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Finite difference methods are widely employed for numerical simulation in aeroacoustics, a domain in which

high-order, low-dispersive and low-dissipative methods are widespread. However, finite differences are restricted

to Cartesian grids. When solids of arbitrary shape are present in the simulation, it is possible to use immersed

boundary methods (IBM) to avoid boundary-fitted grids. The order of IBM methods is often restricted to 2, even if

several high-order IBM methods have been presented in the literature for aeroacoustics. However, we have found

these methods to be rather unstable. In this work we seek for a stable, high-order immersed boundary method, for

use in the Navier Stokes equations. The technique treats the immersed boundaries as a sharp interface by enforcing

boundary conditions through ghost points. These are computed using characteristics and extrapolation along the

normal direction to the interface. The method is tested on convective and diffusive problems, and has been applied

to benchmark problems for the linearized Euler equations. High orders of convergence could be observed on model

problems, with little change in time-step size, without filtering playing an essential role.

1 Introduction
High-order, spectrally optimized, finite difference

methods are of common use in acoustic and aeroacoustic

computations. When geometries of complex shapes are part

of the simulation, the several methods known collectively

as immersed boundary (IB) methods are appealing, because

they make it possible to keep on using these finite difference

methods together with a Cartesian mesh that is easy and

cheap to generate. In aeroacoustics, these methods are

used both for linearized equations [1, 2] or for nonlinear

equations [3]. Their major inconvenient is probably their

lack of stability, especially in inviscid or high Reynolds

situations when a high order of accuracy is targeted. Our

different attempts to use methods of order higher than 2 has

often led to stability issues, and the resulting oscillations

cannot always be suppressed by using filters. In this paper,

we targeted a method not relying on selective filters and

being globally 4th order (we do not focus on spectral

optimization at this stage).

Several recent works in the literature have tried to obtain

techniques that could lead to accurate an stable finite-

difference (FD) solvers of PDEs. Recently, Kalili et al.

[3] have combined a 6th-order compact scheme with the

IB technique of Seo and Mittal [1] and the traditional

Image-Point technique to solve directly the compressible
Navier-Stokes (N-S) equations. The efforts yield a successful

third-order numerical solver for the N-S equations. On

the other hand, Jianfang et al. [12] have presented a

boundary treatment that extends 5th-order WENO 1 schemes

functionality on domains where boundary points do not

intersect the numerical grid. Although, they also have

reported stable solutions only up to third-order for N-S

equations [11], the showed that 5th-order solutions for pure

hyperbolic PDEs are within reach. In a completely different

view, Brady and Livescu [8] chose to avoid the construction

of ghost-points and directly tackle the Cut-cell problem

by constructing degenerate finite difference schemes using

a truncation error matching approach. While extremely

high-order accuracy on elliptic equations where reported,

only 4th-order stable schemes where achieved for pure

hyperbolic problems. In a similar fashion, Hosseinverdi

and Fasel [6] explored immersed interface (II) technique

of Wiegmann and Bube [10] to avoid the construction

1. WENO : weighted essentially non-oscillatory methods.

of ghost-points. In their work, unsteady solutions of the

incompressible N-S equations were achieved. However,

only a fourth-order solver was presented. In recent note,

the II-technique was associated with 5th-order WENO

methods by Fernández-Fidalgo et. al. [9], who reported 5-th

order accurate results for pure hyperbolic problems without

shocks. All these works propose a different FD-approach

that is associated to their custom IB-technique. This results

in a rainbow of numerical schemes that obscure the true

performance of each individual technique and makes

it difficult to compare and improve. To overcome such

situation, we choose to reproduce several of IB techniques

presented, namely [1, 3, 11, 12], and use them together

with explicit central schemes and the classical 4th-order

Runge-Kutta to study classical benchmark problems of the

literature. The above exercise has led us to compare and

produce of a new IB-strategy. This novel strategy is here

found to be accurate, stable and have little to no impact on

the size of the time step, Δt. To demonstrate our claim, we

use it to obtain 4-th order accurate and stable numerical

solutions of hyperbolic and parabolic benchmark problems

in Aeroacoustics.

