomial (POLY) and histogram intersection (HI). The

explicit maps of linear and polynomial kernels can be exactly obtained using iden-

tity and tensor product respectively while for histogram intersection these maps

can be approximated using decimal-to-unary projections [31]. Using the above

setting, we learn maximum margin classifiers on top of the deep context-aware

kernel networks, and predict the presence of concepts into test images depending

on the scores of the underlying classifiers.

Impact of network depth. As already discussed, the depth of the network is

defined by the number of iterations T in Eqs. (2) and (3); larger values of T imply

6as shown later, different granularities are considered for W and H .
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2-layer-net 3-layer-net 4-layer-net 5-layer-net

RE 23.97 4.08 0.99 0.25

Table 1: This table shows the relative errors (in %) of different layers in the deep context-aware

kernel networks. These performances correspond to “Layerwise & Global” (L-Global) learned

contexts.

MF-S MF-C mAP runtime

2-layer
Handcrafted CA 40.93 25.20 48.78 -

L-Global CA 42.64 25.04 50.98 45.31

3-layer
Handcrafted CA 40.74 25.28 48.51 -

L-Global CA 44.22 26.43 52.02 235.10

4-layer
Handcrafted CA 41.03 25.55 48.99 -

L-Global CA 44.11 26.57 52.43 1021.71

5-layer
Handcrafted CA 40.93 25.54 48.68 -

L-Global CA 44.27 25.12 52.15 7729.90

Table 2: This table shows the performance of handcrafted vs. learned deep context-aware kernel

networks for a grid of 8× 10 cells; we compare handcrafted vs. “layerwise & global” (L-Global)

contexts on ImageCLEF. The MF-S/MF-C/mAP measures are provided (in %) and runtime per-

formances (in s) for one “forward-backward” iteration of backpropagation.

deeper and convergent networks but the underlying feature maps become high

dimensional. In contrast, low values of T make the network relatively shallow and

compact but not convergent. Hence, the appropriate setting of the network depth

(i.e., T ) should tradeoff convergence and compacity; this also impacts the number

of training parameters (thereby generalization) and the computational efficiency

of the resulting network.

In practice, we measure the convergence of the network, between two consecutive
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Grid 1× 1 2× 2 4× 5 8× 10

Forward time

Table 3: This table shows forward runtime (in s) of 3-layer network including feature extraction

by VGG-net and network forward.

layers, using the following relative error (RE) criterion

RE(t) =
1

|Sp||Sq|
∑
x∈Sp

∑
x′∈Sq

|K(t)
x,x′ −K

(t−1)
x,x′ |

|K(t)
x,x′ + K

(t−1)
x,x′ |

, (15)

this measure is evaluated using the initial normalized neighborhood system, i.e.,

{Pc,x,x′/
∑

x′′∈Nc(x)
Pc,x,x′′}c withNc(x) being a subset of neighbors of x (a reg-

ular grid of 8× 10 cells is used, and C = 4, r = 1). Tab. 1 shows this error as the

network becomes deeper; it is clear that convergence is obtained for reasonably

(not very) deep networks. Tab. 2 shows the underlying performances with hand-

crafted and learned contexts. From these results, we observe that when context

is handcrafted, the impact of the depth is marginal while for learned context this

impact is noticeable. Runtime performances are also reported and correspond to

the cost of one “forward-backward” iteration during backpropagation; these per-

formances are obtained on a workstation with 4 Intel-Xeon CPUs of 3.2GHz and

64G memory. It is clear that the learning process becomes cumbersome as the net-

work gets deeper; hence, in order to make the learning reasonably tractable, we

consider in the remainder of this paper a network architecture with three layers.

We also show, in Tab. 3, the run-time (including feature extraction with VGG-net

and the forward steps) of 3-layer context networks for different cell grids.