2 Methods

2.1 Problem Formulation
In this work, we aim to resolve for two-dimensional (2-d)

system of first-order PDEs of the form

qt + F c
x (q) + Gc

y(q) = F νx (q) + Gνy(q), (x, y) ∈ Ω, t > 0, (1)

subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q(x, y, 0) = q0(x, y), (x, y) ∈ Ω,
q(x, y, t) = g(t), (x, y) ∈ ∂Ωin, t > 0,

q(x, y, t) = k(t), (x, y) ∈ ∂Ωout, t > 0,

(2)

where q denotes the quantities to be evolved, F andG denote

convective (c) and diffusive (ν) flux functions in the x- and

y-directions, respectively. Ω and ∂Ω are discretized over a

uniform Cartesian mesh with mesh sizes

lx = (b − a), Δx = lx/(Nx − 1),

ly = (d − c), Δy = ly/(Ny − 1),

1
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Figure 1 – Discrete domain : the blue dots denote points

within the domain,Ω, the red lines denote the virtual location

of the boundaries, ∂Ωin, ∂Ωout. Lastly, lying outside the

domain, the black and green dots denote the first- and

second-rows of ghost points, respectively

so that xi = a + iΔx, for i = 0, . . . ,Nx and y j = c + jΔy,

for j = 0, . . . ,Ny, as examplified in Fig. 1. For the sake of

simplicity, we further assume that Δx = Δy = h.

2.2 Space & Time Discretization
Without loss of generality, observe that the governing

system (1) can be abstractly written as

qt = L(q), (3)

where L is a spatial operator involving first-order spatial

derivatives. After the spatial operator is discretized, the

semi-discrete scheme is written abstractly as the following

ordinary differential equation (ODE) system

qt = Lh(q). (4)

Thus, using for example, the classical explicit 4th-order

Runge-Kutta scheme, we integrate Eq. (4) in time.

To match our accuracy in time, we constrain ourselves

to discretize our flux operators (and any first-order derivative

within them) with a simple 4th-order central FD-scheme. For

example : the discretazation of the fluxes F and G would

simply read :

Fx(q) ≈ 1

12h
(F (qi, j−2) − 8F (qi, j−1) + 8F (qi, j+1) − F (qi, j+2)) + O(h4)

Gy(q) ≈ 1

12h
(G(qi−2, j) − 8G(qi−1, j) + 8G(qi+1, j) − G(qi+2, j)) + O(h4)

(5)

In other words, we aim to discretize our governing PDE

using a uniformly 4th-order scheme in space and time.

2.3 Immersed Boundary Technique
Similar to [1, 3, 11, 12], the present IB-technique seeks

to avoid the cut-cell problem by means of extending each

of the f -fields, contained within q, over points outside

the domain, i.e. : the ghost points. This allows us to use

the interior scheme directly in the vicinity of the domain

boundary. In the following we describe our strategy. For

simplicity, here we refer to the points within the domain as

fluid-points and any point on the boundary of the domain

(real or virtual) is called boundary-point.

2.3.1 Ghost Point reconstruction

Extending the field over ghost-points is here performed

in a two-steps process :

∂Ω

θ

pgp

y^

p0

ΩR

p1 p2 p3 p4 x^

Ω

n

Figure 2 – (Step 1) : Interpolate a uniform stencil of points

over a sub-region of fluid-points.

Step 1. Interpolation : Let us start by considering an

outward normal n to ∂Ω that passes by the ghost point pgp

as depicted in Figure (2). Observe that n not only defines the

distances to the point, hgp, but also defines the location of

the virtual boundary-point p0.

On p0, we setup a local coordinate system by

[
x̂
ŷ

]
= T
[
x
y

]
, T =

[
cos θ sin θ
− sin θ cos θ

]
, (6)

where θ is the angle between the outward normal n at the x-

axis, and T is the rotation matrix. As a result, we can now

define points {pi}ni=1
to be uniformly spaced by h on the x̂-

axis. In Figure 2, the case for n=4 is illustrated.

Assume we have the values fi j on the grid points of a

function f (x, y) in the interior domain, Ω. Our goal is to

interpolate the field values on {pi}ni=0
, namely { fi}ni=0

.