Impact of the neighborhood system. In order to model different context granu-

larities, we consider multiple instances of regular grids (withW×H in {2×2, 4×
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5}) and different settings of the radius r in the neighborhood system 7. It is clear

that r is constrained by W and H; for instance, when the latter are equal to 1, the

radius r cannot exceed 1 so this particular configuration (shown in the first row of

Tab. 5) corresponds to a holistic (one-cell-grid) context-free (CF) network. From

Tab. 5, we first observe a global negative impact of finer grids on the performances

of CF networks on both BoW and VGG features. Indeed, finer cells — deprived

from context — are not sufficiently discriminating and hence powerless to capture

the semantic of images. However, context-aware (CA) networks, even-though ap-

plied to finer cells, allow us to recover and enhance the discrimination power of

these cells and also to substantially overtake the original CF performances by a

significant margin, especially when context is learned; this gain is consistently

the highest through all the original kernel maps, particularly when cells are en-

coded with VGG and when H ×W = 2 × 2 (with r being necessarily set to 1).

For larger H ×W , we observe a moderate (and sometimes a negative) impact of

larger r on performances. We conjecture that, as the radius gets larger, cells in the

neighborhood system {Nc(.)}c are more and more densely connected; as a result,

it becomes more difficult to learn relevant context from a huge combinatorial set

of possible relationships in {Nc(.)}c.

Impact of stationary and classwise contexts. In the following experiments, the

initial weights of classwise and stationary context networks are taken from the

learned global context. Tab. 5 show the results of different context variants using

several kernel map initializations and features, while Tab. 4 shows the statistical

dependencies between different network pairs. From all these results, we ob-

7We empirically found that grids (with more than 8×10 cells) degrade performances, so larger

grids were not investigated in this work.
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Comparison MF-S MF-C mAP

L-Global CA vs. Handcrafted CA 100 72.2 100

S-Global CA vs. L-Global CA 83.3 88.8 50

L-Classwise CA vs. L-Global CA 100 100 33.3

S-Classwise CA vs. S-Global CA 100 100 66.7

S-Classwise CA vs. L-Classewise CA 38.9 38.9 88.9

Table 4: This table shows the statistical dependencies (in %) between different variants of learned

and handcrafted contexts. For each comparison (“A vs. B”), we measure the percentage of times

“A is not worse than B” in a pool of 18 runs (using evaluation measures of Tab. 5).

serve that the learned context networks overtake the handcrafted ones over all the

settings in MF-S/mAP and 75% of the settings in MF-C. We also observe that

stationary context networks are able to further enhance the performances of the

global context networks for most of the settings, however the gain in mAP is less

marked. In the subsequent results, the learned classwise context networks boost

further the performances for most of the settings compared to the other (global)

variants; for instance, MF-S/MF-C/mAP values raise from 44.20/25.91/52.51 to

45.35/27.31/52.60 (using polynomial kernel map with BoW features, r = 3 and

W × H = 4 × 5) and from 55.01/42.56/66.45 to 56.41/44.87/66.67 (using poly-

nomial kernel map with VGG features, r = 3 and W × H = 4 × 5). In sum,

learned classwise context networks are more positively influencing than learned

global ones, whether context is stationary or not through different layers.

5.2. Qualitative results

In what follows, we show the experimental results of context-aware kernel net-

works with different initial kernel maps on ImageCLEF and Corel5k (see Tab. 5

and Tab. 6). “LIN”, “POLY” and “HI” stand respectively for linear, polynomial

and histogram intersection functions as initial kernel map, while r corresponds
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Cells r Method
BoW features VGG features

LIN POLY HI LIN POLY HI

1×1 - CF 40.24/24.21/49.31 43.76/27.26/52.27 44.16/25.76/53.78 52.84/42.30/66.75 55.70/44.69/71.02 54.13/43.66/70.52

2×2

- CF 39.55/24.36/47.40 41.61/24.73/50.27 44.61/27.30/53.71 53.82/42.32/68.04 56.82/44.41/70.66 55.15/43.69/69.85

1

Handcrafted CA 42.23/25.23/51.24 42.93/26.13/52.33 45.93/28.39/54.74 54.47/43.24/69.56 56.53/45.23/71.43 55.18/42.97/70.43

L-Global CA 43.50/26.05/51.68 43.48/26.41/52.93 46.10/27.22/55.15 56.01/45.26/70.49 58.29/46.76/72.06 58.26/44.99/71.54

S-Global CA 43.59/26.23/51.69 43.78/26.73/52.94 46.51/28.35/54.75 56.07/45.32/70.45 58.58/46.89/72.15 58.43/45.48/71.64

L-Classwise CA 44.34/27.78/51.52 45.17/28.21/52.91 46.22/27.31/55.16 57.36/47.36/70.35 58.87/47.98/72.08 58.88/46.51/71.54

S-Classwise CA 44.15/27.21/51.72 44.79/27.84/52.92 48.61/29.60/55.29 57.69/47.24/70.44 58.97/47.77/72.14 58.60/46.03/71.68

4×5

- CF 40.37/24.89/48.01 42.27/26.56/50.12 43.39/28.53/52.40 51.24/38.34/63.21 52.55/39.96/64.71 51.33/37.96/63.64

1

Handcrafted CA 41.67/26.05/50.95 42.88/26.40/51.60 44.94/29.22/53.50 51.71/38.97/63.98 53.09/39.66/65.01 51.61/38.94/64.15

L-Global CA 44.74/26.85/52.86 44.39/26.04/52.82 45.77/27.02/54.74 53.55/41.09/65.36 54.80/41.98/66.11 53.26/39.11/65.37

S-Global CA 43.81/27.30/52.14 44.63/26.66/52.74 46.09/28.34/54.60 53.57/41.43/65.43 54.63/42.32/66.22 53.70/40.85/65.52

L-Classwise CA 46.16/28.04/52.48 46.03/27.49/52.70 47.59/28.63/54.05 55.96/44.25/65.33 56.66/44.13/66.50 55.50/41.33/64.96

S-Classwise CA 45.64/29.48/52.56 46.34/29.10/53.06 47.79/29.97/54.79 55.91/43.44/65.14 57.06/44.84/66.72 55.60/42.62/66.04

3

Handcrafted CA 41.88/26.26/50.97 43.31/26.98/51.78 44.78/29.42/53.78 51.89/39.35/64.45 52.85/39.84/65.11 51.70/38.36/64.36

L-Global CA 43.81/27.97/51.80 44.20/25.91/52.51 45.81/28.65/54.91 54.55/40.67/65.35 55.01/42.56/66.45 53.65/39.51/65.44

S-Global CA 44.00/28.02/51.81 44.59/27.31/52.63 46.09/28.72/54.72 54.14/40.66/65.27 55.16/42.26/66.30 53.89/40.12/65.37

L-Classwise CA 44.90/28.78/51.72 45.35/27.31/52.60 47.65/30.80/54.75 55.63/42.84/65.34 56.41/44.87/66.67 55.24/42.51/65.31

S-Classwise CA 44.42/28.72/51.73 44.67/27.39/52.62 46.75/29.57/54.82 55.14/42.23/65.39 55.49/42.68/66.30 55.04/41.92/65.42

Table 5: The performance (in %) of different variants of context-aware kernel networks on Image-

CLEF. The triple ·/ · /· stands for MF-S/MF-C/mAP.

to the radius of the disk that supports context. In these results, “L-Global”, “S-

Global”, “L-Classwise” and “S-Classwise” stand respectively for “Layerwise &

Global”, “Stationary & Global”, “Layerwise & Classwise” and “Stationary &

Classwise” contexts. For Corel5k dataset, we also rescale images to the median

dimension of 400 × 500 pixels, and partition each image into a regular grid of

2× 2 and 4× 5 cells. Each cell is again described with the same features used on

ImageCLEF. Since categories are highly imbalanced in Corel5k, we learn ensem-

bles of binary SVMs; for each concept, ten SVMs are trained on all the positive

data (belonging to that concept) and a random subset (from the remaining nega-

tive data) whose cardinality is three times larger than the positive set. The global

decision score on a given test image, w.r.t. a given concept, is taken as the average

score of the ten underlying SVMs.
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Cells r Method
BoW features VGG features