To this end, we take a stencil E to initially obtain the high-

order 2-d Lagrange approximating polynomial as follows

E =
{
(xi, y j) ∈ ΩR

}
.

where ΩR denotes a sub-region of Ω defined as

ΩR :

{
(x, y) ∈ Ω,

(
x′ cos(θ)+y′ sin(θ)

Rx̂

)2
+

(
−x′ sin(θ)+y′ cos(θ)

Rŷ

)2
≤ 1

}
,

where x′ = (x − xp0
)/h and y′ = (y − yp0

)/h, denote local

coordinates centered on p0-coordinates. Rx̂ and Rŷ denote the

2
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maximum half-widths of the elliptical region 2 in the x̂- and

ŷ-direction, respectively. In this work, we set Rx̂ and Rŷ as

{
Rx̂ = 2k,
Rŷ = k/2 + 1,

(7)

where k denotes the order of the interpolation polynomial to

be constructed with all the fluid-points in ΩR.

We assume that N-fluid-points, each with coordinates

(x′i , y
′
j), are contained within E. Thus, a 2-d Lagrange

polynomial, P(x′, y′), of k-order in Qk to approximate the

values fi j has the form

P(x′, y′) =
k∑

m=0

k∑
l=0

aml (x′)m(y′)l, m + l ≤ k, (8)

where aml are constant coefficients associated to each of the

terms in the monomial basis (x′)m(y′)l. To solve for each aml-

coefficient in P(x′, y′), we require that

P(x′i , y
′
j) = fi j, ∀(x′i , y

′
j) ∈ E. (9)

The above conditions yields an algebraic discrete system of

equations of the form f = Va, where, V is the Vandermonde

matrix. By re-naming the coordinates associated to each �-
mesh vertex in E as (x′�, y

′
�), V takes the form :

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x′1 y′1 · · · (x′1)2 (y′1)2 · · · (x′1)k (y′1)k

1 x′2 y′2 · · · (x′2)2 (y′2)2 · · · (x′2)k (y′2)k

...
...

...
...

...
...

...
1 x′N y′N · · · (x′N)2 (y′N)2 · · · (x′N)k (y′N)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10)

Since the problem is expected to be over-determined, the

vector of coefficients a is then resolved using a traditional

least squares approach, namely :

a = [(VT V)−1VT ] f . (LSQ)

Therefore, field values at points {pi}ni=1
points with

coordinates (xi, yi) ∈ ΩR are explicitly interpolated as

fi = P(xi, yi), for i = 1, . . . , n.

Note that the field value at p0 can also be extrapolated as

f0 = P(x0, y0). However, recall that its final value depends

on the boundary condition set the problem formulation.

E.g. : following Eq. (2), a Dirichlet condition is set on ∂Ωin,

therefore f0 is simply

f0 = g(t), on ∂Ωin.

Step 2. Extrapolation : Having interpolated the f -fields

on the virtual fluid-points {p j}n1 and setting our boundary

condition at the boundary at p0. Then, the second step

is to extrapolate for the ghost-point associated with this

configuration construction a 1-d polynomial as illustrated

in figures 3a and 3b. Evidently, the polynomial coefficients

depend on the nature of the condition set at p0. In this

2. Note that for the case Rx̂=Rŷ=R, the method recovers the approach

traditionally used by [10, 1, 3] and [12].

wall

p1
v v v v

pgp p3 p4 pnp2p0

hgp

f2f1
f3

f4

fn

g

hh h h

fgp

Ω

(a) Dirichlet Boundary

wall

p1 
v v v v

pgp p3 p4 pnp2p0

hgp

f2f1
f3

f4

fn

g

hh h h

'
fgp

Ω

(b) Neumann Boundary

Figure 3 – (Step 2) Ghost-points extrapolation according to

boundary conditions.

work, the extrapolation of for a single f -field, in q, on a

ghost-point under the requirement of a Dirichlet condition,

is computed as

f (x̂gp, t) =
g(t) −∑n

�=1 c� · f�
c0(r)

, (11)

where r = hgp/h, is the ratio between the ghost point

distance, hgp = pgp − p0, and mesh size h. {c�}n�=1
denotes the

constant coefficients resolved with a Taylor table approach.