LIN POLY HI LIN POLY HI

1×1 - CF 22.99/15.06/13.05/122 26.90/18.47/16.26/147 22.69/18.62/14.38/131 42.26/29.10/28.15/179 46.91/31.04/30.15/191 46.49/30.70/29.41/195

2×2

- CF 23.36/16.21/13.75/128 26.12/17.98/14.89/137 22.76/16.94/13.33/125 44.75/35.25/31.88/190 43.96/34.91/31.49/188 42.88/33.77/29.42/186

1

Handcrafted CA 24.66/17.53/14.60/129 25.68/18.46/15.17/137 24.66/17.95/15.04/131 43.48/35.71/32.07/189 43.70/34.95/31.56/186 44.15/33.85/30.03/188

L-Global CA 24.88/17.77/14.83/135 25.37/18.77/15.20/137 24.51/19.26/15.73/131 43.19/35.73/31.94/189 44.65/35.76/32.40/189 42.73/33.89/29.64/186

S-Global CA 26.29/18.74/15.88/138 26.10/19.53/16.28/141 25.58/19.89/16.52/138 44.70/36.66/33.07/193 45.50/36.32/32.78/194 45.28/34.63/31.02/194

L-Classwise CA 26.42/18.45/15.75/138 25.35/19.25/15.76/138 26.11/20.42/16.71/142 43.74/36.41/32.59/190 45.31/36.36/32.76/192 43.51/34.93/30.37/188

S-Classwise CA 25.97/18.68/16.01/138 25.79/19.26/16.17/140 25.58/19.92/16.56/138 44.18/36.86/32.88/192 45.69/37.05/33.16/193 45.73/34.84/31.08/195

4×5

- CF 21.71/15.95/13.01/126 22.30/17.55/13.82/130 20.61/15.39/12.42/120 43.44/31.56/29.50/184 43.86/32.27/29.98/183 42.12/31.05/29.04/182

1

Handcrafted CA 22.93/17.02/14.04/129 23.49/18.26/14.81/132 22.30/16.72/13.87/123 44.08/32.03/30.03/182 43.70/32.24/30.03/182 41.93/31.28/29.21/183

L-Global CA 23.54/17.90/14.71/131 23.40/18.19/14.72/132 23.29/17.39/14.95/125 43.45/32.79/30.52/182 43.95/33.56/31.06/185 42.02/31.28/29.21/183

S-Global CA 25.84/18.66/16.23/139 24.35/18.83/15.44/134 25.58/19.04/16.36/139 44.20/33.00/30.73/186 44.25/34.16/31.34/186 43.07/31.60/29.45/187

L-Classwise CA 26.05/18.68/16.14/140 26.58/19.38/17.09/142 24.44/18.62/15.70/137 44.44/33.45/31.21/187 44.23/33.69/31.16/187 42.71/31.18/29.29/184

S-Classwise CA 26.02/18.72/16.35/139 23.70/18.68/15.45/133 25.70/18.73/16.22/139 44.08/33.21/30.61/188 44.26/33.68/31.12/186 42.83/31.51/29.29/186

3

Handcrafted CA 22.87/17.64/14.42/127 23.11/18.70/15.11/131 23.00/16.99/14.19/126 43.87/33.03/30.47/184 43.31/32.02/29.76/182 42.29/31.03/29.01/185

L-Global CA 25.12/19.55/16.39/136 23.72/19.55/15.71/136 24.98/18.51/15.42/135 43.45/34.10/31.07/183 43.22/32.97/30.47/182 41.25/32.45/29.25/182

S-Global CA 25.02/19.25/16.12/137 24.82/19.66/16.16/140 25.37/18.42/15.58/135 44.21/33.08/30.52/185 43.08/34.04/30.95/184 43.00/31.41/29.48/185

L-Classwise CA 25.27/19.26/16.36/137 25.30/20.02/16.79/141 25.46/18.64/15.74/136 43.29/34.81/31.25/183 43.82/33.51/30.95/184 41.28/32.61/29.26/182

S-Classwise CA 24.74/19.13/16.05/136 25.16/19.73/16.47/141 25.56/18.71/15.70/137 44.00/32.92/30.57/185 43.60/34.15/31.06/185 42.96/31.37/29.38/185

Table 6: The performance (in %) of different deep context networks on Corel5k. A quadruplet

·/ · / · /· stands for R/P/F/N+.

On Corel5k, we observe for most of the settings in Tab. 6, a clear gain of

different context-nets when trained on top of BoW features; indeed, the gain in

R/P/F/N+ reaches 1.0/0.7/1.1/2 points for layerwise global contexts, 2.1/1.9/1.8/14

for layerwise classwise contexts, 3.3/2.3/2.5/16 for stationary global ones and

3.4/2.0/2.4/16 for stationary classwise contexts, all obtained using histogram in-

tersection initial map and a grid of 4 × 5 cells with r = 1. We also observe a

clear gain when using VGG features; this gain reaches 1.0/0.8/0.8/3 points for

layerwise global context, 1.6/1.4/1.2/6 for layerwise classwise one, 1.8/1.4/1.2/8

for stationary global context and 2.0/2.1/1.6/7 for stationary classwise context, all

obtained using polynomial initial map and a grid of 2 × 2 cells with r = 1. It is

worth noticing that the gain of classwise context is not always consistent due to

the large number of training parameters (w.r.t. the size of training data) compared

to stationary context which is relatively less subject to overfitting as its parameters

are shared.
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Figure 4: This figure shows different context variants on two examples taken from ImageCLEF

(top) and Corel5k (bottom); original images (first column), handcrafted contexts (second column),

learned global context in the first layer (third column), learned global context in the second layer

(fourth column). These results are obtained using a linear kernel map initialization and VGG

features with r = 1 and a grid of 4× 5 cells on the two datasets. Handcrafted context matrices are

obtained by normalizing each row (cell) in these matrices by the number of its spatial neighbors,

that’s why the cells in the four corners have larger values. In all these results, the importance of

the context of a given cell is shown with colored connections to its neighbors using a particular

color-map; warmer colors (close to red) correspond to important relationships while the cooler

ones are less important (better to zoom the PDF version).

In order to visually analyze the learned contexts, we accumulate and display

the weights involved in {Pc}c (following the spatial support shown in Fig. 1).

We investigate two aspects: the interpretation of context evolution through lay-

ers and the interpretation of different context variants. Fig. 4 (second, third and

fourth columns) respectively describe the handcrafted and the learned {Pc}c in

the first and the second layers of the underlying network; values in {Pc}c are su-

perimposed on images from ImageCLEF and Corel5k. This display shows that

first layer context is less meaningful than the second layer one, possibly resulting

from the fact that the latter captures higher-order and more influencing spatial
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Figure 5: This figure shows original images (first column), handcrafted (second column), learned

global (third column), learned classwise contexts (fourth column) and learned stationary (fifth col-

umn) using VGG features with r = 1 and grids of 4× 5 cells for ImageCLEF (the top two rows)

and Corel5k (the bottom two rows) databases; linear kernel maps are used on these two datasets.