Similarly, a ghost point extrapolation under the

requirement of a Neumann boundary condition, is computed

as

f (x̂gp, t) =
n̂ · g′(t) −∑n

�=1 c̃� · f�
c̃0(r)

, (12)

where n̂ denotes the normal to solid boundary face, {c̃�}n�=1

denote constant coefficients resolved with a Taylor table

approach.

Lastly, a free (or no-) boundary condition means that we

look to extrapolate a given f -field over some desired ghost

points without any assumption. As a result, the ghost points

are directly extrapolated using the Lagrange polynomial

constructed for stencil points {p j}nj=0
depicted in Figure (2).

Remark : Eqs. (11) and (12) are the 1-d equivalent of

those presented Seo & Mittal [1].

2.3.2 Characteristics extrapolation

Provided that local coordinate system (x̂, ŷ) has been

established at the virtual (or real) boundary point p0, the

rotation matrix T, in Eq. (6), is then used to project the

vector-fields contained withing q-quantities associated to

each point {pi}ni=1
. Example : assume q = {℘, u, v}, then its

projection on the local coordinates is denoted q̂ = {℘, û, v̂},
where [

û
v̂

]
= T
[
u
v

]
.

Thus, in this local-coordinates, q̂-quantities are now

governed by a transformed two-dimensional wave system

that reads

q̂t + F c
x̂ (q̂) + Gc

ŷ(q̂) = F νx̂ (q̂) + Gνŷ(q̂), (x̂, ŷ) ∈ Ω, t > 0. (13)

Without loss of generality, one can re-express the governing

equations (1) in quasilinear form as

q̂t + A(q̂)q̂x̂ + Gc
ŷ(q̂) = F νx̂ (q̂) + Gνŷ(q̂),

3
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where, A(q̂)=[F c
q̂ (q̂)] so that A(q̂) = LΛR, where Λ =

diag(λ1, . . . , λn) are eigenvalues that denote principals speed

of propagations in the flux function and L and R are the

right and left eigenvectors. This allows us to reformulate Eq.

(13) into characteristics-form in the x̂-direction, namely

vt + Λvx̂ = −LGc
ŷ(q̂) + LF νx̂ (q̂) + LGνŷ(q̂), (14)

where v = Lq̂. In this work, we do not use any slope-limiting

or weighted non-oscillatory technique, thus we only deal

with subsonic scenarios. Therefore, building ghost-points

using characteristic boundary conditions is a two-step

procedure :

Step 1. Define q̂p0
: Often than not, L : L(q) and

R : R(q). In this work, we use L(q̂p0
) and R(q̂p0

), where

q̂p0
is determined using the conditions set of ∂Ω and it

is complemented with the extrapolation of the remaining

undefined quantities. q̂p0
also allows us to resolve for

λ1, . . . , λn, and therefore, distinguish the incoming and

outgoing characteristics.

Step 2. Define vp0
: We start by projecting the q-

quantities associated to points {pi}ni=1
into the characteristic

space by doing

{vpi }ni=1 = L{q̂pi
}ni=1.

Defining vp0
, now requires that we identify within relations

v = Lq̂ and/or q̂ = Rv those that allows us to define the

incoming components in vp0
while the outgoing ones are

simply extrapolated using information within Ω.

Example : consider the case of a non-slip isothermal-wall

boundary condition on the 2-d compressible Navier-Stokes

Eqs. [13]. Thus, we aim to impose (�û)wall=(�v̂)wall=0 and

Twall. Let us further assume that acoustic waves (or the flow)

are moving towards to wall, i.e. û < 0. As a result, λ4 = û+ c
indicates that v4 is the only incoming characteristic. Thus we

resolve for v4 at p0 as

v4|p0
= l41q1 + l42q2 + l43q3 + l44q4,

where : q1 = �
ext
p0

, q2=(�û)|p0
=0, q3=(�v̂)|p0

=0, q4=�
extTwall/γ

and li j denotes components of L. Therefore, provided that vp0

is defined, we simply use Eqs. (11) and (12) to extrapolate

vgp. These quantities are then projected back into our local

physical space as

q̂gp = Rvgp.