For stationary context, it is clear that the importance of the underlying prominent area is strength-

ened compared to layerwise context and for classwise context, the contribution of background

is weakened while the underlying prominent area boosted. For instance, regarding the concepts

“cityscape” and ”mountain” (shown in the second and third rows respectively), it is clear that the

areas around these concepts are strengthened compared to the other areas in these scenes (better

to zoom the PDF version).
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Kernel MF-S MF-C mAP

GMKL([76]) 41.3 24.3 49.1

2LMKL([77]) 45.0 25.8 54.0

LDMKL ([27]) 47.8 30.0 58.6

Handcrafted CA ([31]) 56.5 45.2 71.4

L-Global CA (proposed) 58.3 46.8 72.1

S-Global CA (proposed) 58.6 46.9 72.2

L-Classwise CA (proposed) 58.9 48.0 72.1

S-Classwise CA (proposed) 59.0 47.8 72.1

Table 7: This table shows comparison of performances (in %) between different kernel-learning

methods on ImageCLEF. The best results, on both global and classwise contexts, are obtained

using polynomial kernel and VGG features on a grid of 2× 2 cells with r = 1.

and structural relationships compared to the former which relies only on immedi-

ate neighbors in {Pc}c. Besides, due to the chain rule, the gradient w.r.t. the first

layer context is more quickly vanishing and this makes its evolution through the

iterations of back-propagation relatively less important compared to the gradient

in the second layer. Fig. 5 is a visualization of handcrafted vs. learned con-

texts (including layerwise, classwise and stationary) taken from the second layer

of their respective networks superimposed on two images from ImageCLEF and

Corel5k; it is clear that when contexts are learned, some spatial cell-relationships

are amplified while others are attenuated and this reflects their importance in the

underlying image classification tasks.

5.3. Comparisons w.r.t. other methods

In what follows, we compare our method against the related work on Im-

ageCLEF, Corel5K and NUS-WIDE. We show these comparisons using the best
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Learned Method Setting Classifier Kernel Context R P N+

Input feat. learning

No

CRM [78] Generative - No No 19 16 107

InfNet [79] Generative - No No 24 17 112

JEC-15 [8] Discriminative KNN No Yes (fixed) 33 28 140

FT DMN [28] Discriminative SVM Yes No 35 21 168

3-layer DKN [27] Discriminative SVM Yes No 38 26 158

TagProp-σML [12] Discriminative KNN No Yes (learned) 42 33 160

wTKML [80] Discriminative SVM Yes Yes (fixed) 42 21 173

KSVM-VT [81] Discriminative SVM No Yes (fixed) 42 32 179

LDMKL [27] Discriminative SVM Yes Yes (fixed) 44 29 179

SKL-CRM [82] Generative - Yes No 46 39 184

2PKNN-GSR [83] Discriminative KNN No No 43.5 39.5 189

2PKNN-ML [13] Discriminative KNN No Yes (learned) 46 44 191

MLDL [84] Discriminative KNN No Yes 49 45 198

MVRSC (Visual + Textual) [85] Generative KNN No Yes 54.3 42.9 -

L-Global CA (proposed) Discriminative SVM Yes Yes (learned) 25 19 137

S-Global CA (proposed) Discriminative SVM Yes Yes (learned) 26 20 141

L-Classwise CA (proposed) Discriminative SVM Yes Yes (learned) 26 20 142

S-Classwise CA (proposed) Discriminative SVM Yes Yes (learned) 26 20 138

Yes

ResNet [45] Discriminative SVM No No 35 22 161

FT DMN [28] Discriminative SVM Yes No 38 23 169

CNN (Caffe-Net) [47] Discriminative LR No No 41 32 166

3-layer DKN [27] Discriminative SVM Yes No 43 25 180

LNR+TagProp-σSD (ResNet + Textual) [86] Discriminative KNN No No 49 39 181

LNR+2PKNN (ResNet + Textual) [86] Discriminative KNN No Yes (learned) 52 43 192

CCA-KNN (VGG-16 + Textual) [47] Discriminative KNN No No 52 42 201

L-Global CA (proposed) Discriminative SVM Yes Yes (learned) 45 36 189

S-Global CA (proposed) Discriminative SVM Yes Yes (learned) 46 36 194

L-Classwise CA (proposed ) Discriminative SVM Yes Yes (learned) 45 36 192

S-Classwise CA (proposed) Discriminative SVM Yes Yes (learned) 46 37 193

Table 8: Extra comparison of the proposed deep context-aware kernel networks w.r.t. the related

works on Corel5k (in % for R and P). In this table, FT stands for Fine-Tuned. Results correspond-

ing to BoW features (referred to as “proposed” in the first part of the table) are obtained using (i)

the polynomial kernel map on a grid of 2× 2 cells with r = 1 for Global contexts and (ii) the HI

kernel map on a grid of 2 × 2 cells with r = 1 for Classwise contexts. Results corresponding to

deep VGG features (referred to as “proposed” in the second part of the table) are obtained using

the polynomial kernel map on a grid of 2× 2 cells with r = 1 for all the learned context variants.

32



setting of our context network (i.e., based on a grid of 2 × 2 cells and r = 1, as

shown in Tables. 5 and 6).

ImageCLEF dataset: We compare the performance of the proposed approach to

other kernel-based methods in Tab. 7. This comparison involves the most related

kernel design techniques including: general multiple kernel learning (GMKL),

two-layer multiple kernel learning (2LMKL) and Laplacian-based semi-supervised

learning on 3-layer kernel network (LDMKL). The proposed classwise context-

aware kernel networks obtain the best performance. The first row of Fig. 6 shows

some image instances and their annotation results respectively using context-free,

handcrafted and learned (layerwise vs. stationary and global vs. classwise) con-

text networks.

Corel5k dataset: Tab. 8 shows a comparison of the proposed approach against

the related work, using both handcrafted and learned deep feature settings. Further

informations about the learning settings, classifiers, relation to kernel learning and

context modeling are also given. From these results, we observe that the proposed

approaches are competitive in comparison to the kernel-based and deep learning

approaches. These comparative methods (namely LDMKL [27], wTKML [80],

TagPop σML [12], SKL-CRM [82], 2PKNN-GSR [83], MLDL [84] MVRSC [85])

rely on a battery of handcrafted features (GIST, 8 types of BoWs, etc.). Among

these methods, k-NN in TagPop σML [12], 2PKNN-ML [13] and Laplacian op-

erators in DMKL [27] are used for context modeling, MLDL [84] considers la-

bel consistency and partial-identical label embedding in the multi-label dictio-

nary learning, MVRSC [85] adopts spectral clustering in the multiple feature

and semantic space. In contrast, our method — in spite of using a single BoW

— is still competitive; this is essentially due to the discrimination power of the
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learned contexts which catch-up with these extensively-tuned handcrafted tech-

niques. Further comparisons involving deep features show a clearer trend and

a better improvement against other methods including CNN [47], ResNet [45],

DKN [27], DMN [28], LNR+TagProp-σSD and LNR+2PKNN [86] as well as

CCA-KNN [47]. Although the latters model bi-modal “image and textual” con-

texts using Listwise Neural Ranking (LNR) and Canonical Correlation Analysis

(CCA), the proposed approach, which relies only on visual features, is still com-

petitive.

NUS-WIDE dataset: Following the best experimental settings in ImageCLEF

and Corel5k, we further show the results on a large dataset. The images in

NUSWIDE are resized to a reference dimension of 400 × 500 pixels, and par-

titioned using a regular grid of 2 × 2 cells. Each cell is encoded with the deep

features extracted from the pre-trained VGG model and the linear kernel map ini-

tialization is used to train our models. Similarly to Corel5k, ensemble SVMs are

used for training (using all the positive samples and random subsets of negative

samples with equal sizes), and the average scores of these ensemble SVMs are

taken in order to check the presence of different concepts on test images. Tab. 9

shows the performance of the proposed network as well as state-of-the-art meth-

ods. From this table, we observe that i) compared to context-free and handcrafted

context-aware kernels, our proposed networks improve the F-scores and more no-

ticeably the recall, ii) classwise contexts, either learned layerwise or stationary,

achieve higher gain in recall with comparable precision and F-scores w.r.t. to the

global contexts, and iii) compared to other state-of-the-art methods, mainly those

based on CNNs and KNNs, our method outperforms CNN+Softmax [74] based

on AlexNet and shows competitive performance against CNN+RNN in [50].
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Method R P F N+