Lastly, we project back the vector-fields within q̂gp to arrive

qgp in (x, y)-coordinates. Following our initial example, this

is simply done by doing :

[
u
v

]
gp
= Tᵀ

[
û
v̂

]
gp
,

given the fact that T−1 = Tᵀ.

Remark : Provided that the normal associated to a given

ghost-point is unique, then present method would always

leads to a unique solution of qgp.

(a) Ω case (1) (b) Ω case (2)

Figure 4 – Numerical solution of the two-dimensional linear

advection equation domains with embedded boundaries.

3 Numerical Experiments

3.1 2-d Advection Equation
This is a linear scalar problem proposed in [6]. Because

it is a linear problem, it is very easy to 4th-order accuracy

of the method. We skip-it to save space in this presentation.

However, by solving for a longer time, we use it showcase

the stability of the present boundary technique.

This problem is solved in two difference cases. In both

cases, we solve for a 2-d linear advection equation problem

of the form

qt + a qx + b qy = 0, for (x, y) ∈ [−3.5, 3.5]2 ∩Ω (15)

where q is scalar quantity and Ω, for case (1), is defined as

Ω = {(x, y) :
√

x2 + y2 ≤ 0.5 ∩ −π ≤ (x, y) ≤ π} as shown

in Fig. 4a. For case (2), Ω is the polygonal region defined by

the vertex points :

(xi, yi) = {(−π,−π), (0,−π), (π, 0), (π, π), (−π, 0), (0,−π)}, (16)

as illustrated in Fig. 4b. In both cases, it is assumed that

a = b = 1. Therefore, ∂Ω is each case is composed of

two types of boundary conditions, namely : time-dependent

boundary conditions (black segments) and free-boundary

conditions (green segments). The black segments and the

initial condition, are here specified using the exact solution :

qexact(x, y, t) = sin(2(x − a t) + sin(2(y − b t))). (17)

For case (1), is solved on 109×109 equidistant Cartesian

grid. In case (2) a 105×105. This is deliberately done to

(a) Ω case (1) (b) Ω case (2)

Figure 5 – Illustration of the asymptotic stability of proposed

IB technique in L2 and L∞.

4



16ème Congrès Français d’Acoustique 11-15 Avril 2022, Marseille

ensure that no boundary point coincides with any real grid

point. The interpolation and extrapolation polynomials are

set to be order k=3. The CFL number is set to CFL = 0.9
in both cases. Figures 5a and 5b show the evolution of the

error, ε = q − qexact, measured in L2- and L∞-norm over time

t=[0,100]. In both cases, accurate and stable time evolution

are achieved. Moreover, unlike in [6], we didn’t have to

resource to a small CFL condition to obtain long term stable

solutions.

3.2 Pulse diffraction by a cylinder using the 2-
d Linearized Euler Equations

(a) Ω case (1)

-0.3

-0.2

-0.1

0

0.1

0.2

(b) Ω case (2)

Figure 6 – Numerical solution of an acoustic pulse being

reflected by a rigid cylinder using the 2-d LEE model.

Pulse diffraction by a cylinder is a classical test in

acoustics used for example by Seo & Mittal [1] to compute

the order of accuracy of their IB-method for the linearized

Euler equations (LEE). We use it here to compare and test

for the accuracy and the stability of our method.

The full statement of the problem and exact solution of

the pressure field, ℘exact, can be found in [4]. Here, for the

sake of space we limit our description to the most important

aspects.

In this example we resolve the acoustic scattering of

an Gaussian pulse by a circular cylinder of diameter D=1,

in normalized units. Similarly to the previous experiment,

this problem is solved for two cases : for case (1), ∂Ωouter

is designed as an embedded circle of radius 4.0 centered

at (0,2), as depicted in Fig. (6a). Here, an outflow is

constructed with characteristic variables. For case (2), the

∂Ωouter is a perfectly square centered about the cylinder

and the outflow boundary is imposed using Tam’s radiation

boundary condition [5]. In both cases, the cylinder becomes

our ∂Ωinner and its reflective boundary condition is set by

imposing that the normal pressure gradient around be zero

(as proposed in [1]).

Both cases are run using Δx=Δy=12/{150, 300, 600, 900}
from time 0 < t ≤ 10 under a CFL=0.9 . At time 5.5, we

compare the ℘-field within the circular region around the

reflective cylinder, as depicted in Figs. 6a and 6b. The error,

ε = ℘ − ℘exact is captured and the L2-norm values of each

case reported in Figs. 7a and 7b.

The L2-norm indicate that a 4th-order accuracy has been

achieved.

(a) Ω case (1) (b) Ω case (2)

Figure 7 – Observed order-of-accuracy for the numerical

solution of a pulse reflected by a rigid cylinder.

To probe the stability of this problem, we choose the grid

case Δx=Δy=150 and run this simulation up to time t=20,

i.e. way far after the reflected waves have left the domain.

See Figs. 8a and 8b. For both cases, we observe that after the

waves leave the domain, the minimal value of the pressure

field is reached and no artifact is reflected back into the

domain.

(a) Ω case (1) (b) Ω case (2)

Figure 8 – Asymptotic behavior of the pressure residual in

the domain.

In other words, we have observed that accurate and stable

solutions using the LEE system can be achieved with the

present boundary technique. Moreover, unlike the solution

presented in [1], no degradation of the OOA is observed after

the wave is reflected, and no selective (low-pass) filter is

used.

3.3 Flow around a cylinder at Re=20 using the
2-d Navier-Stokes Equations

We aim to use our IB-method to simulate directly the

formation of acoustic waves occurring on compressible-

viscous flows. To do that, we develop a 2-d numerical

solver for the compressible Navier-Stokes [13] using a

normalization based on free-stream values.

To validate our solver, we choose to resolve the classical

solution of a flow around a infinitely long circular cylinder

placed in a uniform free-stream. Here, in particular, we study

the a flow for a Reynolds number of Re= �∞u∞D
μ
=20, which

corresponds to a general convection-diffusion case. A free-

stream Mach number of Mach= u∞
c0
=0.03 is set in order be

able to compare with numerical solutions of incompressible

N-S solutions.

The Cylinder is placed at the origin of the domain, so

that the distance from the cylinder to the lower and upper

5
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free-stream boundaries is set to 13D ; and the inflow and

outflow are located at 5D and 15D respectively. This problem

is resolved on a stretched mesh whose grid spacing in the

vicinity of the cylinder is approximately Δx=Δy=D/40.

In this example, the domain’s inlet, outlet and the

isothermal-wall boundary condition on the cylinder are

imposed using the characteristic extrapolation described in

section 2.3.2. We run our simulation with a CFL=0.9, which

corresponds to a time step of size Δt=0.004. The Simulation

is run until t=1000. The Vortex field and the eddy obtained

from this configuration is shown in Fig. 9. At the final time

step, the drag coefficient, CD, is measured by interpolating

the values of the surface pressure and viscous stress on

the cylinder’s body. At this grid resolution, it is found that

CD=2.12. Comparison with the results summarized in [14,

Table 1] indicates that the present numerical result is in

reasonable agreement with previously reported results.

Figure 9 – Vorticity field obtained from the flow over a

cylinder at Mach 0.03 with a Reynolds number of 20.

4 Conclusion
A new immersed boundary technique for solving

hyperbolic and parabolic problems has been presented. This

technique is found to yield a sharp and stable 4th-order

finite-difference numerical approach that does not rely on

artifacts such as filters, WENO interpolation strategies or

jump correction techniques.

As the present IB-technique relies on traditional

interpolation approaches, we believe its extensions into

3-d problems is fairly straight forward, and its adoption in

existing numerical solvers based on compact schemes could

be transparent.

Lastly, it is hoped that this new technique would enable

the study of aeroacoustics wave generation and propagation

with 4th-order resolution on vectorized CPUs and GPUs.

Extensions for even higher orders-of-accuracy are currently

under investigation.
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