CNN+RNN [50] 30.4 40.5 34.7 -

CNN+Softmax [74] 31.2 31.7 31.5 80

CNN+WARP [74] 35.6 31.7 33.5 78

TagPop σSD [12] 35.0 42.0 38.0 -

2PKNN [13] 39.0 42.0 40.0 -

CNN+Logistic [87] 45.0 45.6 45.3 -

LNR+2PKNN [86] 46.0 44.0 45.0 80

S-CNN-RNN [51] 50.2 55.7 52.8 -

ResNet-101 [45] 56.8 46.9 47.0 -

ResNet-SRN [67] 58.9 48.2 48.9 -

SINN [88] 60.6 58.3 59.4 -

CF 42.2 40.1 32.0 81

Handcrafted CA 45.0 38.5 32.7 81

L-Global CA (proposed) 45.8 38.1 32.9 81

S-Global CA (proposed) 45.3 38.2 32.3 81

L-Classwise CA (proposed) 46.8 37.9 32.3 81

S-Classwise CA (proposed) 46.8 38.0 32.3 81

Table 9: Comparison of the proposed deep context-aware kernel networks w.r.t. the other works

on the NUS-WIDE benchmark. Our results are obtained using the linear kernel map on a grid of

2× 2 cells with r = 1 for all the learned context variants.

Other methods including LNR+2PKNN (as well as S-CNN-RNN, ResNet-SRN

and SINN8) [86] show superior performances as they rely not only on deep visual

8S-CNN-RNN and ResNet-SRN add semantic and label spatial regularization between CNNs

and RNNs while SINN uses different side information of tags, groups and labels to model the

semantic correlation between concepts and a bidirectional RNN-like model is adopted to integrate

all these informations.
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features but also on other sources of multimodal semantic information including

text in order to define the context.

Following the state-of-the-art, extra modalities (mainly textual information,

label relationships, etc.) could also be considered. We believe that adding ex-

tra textual information could bring an extra-gain to our context learning; this

issue, out of the main scope of this paper, will be addressed as a future work.

Finally, Fig. 6 shows image instances and their annotation results respectively us-

ing context-free, handcrafted vs. learned context networks from the test set of

ImageCLEF, Corel5k and NUS-WIDE datasets.

6. Conclusion

In this paper we introduce a novel deep context-aware kernel network that con-

siders context learning as as part of kernel design. The proposed method is based

on a particular deep network architecture whose parameters — trained “end-to-

end” — model the contextual relationships between visual patterns (cells) into

images. Different variants of contexts are investigated including layerwise, sta-

tionary and classwise. While stationary contexts allow us to reduce the actual

number of training parameters, classwise ones make it possible to further enhance

the performances by making context class-dependent. Extensive experiments con-

ducted on the challenging ImageCLEF, Corel5k and NUS-WIDE benchmarks,

show a clear and a consistent gain of classifiers trained on top of the learned con-

text networks w.r.t. classifiers trained using handcrafted context networks as well

as context-free ones. As a future work, we are currently investigating the issues of

(i) the integration of attention mechanisms into our context networks in order to

model primitive saliency in images and (ii) the use of a priori knowledge (mainly
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Figure 6: These figures show some annotation examples using (from left-to-right on each image):

context-free kernels (“CF”), handcrafted and learned (layerwise, stationary and classwise) context-

aware kernel networks respectively denoted as HDCN, LDCN, DSCN and CDCN. “GT” stands

for ground-truth annotations and the stars refer to the presence of a given concept in a test image.

Results shown in the first row correspond to ImageCLEF while those in the second and third row

respectively to Corel5k and NUS-WIDE. All these results are obtained using polynomial kernel

map initialization and VGG features on a grid of 2× 2 cells with r = 1.
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semantic structures) in context learning; we believe that these two extensions will

further enhance the performances.
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